Complex multiplication for elliptic curves¶
This module implements the functions
hilbert_class_polynomial
is_HCP
cm_j_invariants
cm_orders
discriminants_with_bounded_class_number
cm_j_invariants_and_orders
largest_fundamental_disc_with_class_number
is_cm_j_invariant
AUTHORS:
Robert Bradshaw
John Cremona
William Stein
- sage.schemes.elliptic_curves.cm.OrderClassNumber(D0, h0, f)[source]¶
Return the class number h(f**2 * D0), given h(D0)=h0.
INPUT:
D0
– integer; a negative fundamental discriminanth0
– integer; the class number of the (maximal) imaginary quadratic order of discriminantD0
f
– positive integer
OUTPUT:
(integer) the class number of the imaginary quadratic order of discriminant
D0*f**2
ALGORITHM:
- We use the formula for the class number of the order \(\mathcal{O}_{D}\) in terms of the class number of the
maximal order \(\mathcal{O}_{D_0}\); see [Cox1989] Theorem 7.24:
\[h(D) = \frac{h(D_0)f}{[\mathcal{O}_{D_0}^\times:\mathcal{O}_{D}^\times]}\prod_{p\,|\,f}\left(1-\left(\frac{D_0}{p}\right)\frac{1}{p}\right)\]EXAMPLES:
sage: # needs sage.libs.pari sage: from sage.schemes.elliptic_curves.cm import OrderClassNumber sage: D0 = -4 sage: h = D0.class_number() sage: [OrderClassNumber(D0,h,f) for f in srange(1,20)] [1, 1, 2, 2, 2, 4, 4, 4, 6, 4, 6, 8, 6, 8, 8, 8, 8, 12, 10] sage: all([OrderClassNumber(D0,h,f) == (D0*f**2).class_number() for f in srange(1,20)]) True
>>> from sage.all import * >>> # needs sage.libs.pari >>> from sage.schemes.elliptic_curves.cm import OrderClassNumber >>> D0 = -Integer(4) >>> h = D0.class_number() >>> [OrderClassNumber(D0,h,f) for f in srange(Integer(1),Integer(20))] [1, 1, 2, 2, 2, 4, 4, 4, 6, 4, 6, 8, 6, 8, 8, 8, 8, 12, 10] >>> all([OrderClassNumber(D0,h,f) == (D0*f**Integer(2)).class_number() for f in srange(Integer(1),Integer(20))]) True
- sage.schemes.elliptic_curves.cm.cm_j_invariants(proof=None)[source]¶
Return a list of all CM \(j\)-invariants in the field \(K\).
INPUT:
K
– a number fieldproof
– (default: proof.number_field())
OUTPUT:
(list) – A list of CM \(j\)-invariants in the field \(K\).
EXAMPLES:
sage: cm_j_invariants(QQ) [-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375, 0, 1728, 8000, 54000, 287496, 16581375]
>>> from sage.all import * >>> cm_j_invariants(QQ) [-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375, 0, 1728, 8000, 54000, 287496, 16581375]
Over imaginary quadratic fields there are no more than over \(QQ\):
sage: cm_j_invariants(QuadraticField(-1, 'i')) # needs sage.rings.number_field [-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375, 0, 1728, 8000, 54000, 287496, 16581375]
>>> from sage.all import * >>> cm_j_invariants(QuadraticField(-Integer(1), 'i')) # needs sage.rings.number_field [-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375, 0, 1728, 8000, 54000, 287496, 16581375]
Over real quadratic fields there may be more, for example:
sage: len(cm_j_invariants(QuadraticField(5, 'a'))) # needs sage.rings.number_field 31
>>> from sage.all import * >>> len(cm_j_invariants(QuadraticField(Integer(5), 'a'))) # needs sage.rings.number_field 31
Over number fields K of many higher degrees this also works:
sage: # needs sage.rings.number_field sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^3 - 2) sage: cm_j_invariants(K) [-262537412640768000, -147197952000, -884736000, -884736, -32768, 8000, -3375, 16581375, 1728, 287496, 0, 54000, -12288000, 31710790944000*a^2 + 39953093016000*a + 50337742902000] sage: K.<a> = NumberField(x^4 - 2) sage: len(cm_j_invariants(K)) 23
>>> from sage.all import * >>> # needs sage.rings.number_field >>> x = polygen(ZZ, 'x') >>> K = NumberField(x**Integer(3) - Integer(2), names=('a',)); (a,) = K._first_ngens(1) >>> cm_j_invariants(K) [-262537412640768000, -147197952000, -884736000, -884736, -32768, 8000, -3375, 16581375, 1728, 287496, 0, 54000, -12288000, 31710790944000*a^2 + 39953093016000*a + 50337742902000] >>> K = NumberField(x**Integer(4) - Integer(2), names=('a',)); (a,) = K._first_ngens(1) >>> len(cm_j_invariants(K)) 23
- sage.schemes.elliptic_curves.cm.cm_j_invariants_and_orders(proof=None)[source]¶
Return a list of all CM \(j\)-invariants in the field \(K\), together with the associated orders.
INPUT:
K
– a number fieldproof
– (default: proof.number_field())
OUTPUT:
A list of 3-tuples \((D,f,j)\) where \(j\) is a CM \(j\)-invariant in \(K\) with quadratic fundamental discriminant \(D\) and conductor \(f\).
EXAMPLES:
sage: cm_j_invariants_and_orders(QQ) [(-3, 3, -12288000), (-3, 2, 54000), (-3, 1, 0), (-4, 2, 287496), (-4, 1, 1728), (-7, 2, 16581375), (-7, 1, -3375), (-8, 1, 8000), (-11, 1, -32768), (-19, 1, -884736), (-43, 1, -884736000), (-67, 1, -147197952000), (-163, 1, -262537412640768000)]
>>> from sage.all import * >>> cm_j_invariants_and_orders(QQ) [(-3, 3, -12288000), (-3, 2, 54000), (-3, 1, 0), (-4, 2, 287496), (-4, 1, 1728), (-7, 2, 16581375), (-7, 1, -3375), (-8, 1, 8000), (-11, 1, -32768), (-19, 1, -884736), (-43, 1, -884736000), (-67, 1, -147197952000), (-163, 1, -262537412640768000)]
Over an imaginary quadratic field there are no more than over \(QQ\):
sage: cm_j_invariants_and_orders(QuadraticField(-1, 'i')) # needs sage.rings.number_field [(-163, 1, -262537412640768000), (-67, 1, -147197952000), (-43, 1, -884736000), (-19, 1, -884736), (-11, 1, -32768), (-8, 1, 8000), (-7, 1, -3375), (-7, 2, 16581375), (-4, 1, 1728), (-4, 2, 287496), (-3, 1, 0), (-3, 2, 54000), (-3, 3, -12288000)]
>>> from sage.all import * >>> cm_j_invariants_and_orders(QuadraticField(-Integer(1), 'i')) # needs sage.rings.number_field [(-163, 1, -262537412640768000), (-67, 1, -147197952000), (-43, 1, -884736000), (-19, 1, -884736), (-11, 1, -32768), (-8, 1, 8000), (-7, 1, -3375), (-7, 2, 16581375), (-4, 1, 1728), (-4, 2, 287496), (-3, 1, 0), (-3, 2, 54000), (-3, 3, -12288000)]
Over real quadratic fields there may be more:
sage: v = cm_j_invariants_and_orders(QuadraticField(5,'a')); len(v) # needs sage.rings.number_field 31 sage: [(D, f) for D, f, j in v if j not in QQ] # needs sage.rings.number_field [(-235, 1), (-235, 1), (-115, 1), (-115, 1), (-40, 1), (-40, 1), (-35, 1), (-35, 1), (-20, 1), (-20, 1), (-15, 1), (-15, 1), (-15, 2), (-15, 2), (-4, 5), (-4, 5), (-3, 5), (-3, 5)]
>>> from sage.all import * >>> v = cm_j_invariants_and_orders(QuadraticField(Integer(5),'a')); len(v) # needs sage.rings.number_field 31 >>> [(D, f) for D, f, j in v if j not in QQ] # needs sage.rings.number_field [(-235, 1), (-235, 1), (-115, 1), (-115, 1), (-40, 1), (-40, 1), (-35, 1), (-35, 1), (-20, 1), (-20, 1), (-15, 1), (-15, 1), (-15, 2), (-15, 2), (-4, 5), (-4, 5), (-3, 5), (-3, 5)]
Over number fields K of many higher degrees this also works:
sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^3 - 2) # needs sage.rings.number_field sage: cm_j_invariants_and_orders(K) # needs sage.rings.number_field [(-163, 1, -262537412640768000), (-67, 1, -147197952000), (-43, 1, -884736000), (-19, 1, -884736), (-11, 1, -32768), (-8, 1, 8000), (-7, 1, -3375), (-7, 2, 16581375), (-4, 1, 1728), (-4, 2, 287496), (-3, 1, 0), (-3, 2, 54000), (-3, 3, -12288000), (-3, 6, 31710790944000*a^2 + 39953093016000*a + 50337742902000)]
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> K = NumberField(x**Integer(3) - Integer(2), names=('a',)); (a,) = K._first_ngens(1)# needs sage.rings.number_field >>> cm_j_invariants_and_orders(K) # needs sage.rings.number_field [(-163, 1, -262537412640768000), (-67, 1, -147197952000), (-43, 1, -884736000), (-19, 1, -884736), (-11, 1, -32768), (-8, 1, 8000), (-7, 1, -3375), (-7, 2, 16581375), (-4, 1, 1728), (-4, 2, 287496), (-3, 1, 0), (-3, 2, 54000), (-3, 3, -12288000), (-3, 6, 31710790944000*a^2 + 39953093016000*a + 50337742902000)]
- sage.schemes.elliptic_curves.cm.cm_orders(proof=None)[source]¶
Return a list of all pairs \((D,f)\) where there is a CM order of discriminant \(D f^2\) with class number h, with \(D\) a fundamental discriminant.
INPUT:
h
– positive integerproof
– (default: proof.number_field())
OUTPUT: list of 2-tuples \((D,f)\) sorted lexicographically by \((|D|, f)\)
EXAMPLES:
sage: cm_orders(0) [] sage: v = cm_orders(1); v [(-3, 1), (-3, 2), (-3, 3), (-4, 1), (-4, 2), (-7, 1), (-7, 2), (-8, 1), (-11, 1), (-19, 1), (-43, 1), (-67, 1), (-163, 1)] sage: type(v[0][0]), type(v[0][1]) (<... 'sage.rings.integer.Integer'>, <... 'sage.rings.integer.Integer'>) sage: # needs sage.libs.pari sage: v = cm_orders(2); v [(-3, 4), (-3, 5), (-3, 7), (-4, 3), (-4, 4), (-4, 5), (-7, 4), (-8, 2), (-8, 3), (-11, 3), (-15, 1), (-15, 2), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1), (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1), (-235, 1), (-267, 1), (-403, 1), (-427, 1)] sage: len(v) 29 sage: set([hilbert_class_polynomial(D*f^2).degree() for D,f in v]) {2}
>>> from sage.all import * >>> cm_orders(Integer(0)) [] >>> v = cm_orders(Integer(1)); v [(-3, 1), (-3, 2), (-3, 3), (-4, 1), (-4, 2), (-7, 1), (-7, 2), (-8, 1), (-11, 1), (-19, 1), (-43, 1), (-67, 1), (-163, 1)] >>> type(v[Integer(0)][Integer(0)]), type(v[Integer(0)][Integer(1)]) (<... 'sage.rings.integer.Integer'>, <... 'sage.rings.integer.Integer'>) >>> # needs sage.libs.pari >>> v = cm_orders(Integer(2)); v [(-3, 4), (-3, 5), (-3, 7), (-4, 3), (-4, 4), (-4, 5), (-7, 4), (-8, 2), (-8, 3), (-11, 3), (-15, 1), (-15, 2), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1), (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1), (-235, 1), (-267, 1), (-403, 1), (-427, 1)] >>> len(v) 29 >>> set([hilbert_class_polynomial(D*f**Integer(2)).degree() for D,f in v]) {2}
Any degree up to 100 is implemented, but may be slow:
sage: # needs sage.libs.pari sage: cm_orders(3) [(-3, 6), (-3, 9), (-11, 2), (-19, 2), (-23, 1), (-23, 2), (-31, 1), (-31, 2), (-43, 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2), (-211, 1), (-283, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1), (-643, 1), (-883, 1), (-907, 1)] sage: len(cm_orders(4)) 84
>>> from sage.all import * >>> # needs sage.libs.pari >>> cm_orders(Integer(3)) [(-3, 6), (-3, 9), (-11, 2), (-19, 2), (-23, 1), (-23, 2), (-31, 1), (-31, 2), (-43, 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2), (-211, 1), (-283, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1), (-643, 1), (-883, 1), (-907, 1)] >>> len(cm_orders(Integer(4))) 84
- sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(hmax, B=None, proof=None)[source]¶
Return a dictionary with keys class numbers \(h\le hmax\) and values the list of all pairs \((D_0, f)\), with \(D_0<0\) a fundamental discriminant such that \(D=D_0f^2\) has class number \(h\). If the optional bound \(B\) is given, return only those pairs with \(|D| \le B\).
INPUT:
hmax
– integerB
– integer orNone
; ifNone
returns all pairsproof
– this code calls the PARI function pari:qfbclassno, so it could give wrong answers whenproof``==``False
(though only for discriminants greater than \(2\cdot10^{10}\)). The default is the current value ofproof.number_field()
.
OUTPUT: dictionary
Note
In case \(B\) is not given, then
hmax
must be at most 100; we use the tables from [Watkins2004] and [Klaise2012] to compute a \(B\) that captures all \(h\) up to \(hmax\).EXAMPLES:
sage: # needs sage.libs.pari sage: from sage.schemes.elliptic_curves.cm import discriminants_with_bounded_class_number sage: v = discriminants_with_bounded_class_number(3) sage: sorted(v) [1, 2, 3] sage: v[1] [(-3, 1), (-3, 2), (-3, 3), (-4, 1), (-4, 2), (-7, 1), (-7, 2), (-8, 1), (-11, 1), (-19, 1), (-43, 1), (-67, 1), (-163, 1)] sage: v[2] [(-3, 4), (-3, 5), (-3, 7), (-4, 3), (-4, 4), (-4, 5), (-7, 4), (-8, 2), (-8, 3), (-11, 3), (-15, 1), (-15, 2), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1), (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1), (-235, 1), (-267, 1), (-403, 1), (-427, 1)] sage: v[3] [(-3, 6), (-3, 9), (-11, 2), (-19, 2), (-23, 1), (-23, 2), (-31, 1), (-31, 2), (-43, 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2), (-211, 1), (-283, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1), (-643, 1), (-883, 1), (-907, 1)] sage: v = discriminants_with_bounded_class_number(8, proof=False) sage: sorted(len(v[h]) for h in v) [13, 25, 29, 29, 38, 84, 101, 208]
>>> from sage.all import * >>> # needs sage.libs.pari >>> from sage.schemes.elliptic_curves.cm import discriminants_with_bounded_class_number >>> v = discriminants_with_bounded_class_number(Integer(3)) >>> sorted(v) [1, 2, 3] >>> v[Integer(1)] [(-3, 1), (-3, 2), (-3, 3), (-4, 1), (-4, 2), (-7, 1), (-7, 2), (-8, 1), (-11, 1), (-19, 1), (-43, 1), (-67, 1), (-163, 1)] >>> v[Integer(2)] [(-3, 4), (-3, 5), (-3, 7), (-4, 3), (-4, 4), (-4, 5), (-7, 4), (-8, 2), (-8, 3), (-11, 3), (-15, 1), (-15, 2), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1), (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1), (-235, 1), (-267, 1), (-403, 1), (-427, 1)] >>> v[Integer(3)] [(-3, 6), (-3, 9), (-11, 2), (-19, 2), (-23, 1), (-23, 2), (-31, 1), (-31, 2), (-43, 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2), (-211, 1), (-283, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1), (-643, 1), (-883, 1), (-907, 1)] >>> v = discriminants_with_bounded_class_number(Integer(8), proof=False) >>> sorted(len(v[h]) for h in v) [13, 25, 29, 29, 38, 84, 101, 208]
Find all class numbers for discriminant up to 50:
sage: sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(hmax=5, B=50) {1: [(-3, 1), (-3, 2), (-3, 3), (-4, 1), (-4, 2), (-7, 1), (-7, 2), (-8, 1), (-11, 1), (-19, 1), (-43, 1)], 2: [(-3, 4), (-4, 3), (-8, 2), (-15, 1), (-20, 1), (-24, 1), (-35, 1), (-40, 1)], 3: [(-11, 2), (-23, 1), (-31, 1)], 4: [(-39, 1)], 5: [(-47, 1)]}
>>> from sage.all import * >>> sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(hmax=Integer(5), B=Integer(50)) {1: [(-3, 1), (-3, 2), (-3, 3), (-4, 1), (-4, 2), (-7, 1), (-7, 2), (-8, 1), (-11, 1), (-19, 1), (-43, 1)], 2: [(-3, 4), (-4, 3), (-8, 2), (-15, 1), (-20, 1), (-24, 1), (-35, 1), (-40, 1)], 3: [(-11, 2), (-23, 1), (-31, 1)], 4: [(-39, 1)], 5: [(-47, 1)]}
- sage.schemes.elliptic_curves.cm.hilbert_class_polynomial(algorithm=None)[source]¶
Return the Hilbert class polynomial for discriminant \(D\).
INPUT:
D
– negative integer congruent to 0 or 1 modulo 4algorithm
– string (default:None
)
OUTPUT:
(integer polynomial) The Hilbert class polynomial for the discriminant \(D\).
ALGORITHM:
If
algorithm
= “arb” (default): Use FLINT’s implementation inherited from Arb which uses complex interval arithmetic.If
algorithm
= “sage”: Use complex approximations to the roots.If
algorithm
= “magma”: Call the appropriate Magma function (if available).
AUTHORS:
Sage implementation originally by Eduardo Ocampo Alvarez and AndreyTimofeev
Sage implementation corrected by John Cremona (using corrected precision bounds from Andreas Enge)
Magma implementation by David Kohel
EXAMPLES:
sage: # needs sage.libs.flint sage: hilbert_class_polynomial(-4) x - 1728 sage: hilbert_class_polynomial(-7) x + 3375 sage: hilbert_class_polynomial(-23) x^3 + 3491750*x^2 - 5151296875*x + 12771880859375 sage: hilbert_class_polynomial(-37*4) x^2 - 39660183801072000*x - 7898242515936467904000000 sage: hilbert_class_polynomial(-37*4, algorithm='magma') # optional - magma x^2 - 39660183801072000*x - 7898242515936467904000000 sage: hilbert_class_polynomial(-163) x + 262537412640768000 sage: hilbert_class_polynomial(-163, algorithm='sage') x + 262537412640768000 sage: hilbert_class_polynomial(-163, algorithm='magma') # optional - magma x + 262537412640768000
>>> from sage.all import * >>> # needs sage.libs.flint >>> hilbert_class_polynomial(-Integer(4)) x - 1728 >>> hilbert_class_polynomial(-Integer(7)) x + 3375 >>> hilbert_class_polynomial(-Integer(23)) x^3 + 3491750*x^2 - 5151296875*x + 12771880859375 >>> hilbert_class_polynomial(-Integer(37)*Integer(4)) x^2 - 39660183801072000*x - 7898242515936467904000000 >>> hilbert_class_polynomial(-Integer(37)*Integer(4), algorithm='magma') # optional - magma x^2 - 39660183801072000*x - 7898242515936467904000000 >>> hilbert_class_polynomial(-Integer(163)) x + 262537412640768000 >>> hilbert_class_polynomial(-Integer(163), algorithm='sage') x + 262537412640768000 >>> hilbert_class_polynomial(-Integer(163), algorithm='magma') # optional - magma x + 262537412640768000
- sage.schemes.elliptic_curves.cm.is_HCP(f, check_monic_irreducible=True)[source]¶
Determine whether a polynomial is a Hilbert Class Polynomial.
INPUT:
f
– a polynomial in \(\ZZ[X]\)check_monic_irreducible
– boolean (default:True
); ifTrue
, check thatf
is a monic, irreducible, integer polynomial
OUTPUT:
(integer) – either \(D\) if
f
is the Hilbert Class Polynomial \(H_D\) for discriminant \(D\), or \(0\) if not an HCP.ALGORITHM:
Cremona and Sutherland: Algorithm 2 of [CreSuth2023].
EXAMPLES:
Even for large degrees this is fast. We test the largest discriminant of class number 100, for which the HCP has coefficients with thousands of digits:
sage: from sage.schemes.elliptic_curves.cm import is_HCP sage: D = -1856563 sage: D.class_number() # needs sage.libs.pari 100 sage: # needs sage.libs.flint sage: H = hilbert_class_polynomial(D) sage: H.degree() 100 sage: max(H).ndigits() 2774 sage: is_HCP(H) -1856563
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.cm import is_HCP >>> D = -Integer(1856563) >>> D.class_number() # needs sage.libs.pari 100 >>> # needs sage.libs.flint >>> H = hilbert_class_polynomial(D) >>> H.degree() 100 >>> max(H).ndigits() 2774 >>> is_HCP(H) -1856563
Testing polynomials which are not HCPs is faster:
sage: is_HCP(H+1) # needs sage.libs.flint 0
>>> from sage.all import * >>> is_HCP(H+Integer(1)) # needs sage.libs.flint 0
- sage.schemes.elliptic_curves.cm.is_cm_j_invariant(algorithm='CremonaSutherland', method=None)[source]¶
Return whether or not this is a CM \(j\)-invariant, and the CM discriminant if it is.
INPUT:
j
– an element of a number field \(K\)algorithm
– string (default:'CremonaSutherland'
); the algorithm used, either'CremonaSutherland'
(the default, very much faster for all but very small degrees),'exhaustive'
or'reduction'
method
– string; deprecated name foralgorithm
OUTPUT:
A pair (bool, (d,f)) which is either (False, None) if \(j\) is not a CM j-invariant or (True, (d,f)) if \(j\) is the \(j\)-invariant of the imaginary quadratic order of discriminant \(D=df^2\) where \(d\) is the associated fundamental discriminant and \(f\) the index.
ALGORITHM:
The default algorithm used is to test whether the minimal polynomial of
j
is a Hilbert CLass Polynomail, usingis_HCP()
which implements Algorithm 2 of [CreSuth2023] by Cremona and Sutherland.Two older algorithms are available, both of which are much slower except for very small degrees.
Method ‘exhaustive’ makes use of the complete and unconditionsl classification of all orders of class number up to 100, and hence will raise an error if \(j\) is an algebraic integer of degree greater than this.
Method ‘reduction’ constructs an elliptic curve over the number field \(\QQ(j)\) and computes its traces of Frobenius at several primes of degree 1.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant sage: is_cm_j_invariant(0) (True, (-3, 1)) sage: is_cm_j_invariant(8000) (True, (-8, 1)) sage: # needs sage.rings.number_field sage: K.<a> = QuadraticField(5) sage: is_cm_j_invariant(282880*a + 632000) (True, (-20, 1)) sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^3 - 2) sage: is_cm_j_invariant(31710790944000*a^2 + 39953093016000*a + 50337742902000) (True, (-3, 6))
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.cm import is_cm_j_invariant >>> is_cm_j_invariant(Integer(0)) (True, (-3, 1)) >>> is_cm_j_invariant(Integer(8000)) (True, (-8, 1)) >>> # needs sage.rings.number_field >>> K = QuadraticField(Integer(5), names=('a',)); (a,) = K._first_ngens(1) >>> is_cm_j_invariant(Integer(282880)*a + Integer(632000)) (True, (-20, 1)) >>> x = polygen(ZZ, 'x') >>> K = NumberField(x**Integer(3) - Integer(2), names=('a',)); (a,) = K._first_ngens(1) >>> is_cm_j_invariant(Integer(31710790944000)*a**Integer(2) + Integer(39953093016000)*a + Integer(50337742902000)) (True, (-3, 6))
An example of large degree. This is only possible using the default algorithm:
sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant sage: D = -1856563 sage: H = hilbert_class_polynomial(D) # needs sage.libs.flint sage: H.degree() # needs sage.libs.flint 100 sage: K.<j> = NumberField(H) # needs sage.libs.flint sage.rings.number_field sage: is_cm_j_invariant(j) # needs sage.libs.flint sage.rings.number_field (True, (-1856563, 1))
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.cm import is_cm_j_invariant >>> D = -Integer(1856563) >>> H = hilbert_class_polynomial(D) # needs sage.libs.flint >>> H.degree() # needs sage.libs.flint 100 >>> K = NumberField(H, names=('j',)); (j,) = K._first_ngens(1)# needs sage.libs.flint sage.rings.number_field >>> is_cm_j_invariant(j) # needs sage.libs.flint sage.rings.number_field (True, (-1856563, 1))
- sage.schemes.elliptic_curves.cm.largest_disc_with_class_number(h)[source]¶
Return largest absolute value of any negative discriminant with class number \(h\), and the number of fundamental negative discriminants with that class number. This is known (unconditionally) for \(h\) up to 100, by work of Mark Watkins [Watkins2004] for fundamental discriminants, extended to all discriminants of class number \(h\le100\) by Klaise [Klaise2012].
Note
The class number of a negative discriminant \(D\) is the same as the class number of the unique imaginary quadratic order of discriminant \(D\), so this function gives the number of such orders of each class number \(h\le100\). It is easy to extend this to larger class number conditional on the GRH, but much harder to obyain unconditional results.
INPUT:
h
– integer
EXAMPLES:
sage: from sage.schemes.elliptic_curves.cm import largest_disc_with_class_number sage: largest_disc_with_class_number(0) (0, 0) sage: largest_disc_with_class_number(1) (163, 13) sage: largest_disc_with_class_number(2) (427, 29) sage: largest_disc_with_class_number(10) (13843, 123) sage: largest_disc_with_class_number(100) (1856563, 2311) sage: largest_disc_with_class_number(101) Traceback (most recent call last): ... NotImplementedError: largest discriminant not available for class number 101
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.cm import largest_disc_with_class_number >>> largest_disc_with_class_number(Integer(0)) (0, 0) >>> largest_disc_with_class_number(Integer(1)) (163, 13) >>> largest_disc_with_class_number(Integer(2)) (427, 29) >>> largest_disc_with_class_number(Integer(10)) (13843, 123) >>> largest_disc_with_class_number(Integer(100)) (1856563, 2311) >>> largest_disc_with_class_number(Integer(101)) Traceback (most recent call last): ... NotImplementedError: largest discriminant not available for class number 101
For most \(h\le100\), the largest fundamental discriminant with class number \(h\) is also the largest discriminant, but this is not the case for some \(h\):
sage: from sage.schemes.elliptic_curves.cm import largest_disc_with_class_number, largest_fundamental_disc_with_class_number sage: [h for h in range(1,101) if largest_disc_with_class_number(h)[0] != largest_fundamental_disc_with_class_number(h)[0]] [6, 8, 12, 16, 20, 30, 40, 42, 52, 70] sage: largest_fundamental_disc_with_class_number(6) (3763, 51) sage: largest_disc_with_class_number(6) (4075, 101)
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.cm import largest_disc_with_class_number, largest_fundamental_disc_with_class_number >>> [h for h in range(Integer(1),Integer(101)) if largest_disc_with_class_number(h)[Integer(0)] != largest_fundamental_disc_with_class_number(h)[Integer(0)]] [6, 8, 12, 16, 20, 30, 40, 42, 52, 70] >>> largest_fundamental_disc_with_class_number(Integer(6)) (3763, 51) >>> largest_disc_with_class_number(Integer(6)) (4075, 101)
- sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(h)[source]¶
Return largest absolute value of any fundamental negative discriminant with class number \(h\), and the number of fundamental negative discriminants with that class number. This is known (unconditionally) for \(h\) up to 100, by work of Mark Watkins ([Watkins2004]).
Note
The class number of a fundamental negative discriminant \(D\) is the same as the class number of the imaginary quadratic field \(\QQ(\sqrt{D})\), so this function gives the number of such fields of each class number \(h\le100\). It is easy to extend this to larger class number conditional on the GRH, but much harder to obtain unconditional results.
INPUT:
h
– integer
EXAMPLES:
sage: from sage.schemes.elliptic_curves.cm import largest_fundamental_disc_with_class_number sage: largest_fundamental_disc_with_class_number(0) (0, 0) sage: largest_fundamental_disc_with_class_number(1) (163, 9) sage: largest_fundamental_disc_with_class_number(2) (427, 18) sage: largest_fundamental_disc_with_class_number(10) (13843, 87) sage: largest_fundamental_disc_with_class_number(100) (1856563, 1736) sage: largest_fundamental_disc_with_class_number(101) Traceback (most recent call last): ... NotImplementedError: largest fundamental discriminant not available for class number 101
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.cm import largest_fundamental_disc_with_class_number >>> largest_fundamental_disc_with_class_number(Integer(0)) (0, 0) >>> largest_fundamental_disc_with_class_number(Integer(1)) (163, 9) >>> largest_fundamental_disc_with_class_number(Integer(2)) (427, 18) >>> largest_fundamental_disc_with_class_number(Integer(10)) (13843, 87) >>> largest_fundamental_disc_with_class_number(Integer(100)) (1856563, 1736) >>> largest_fundamental_disc_with_class_number(Integer(101)) Traceback (most recent call last): ... NotImplementedError: largest fundamental discriminant not available for class number 101