# Elliptic curves over a general field#

This module defines the class EllipticCurve_field, based on EllipticCurve_generic, for elliptic curves over general fields.

class sage.schemes.elliptic_curves.ell_field.EllipticCurve_field(R, data, category=None)[source]#

Constructor for elliptic curves over fields.

Identical to the constructor for elliptic curves over general rings, except for setting the default category to AbelianVarieties.

EXAMPLES:

sage: E = EllipticCurve(QQ, [1,1])
sage: E.category()
Category of abelian varieties over Rational Field
sage: E = EllipticCurve(GF(101), [1,1])
sage: E.category()
Category of abelian varieties over Finite Field of size 101

>>> from sage.all import *
>>> E = EllipticCurve(QQ, [Integer(1),Integer(1)])
>>> E.category()
Category of abelian varieties over Rational Field
>>> E = EllipticCurve(GF(Integer(101)), [Integer(1),Integer(1)])
>>> E.category()
Category of abelian varieties over Finite Field of size 101

base_field()[source]#

Return the base ring of the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve(GF(49, 'a'), [3,5])                                 # needs sage.rings.finite_rings
sage: E.base_ring()                                                         # needs sage.rings.finite_rings
Finite Field in a of size 7^2

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(49), 'a'), [Integer(3),Integer(5)])                                 # needs sage.rings.finite_rings
>>> E.base_ring()                                                         # needs sage.rings.finite_rings
Finite Field in a of size 7^2

sage: E = EllipticCurve([1,1])
sage: E.base_ring()
Rational Field

>>> from sage.all import *
>>> E = EllipticCurve([Integer(1),Integer(1)])
>>> E.base_ring()
Rational Field

sage: E = EllipticCurve(ZZ, [3,5])
sage: E.base_ring()
Integer Ring

>>> from sage.all import *
>>> E = EllipticCurve(ZZ, [Integer(3),Integer(5)])
>>> E.base_ring()
Integer Ring

descend_to(K, f=None)[source]#

Given an elliptic curve self defined over a field $$L$$ and a subfield $$K$$ of $$L$$, return all elliptic curves over $$K$$ which are isomorphic over $$L$$ to self.

INPUT:

• $$K$$ – a field which embeds into the base field $$L$$ of self.

• $$f$$ (optional) – an embedding of $$K$$ into $$L$$. Ignored if $$K$$ is $$\QQ$$.

OUTPUT:

A list (possibly empty) of elliptic curves defined over $$K$$ which are isomorphic to self over $$L$$, up to isomorphism over $$K$$.

Note

Currently only implemented over number fields. To extend to other fields of characteristic not 2 or 3, what is needed is a method giving the preimages in $$K^*/(K^*)^m$$ of an element of the base field, for $$m=2,4,6$$.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.descend_to(ZZ)
Traceback (most recent call last):
...
TypeError: Input must be a field.

>>> from sage.all import *
>>> E = EllipticCurve([Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)])
>>> E.descend_to(ZZ)
Traceback (most recent call last):
...
TypeError: Input must be a field.

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: G.<a> = F.extension(x^3 + 5)
sage: E = EllipticCurve(j=1728*b).change_ring(G)
sage: EF = E.descend_to(F); EF
[Elliptic Curve defined by y^2 = x^3 + (27*b-621)*x + (-1296*b+2484)
over Number Field in b with defining polynomial x^2 - 23
with b = 4.795831523312720?]
sage: all(Ei.change_ring(G).is_isomorphic(E) for Ei in EF)
True

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> F = QuadraticField(Integer(23), names=('b',)); (b,) = F._first_ngens(1)
>>> x = polygen(ZZ, 'x')
>>> G = F.extension(x**Integer(3) + Integer(5), names=('a',)); (a,) = G._first_ngens(1)
>>> E = EllipticCurve(j=Integer(1728)*b).change_ring(G)
>>> EF = E.descend_to(F); EF
[Elliptic Curve defined by y^2 = x^3 + (27*b-621)*x + (-1296*b+2484)
over Number Field in b with defining polynomial x^2 - 23
with b = 4.795831523312720?]
>>> all(Ei.change_ring(G).is_isomorphic(E) for Ei in EF)
True

sage: # needs sage.rings.number_field
sage: L.<a> = NumberField(x^4 - 7)
sage: K.<b> = NumberField(x^2 - 7, embedding=a^2)
sage: E = EllipticCurve([a^6, 0])
sage: EK = E.descend_to(K); EK
[Elliptic Curve defined by y^2 = x^3 + b*x over Number Field in b
with defining polynomial x^2 - 7 with b = a^2,
Elliptic Curve defined by y^2 = x^3 + 7*b*x over Number Field in b
with defining polynomial x^2 - 7 with b = a^2]
sage: all(Ei.change_ring(L).is_isomorphic(E) for Ei in EK)
True

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> L = NumberField(x**Integer(4) - Integer(7), names=('a',)); (a,) = L._first_ngens(1)
>>> K = NumberField(x**Integer(2) - Integer(7), embedding=a**Integer(2), names=('b',)); (b,) = K._first_ngens(1)
>>> E = EllipticCurve([a**Integer(6), Integer(0)])
>>> EK = E.descend_to(K); EK
[Elliptic Curve defined by y^2 = x^3 + b*x over Number Field in b
with defining polynomial x^2 - 7 with b = a^2,
Elliptic Curve defined by y^2 = x^3 + 7*b*x over Number Field in b
with defining polynomial x^2 - 7 with b = a^2]
>>> all(Ei.change_ring(L).is_isomorphic(E) for Ei in EK)
True

sage: K.<a> = QuadraticField(17)                                            # needs sage.rings.number_field
sage: E = EllipticCurve(j=2*a)                                              # needs sage.rings.number_field
sage: E.descend_to(QQ)                                                      # needs sage.rings.number_field
[]

>>> from sage.all import *
>>> K = QuadraticField(Integer(17), names=('a',)); (a,) = K._first_ngens(1)# needs sage.rings.number_field
>>> E = EllipticCurve(j=Integer(2)*a)                                              # needs sage.rings.number_field
>>> E.descend_to(QQ)                                                      # needs sage.rings.number_field
[]

division_field(n, names='t', map=False, **kwds)[source]#

Given an elliptic curve over a number field or finite field $$F$$ and a positive integer $$n$$, construct the $$n$$-division field $$F(E[n])$$.

The $$n$$-division field is the smallest extension of $$F$$ over which all $$n$$-torsion points of $$E$$ are defined.

INPUT:

• $$n$$ – a positive integer

• names – (default: 't') a variable name for the division field

• map – (default: False) also return an embedding of the base_field() into the resulting field

• kwds – additional keyword arguments passed to splitting_field()

OUTPUT:

If map is False, the division field $$K$$ as an absolute number field or a finite field. If map is True, a tuple $$(K, \phi)$$ where $$\phi$$ is an embedding of the base field in the division field $$K$$.

Warning

This can take a very long time when the degree of the division field is large (e.g. when $$n$$ is large or when the Galois representation is surjective). The simplify flag also has a big influence on the running time over number fields: sometimes simplify=False is faster, sometimes the default simplify=True is faster.

EXAMPLES:

The 2-division field is the same as the splitting field of the 2-division polynomial (therefore, it has degree 1, 2, 3 or 6):

sage: # needs sage.rings.number_field
sage: E = EllipticCurve('15a1')
sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial x
sage: E = EllipticCurve('14a1')
sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial x^2 + 5*x + 92
sage: E = EllipticCurve('196b1')
sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial x^3 + x^2 - 114*x - 127
sage: E = EllipticCurve('19a1')
sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial
x^6 + 10*x^5 + 24*x^4 - 212*x^3 + 1364*x^2 + 24072*x + 104292

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> E = EllipticCurve('15a1')
>>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial x
>>> E = EllipticCurve('14a1')
>>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial x^2 + 5*x + 92
>>> E = EllipticCurve('196b1')
>>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial x^3 + x^2 - 114*x - 127
>>> E = EllipticCurve('19a1')
>>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial
x^6 + 10*x^5 + 24*x^4 - 212*x^3 + 1364*x^2 + 24072*x + 104292


For odd primes $$n$$, the division field is either the splitting field of the $$n$$-division polynomial, or a quadratic extension of it.

sage: # needs sage.rings.number_field
sage: E = EllipticCurve('50a1')
sage: F.<a> = E.division_polynomial(3).splitting_field(simplify_all=True); F
Number Field in a
with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3
sage: K.<b> = E.division_field(3, simplify_all=True); K
Number Field in b
with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> E = EllipticCurve('50a1')
>>> F = E.division_polynomial(Integer(3)).splitting_field(simplify_all=True, names=('a',)); (a,) = F._first_ngens(1); F
Number Field in a
with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3
>>> K = E.division_field(Integer(3), simplify_all=True, names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b
with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3


If we take any quadratic twist, the splitting field of the 3-division polynomial remains the same, but the 3-division field becomes a quadratic extension:

sage: # needs sage.rings.number_field
sage: E = E.quadratic_twist(5)  # 50b3
sage: F.<a> = E.division_polynomial(3).splitting_field(simplify_all=True); F
Number Field in a
with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3
sage: K.<b> = E.division_field(3, simplify_all=True); K
Number Field in b with defining polynomial x^12 - 3*x^11 + 8*x^10 - 15*x^9
+ 30*x^8 - 63*x^7 + 109*x^6 - 144*x^5 + 150*x^4 - 120*x^3 + 68*x^2 - 24*x + 4

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> E = E.quadratic_twist(Integer(5))  # 50b3
>>> F = E.division_polynomial(Integer(3)).splitting_field(simplify_all=True, names=('a',)); (a,) = F._first_ngens(1); F
Number Field in a
with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3
>>> K = E.division_field(Integer(3), simplify_all=True, names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial x^12 - 3*x^11 + 8*x^10 - 15*x^9
+ 30*x^8 - 63*x^7 + 109*x^6 - 144*x^5 + 150*x^4 - 120*x^3 + 68*x^2 - 24*x + 4


Try another quadratic twist, this time over a subfield of $$F$$:

sage: # needs sage.rings.number_field
sage: G.<c>,_,_ = F.subfields(3)[0]
Elliptic Curve defined
by y^2 = x^3 + 5*a0*x^2 + (-200*a0^2)*x + (-42000*a0^2+42000*a0+126000)
over Number Field in a0 with defining polynomial x^3 - 3*x^2 + 3*x + 9
sage: K.<b> = E.division_field(3, simplify_all=True); K
Number Field in b with defining polynomial x^12 - 25*x^10 + 130*x^8 + 645*x^6 + 1050*x^4 + 675*x^2 + 225

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> G,_,_  = F.subfields(Integer(3))[Integer(0)]; (c,) = G._first_ngens(1)
Elliptic Curve defined
by y^2 = x^3 + 5*a0*x^2 + (-200*a0^2)*x + (-42000*a0^2+42000*a0+126000)
over Number Field in a0 with defining polynomial x^3 - 3*x^2 + 3*x + 9
>>> K = E.division_field(Integer(3), simplify_all=True, names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial x^12 - 25*x^10 + 130*x^8 + 645*x^6 + 1050*x^4 + 675*x^2 + 225


Some higher-degree examples:

sage: # needs sage.rings.number_field
sage: E = EllipticCurve('11a1')
sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial
x^6 + 2*x^5 - 48*x^4 - 436*x^3 + 1668*x^2 + 28792*x + 73844
sage: K.<b> = E.division_field(3); K        # long time
Number Field in b with defining polynomial x^48 ...
sage: K.<b> = E.division_field(5); K
Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1
sage: E.division_field(5, 'b', simplify=False)
Number Field in b with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101
sage: E.base_extend(K).torsion_subgroup()   # long time
Torsion Subgroup isomorphic to Z/5 + Z/5 associated to the Elliptic Curve
defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
over Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1

sage: # needs sage.rings.number_field
sage: E = EllipticCurve('27a1')
sage: K.<b> = E.division_field(3); K
Number Field in b with defining polynomial x^2 + 3*x + 9
sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial
x^6 + 6*x^5 + 24*x^4 - 52*x^3 - 228*x^2 + 744*x + 3844
sage: K.<b> = E.division_field(2, simplify_all=True); K
Number Field in b with defining polynomial x^6 - 3*x^5 + 5*x^3 - 3*x + 1
sage: K.<b> = E.division_field(5); K        # long time
Number Field in b with defining polynomial x^48 ...
sage: K.<b> = E.division_field(7); K        # long time
Number Field in b with defining polynomial x^72 ...

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> E = EllipticCurve('11a1')
>>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial
x^6 + 2*x^5 - 48*x^4 - 436*x^3 + 1668*x^2 + 28792*x + 73844
>>> K = E.division_field(Integer(3), names=('b',)); (b,) = K._first_ngens(1); K        # long time
Number Field in b with defining polynomial x^48 ...
>>> K = E.division_field(Integer(5), names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1
>>> E.division_field(Integer(5), 'b', simplify=False)
Number Field in b with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101
>>> E.base_extend(K).torsion_subgroup()   # long time
Torsion Subgroup isomorphic to Z/5 + Z/5 associated to the Elliptic Curve
defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
over Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1

>>> # needs sage.rings.number_field
>>> E = EllipticCurve('27a1')
>>> K = E.division_field(Integer(3), names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial x^2 + 3*x + 9
>>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial
x^6 + 6*x^5 + 24*x^4 - 52*x^3 - 228*x^2 + 744*x + 3844
>>> K = E.division_field(Integer(2), simplify_all=True, names=('b',)); (b,) = K._first_ngens(1); K
Number Field in b with defining polynomial x^6 - 3*x^5 + 5*x^3 - 3*x + 1
>>> K = E.division_field(Integer(5), names=('b',)); (b,) = K._first_ngens(1); K        # long time
Number Field in b with defining polynomial x^48 ...
>>> K = E.division_field(Integer(7), names=('b',)); (b,) = K._first_ngens(1); K        # long time
Number Field in b with defining polynomial x^72 ...


Over a number field:

sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([0,0,0,0,i])
sage: L.<b> = E.division_field(2); L
Number Field in b with defining polynomial x^4 - x^2 + 1
sage: L.<b>, phi = E.division_field(2, map=True); phi
Ring morphism:
From: Number Field in i with defining polynomial x^2 + 1
To:   Number Field in b with defining polynomial x^4 - x^2 + 1
Defn: i |--> -b^3
sage: L.<b>, phi = E.division_field(3, map=True)
sage: L
Number Field in b with defining polynomial x^24 - 6*x^22 - 12*x^21
- 21*x^20 + 216*x^19 + 48*x^18 + 804*x^17 + 1194*x^16 - 13488*x^15
+ 21222*x^14 + 44196*x^13 - 47977*x^12 - 102888*x^11 + 173424*x^10
- 172308*x^9 + 302046*x^8 + 252864*x^7 - 931182*x^6 + 180300*x^5
+ 879567*x^4 - 415896*x^3 + 1941012*x^2 + 650220*x + 443089
sage: phi
Ring morphism:
From: Number Field in i with defining polynomial x^2 + 1
To:   Number Field in b with defining polynomial x^24 ...
Defn: i |--> -215621657062634529/183360797284413355040732*b^23 ...

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(2) + Integer(1), names=('i',)); (i,) = K._first_ngens(1)
>>> E = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(0),i])
>>> L = E.division_field(Integer(2), names=('b',)); (b,) = L._first_ngens(1); L
Number Field in b with defining polynomial x^4 - x^2 + 1
>>> L, phi  = E.division_field(Integer(2), map=True, names=('b',)); (b,) = L._first_ngens(1); phi
Ring morphism:
From: Number Field in i with defining polynomial x^2 + 1
To:   Number Field in b with defining polynomial x^4 - x^2 + 1
Defn: i |--> -b^3
>>> L, phi  = E.division_field(Integer(3), map=True, names=('b',)); (b,) = L._first_ngens(1)
>>> L
Number Field in b with defining polynomial x^24 - 6*x^22 - 12*x^21
- 21*x^20 + 216*x^19 + 48*x^18 + 804*x^17 + 1194*x^16 - 13488*x^15
+ 21222*x^14 + 44196*x^13 - 47977*x^12 - 102888*x^11 + 173424*x^10
- 172308*x^9 + 302046*x^8 + 252864*x^7 - 931182*x^6 + 180300*x^5
+ 879567*x^4 - 415896*x^3 + 1941012*x^2 + 650220*x + 443089
>>> phi
Ring morphism:
From: Number Field in i with defining polynomial x^2 + 1
To:   Number Field in b with defining polynomial x^24 ...
Defn: i |--> -215621657062634529/183360797284413355040732*b^23 ...


Over a finite field:

sage: E = EllipticCurve(GF(431^2), [1,0])                                   # needs sage.rings.finite_rings
sage: E.division_field(5, map=True)                                         # needs sage.rings.finite_rings
(Finite Field in t of size 431^4,
Ring morphism:
From: Finite Field in z2 of size 431^2
To:   Finite Field in t of size 431^4
Defn: z2 |--> 52*t^3 + 222*t^2 + 78*t + 105)

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(431)**Integer(2)), [Integer(1),Integer(0)])                                   # needs sage.rings.finite_rings
>>> E.division_field(Integer(5), map=True)                                         # needs sage.rings.finite_rings
(Finite Field in t of size 431^4,
Ring morphism:
From: Finite Field in z2 of size 431^2
To:   Finite Field in t of size 431^4
Defn: z2 |--> 52*t^3 + 222*t^2 + 78*t + 105)

sage: E = EllipticCurve(GF(433^2), [1,0])                                   # needs sage.rings.finite_rings
sage: K.<v> = E.division_field(7); K                                        # needs sage.rings.finite_rings
Finite Field in v of size 433^16

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(433)**Integer(2)), [Integer(1),Integer(0)])                                   # needs sage.rings.finite_rings
>>> K = E.division_field(Integer(7), names=('v',)); (v,) = K._first_ngens(1); K                                        # needs sage.rings.finite_rings
Finite Field in v of size 433^16


It also works for composite orders:

sage: E = EllipticCurve(GF(11), [5,5])
sage: E.change_ring(E.division_field(8)).abelian_group().torsion_subgroup(8).invariants()
(8, 8)
sage: E.change_ring(E.division_field(9)).abelian_group().torsion_subgroup(9).invariants()
(9, 9)
sage: E.change_ring(E.division_field(10)).abelian_group().torsion_subgroup(10).invariants()
(10, 10)
sage: E.change_ring(E.division_field(36)).abelian_group().torsion_subgroup(36).invariants()
(36, 36)
sage: E.change_ring(E.division_field(11)).abelian_group().torsion_subgroup(11).invariants()
(11,)
sage: E.change_ring(E.division_field(66)).abelian_group().torsion_subgroup(66).invariants()
(6, 66)

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(11)), [Integer(5),Integer(5)])
>>> E.change_ring(E.division_field(Integer(8))).abelian_group().torsion_subgroup(Integer(8)).invariants()
(8, 8)
>>> E.change_ring(E.division_field(Integer(9))).abelian_group().torsion_subgroup(Integer(9)).invariants()
(9, 9)
>>> E.change_ring(E.division_field(Integer(10))).abelian_group().torsion_subgroup(Integer(10)).invariants()
(10, 10)
>>> E.change_ring(E.division_field(Integer(36))).abelian_group().torsion_subgroup(Integer(36)).invariants()
(36, 36)
>>> E.change_ring(E.division_field(Integer(11))).abelian_group().torsion_subgroup(Integer(11)).invariants()
(11,)
>>> E.change_ring(E.division_field(Integer(66))).abelian_group().torsion_subgroup(Integer(66)).invariants()
(6, 66)


…also over number fields:

sage: R.<x> = PolynomialRing(QQ)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([0,0,0,0,i])
sage: L,emb = E.division_field(6, names='b', map=True); L
Number Field in b with defining polynomial x^24 + 12*x^23 + ...
sage: E.change_ring(emb).torsion_subgroup().invariants()
(6, 6)

>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(2) + Integer(1), names=('i',)); (i,) = K._first_ngens(1)
>>> E = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(0),i])
>>> L,emb = E.division_field(Integer(6), names='b', map=True); L
Number Field in b with defining polynomial x^24 + 12*x^23 + ...
>>> E.change_ring(emb).torsion_subgroup().invariants()
(6, 6)


AUTHORS:

• Jeroen Demeyer (2014-01-06): Issue #11905, use splitting_field method, moved from gal_reps.py, make it work over number fields.

• Lorenz Panny (2022): extend to finite fields

• Lorenz Panny (2023): extend to composite $$n$$.

endomorphism_ring_is_commutative()[source]#

Check whether the endomorphism ring of this elliptic curve over its base field is commutative.

ALGORITHM: The endomorphism ring is always commutative in characteristic zero. Over finite fields, it is commutative if and only if the Frobenius endomorphism is not in $$\ZZ$$. All elliptic curves with non-commutative endomorphism ring are supersingular. (The converse holds over the algebraic closure, but here we consider endomorphisms over the field of definition.)

EXAMPLES:

sage: EllipticCurve(QQ, [1,1]).endomorphism_ring_is_commutative()
True
sage: EllipticCurve(QQ, [1,0]).endomorphism_ring_is_commutative()
True
sage: EllipticCurve(GF(19), [1,1]).endomorphism_ring_is_commutative()
True
sage: EllipticCurve(GF(19^2), [1,1]).endomorphism_ring_is_commutative()
True
sage: EllipticCurve(GF(19), [1,0]).endomorphism_ring_is_commutative()
True
sage: EllipticCurve(GF(19^2), [1,0]).endomorphism_ring_is_commutative()
False
sage: EllipticCurve(GF(19^3), [1,0]).endomorphism_ring_is_commutative()
True

>>> from sage.all import *
>>> EllipticCurve(QQ, [Integer(1),Integer(1)]).endomorphism_ring_is_commutative()
True
>>> EllipticCurve(QQ, [Integer(1),Integer(0)]).endomorphism_ring_is_commutative()
True
>>> EllipticCurve(GF(Integer(19)), [Integer(1),Integer(1)]).endomorphism_ring_is_commutative()
True
>>> EllipticCurve(GF(Integer(19)**Integer(2)), [Integer(1),Integer(1)]).endomorphism_ring_is_commutative()
True
>>> EllipticCurve(GF(Integer(19)), [Integer(1),Integer(0)]).endomorphism_ring_is_commutative()
True
>>> EllipticCurve(GF(Integer(19)**Integer(2)), [Integer(1),Integer(0)]).endomorphism_ring_is_commutative()
False
>>> EllipticCurve(GF(Integer(19)**Integer(3)), [Integer(1),Integer(0)]).endomorphism_ring_is_commutative()
True

genus()[source]#

Return 1 for elliptic curves.

EXAMPLES:

sage: E = EllipticCurve(GF(3), [0, -1, 0, -346, 2652])
sage: E.genus()
1

sage: R = FractionField(QQ['z'])
sage: E = EllipticCurve(R, [0, -1, 0, -346, 2652])
sage: E.genus()
1

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(3)), [Integer(0), -Integer(1), Integer(0), -Integer(346), Integer(2652)])
>>> E.genus()
1

>>> R = FractionField(QQ['z'])
>>> E = EllipticCurve(R, [Integer(0), -Integer(1), Integer(0), -Integer(346), Integer(2652)])
>>> E.genus()
1

hasse_invariant()[source]#

Return the Hasse invariant of this elliptic curve.

OUTPUT:

The Hasse invariant of this elliptic curve, as an element of the base field. This is only defined over fields of positive characteristic, and is an element of the field which is zero if and only if the curve is supersingular. Over a field of characteristic zero, where the Hasse invariant is undefined, a ValueError is raised.

EXAMPLES:

sage: E = EllipticCurve([Mod(1,2), Mod(1,2), 0, 0, Mod(1,2)])
sage: E.hasse_invariant()
1
sage: E = EllipticCurve([0, 0, Mod(1,3), Mod(1,3), Mod(1,3)])
sage: E.hasse_invariant()
0
sage: E = EllipticCurve([0, 0, Mod(1,5), 0, Mod(2,5)])
sage: E.hasse_invariant()
0
sage: E = EllipticCurve([0, 0, Mod(1,5), Mod(1,5), Mod(2,5)])
sage: E.hasse_invariant()
2

>>> from sage.all import *
>>> E = EllipticCurve([Mod(Integer(1),Integer(2)), Mod(Integer(1),Integer(2)), Integer(0), Integer(0), Mod(Integer(1),Integer(2))])
>>> E.hasse_invariant()
1
>>> E = EllipticCurve([Integer(0), Integer(0), Mod(Integer(1),Integer(3)), Mod(Integer(1),Integer(3)), Mod(Integer(1),Integer(3))])
>>> E.hasse_invariant()
0
>>> E = EllipticCurve([Integer(0), Integer(0), Mod(Integer(1),Integer(5)), Integer(0), Mod(Integer(2),Integer(5))])
>>> E.hasse_invariant()
0
>>> E = EllipticCurve([Integer(0), Integer(0), Mod(Integer(1),Integer(5)), Mod(Integer(1),Integer(5)), Mod(Integer(2),Integer(5))])
>>> E.hasse_invariant()
2


Some examples over larger fields:

sage: # needs sage.rings.finite_rings
sage: EllipticCurve(GF(101), [0,0,0,0,1]).hasse_invariant()
0
sage: EllipticCurve(GF(101), [0,0,0,1,1]).hasse_invariant()
98
sage: EllipticCurve(GF(103), [0,0,0,0,1]).hasse_invariant()
20
sage: EllipticCurve(GF(103), [0,0,0,1,1]).hasse_invariant()
17
sage: F.<a> = GF(107^2)
sage: EllipticCurve(F, [0,0,0,a,1]).hasse_invariant()
62*a + 75
sage: EllipticCurve(F, [0,0,0,0,a]).hasse_invariant()
0

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> EllipticCurve(GF(Integer(101)), [Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)]).hasse_invariant()
0
>>> EllipticCurve(GF(Integer(101)), [Integer(0),Integer(0),Integer(0),Integer(1),Integer(1)]).hasse_invariant()
98
>>> EllipticCurve(GF(Integer(103)), [Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)]).hasse_invariant()
20
>>> EllipticCurve(GF(Integer(103)), [Integer(0),Integer(0),Integer(0),Integer(1),Integer(1)]).hasse_invariant()
17
>>> F = GF(Integer(107)**Integer(2), names=('a',)); (a,) = F._first_ngens(1)
>>> EllipticCurve(F, [Integer(0),Integer(0),Integer(0),a,Integer(1)]).hasse_invariant()
62*a + 75
>>> EllipticCurve(F, [Integer(0),Integer(0),Integer(0),Integer(0),a]).hasse_invariant()
0


Over fields of characteristic zero, the Hasse invariant is undefined:

sage: E = EllipticCurve([0,0,0,0,1])
sage: E.hasse_invariant()
Traceback (most recent call last):
...
ValueError: Hasse invariant only defined in positive characteristic

>>> from sage.all import *
>>> E = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)])
>>> E.hasse_invariant()
Traceback (most recent call last):
...
ValueError: Hasse invariant only defined in positive characteristic

is_isogenous(other, field=None)[source]#

Return whether or not self is isogenous to other.

INPUT:

• other – another elliptic curve.

• field (default None) – Currently not implemented. A field containing the base fields of the two elliptic curves onto which the two curves may be extended to test if they are isogenous over this field. By default is_isogenous will not try to find this field unless one of the curves can be be extended into the base field of the other, in which case it will test over the larger base field.

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other defined over field.

METHOD:

Over general fields this is only implemented in trivial cases.

EXAMPLES:

sage: E1 = EllipticCurve(CC, [1,18]); E1
Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000
over Complex Field with 53 bits of precision
sage: E2 = EllipticCurve(CC, [2,7]); E2
Elliptic Curve defined by y^2 = x^3 + 2.00000000000000*x + 7.00000000000000
over Complex Field with 53 bits of precision
sage: E1.is_isogenous(E2)
Traceback (most recent call last):
...
NotImplementedError: Only implemented for isomorphic curves over general fields.

sage: E1 = EllipticCurve(Frac(PolynomialRing(ZZ,'t')), [2,19]); E1
Elliptic Curve defined by y^2 = x^3 + 2*x + 19
over Fraction Field of Univariate Polynomial Ring in t over Integer Ring
sage: E2 = EllipticCurve(CC, [23,4]); E2
Elliptic Curve defined by y^2 = x^3 + 23.0000000000000*x + 4.00000000000000
over Complex Field with 53 bits of precision
sage: E1.is_isogenous(E2)
Traceback (most recent call last):
...
NotImplementedError: Only implemented for isomorphic curves over general fields.

>>> from sage.all import *
>>> E1 = EllipticCurve(CC, [Integer(1),Integer(18)]); E1
Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000
over Complex Field with 53 bits of precision
>>> E2 = EllipticCurve(CC, [Integer(2),Integer(7)]); E2
Elliptic Curve defined by y^2 = x^3 + 2.00000000000000*x + 7.00000000000000
over Complex Field with 53 bits of precision
>>> E1.is_isogenous(E2)
Traceback (most recent call last):
...
NotImplementedError: Only implemented for isomorphic curves over general fields.

>>> E1 = EllipticCurve(Frac(PolynomialRing(ZZ,'t')), [Integer(2),Integer(19)]); E1
Elliptic Curve defined by y^2 = x^3 + 2*x + 19
over Fraction Field of Univariate Polynomial Ring in t over Integer Ring
>>> E2 = EllipticCurve(CC, [Integer(23),Integer(4)]); E2
Elliptic Curve defined by y^2 = x^3 + 23.0000000000000*x + 4.00000000000000
over Complex Field with 53 bits of precision
>>> E1.is_isogenous(E2)
Traceback (most recent call last):
...
NotImplementedError: Only implemented for isomorphic curves over general fields.


Determine whether this curve is a quadratic twist of another.

INPUT:

• other – an elliptic curve with the same base field as self.

OUTPUT:

Either 0, if the curves are not quadratic twists, or $$D$$ if other is self.quadratic_twist(D) (up to isomorphism). If self and other are isomorphic, returns 1.

If the curves are defined over $$\QQ$$, the output $$D$$ is a squarefree integer.

Note

Not fully implemented in characteristic 2, or in characteristic 3 when both $$j$$-invariants are 0.

EXAMPLES:

sage: E = EllipticCurve('11a1')
-6

sage: E1 = EllipticCurve([0,0,1,0,0])
sage: E1.j_invariant()
0
sage: E2 = EllipticCurve([0,0,0,0,2])
2
1
True

>>> from sage.all import *
>>> E = EllipticCurve('11a1')
-6

>>> E1 = EllipticCurve([Integer(0),Integer(0),Integer(1),Integer(0),Integer(0)])
>>> E1.j_invariant()
0
>>> E2 = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(0),Integer(2)])
2
1
True

sage: E1 = EllipticCurve([0,0,0,1,0])
sage: E1.j_invariant()
1728
sage: E2 = EllipticCurve([0,0,0,2,0])
0
sage: E2 = EllipticCurve([0,0,0,25,0])
5

>>> from sage.all import *
>>> E1 = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(1),Integer(0)])
>>> E1.j_invariant()
1728
>>> E2 = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(2),Integer(0)])
0
>>> E2 = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(25),Integer(0)])
5

sage: # needs sage.rings.finite_rings
sage: F = GF(101)
sage: E1 = EllipticCurve(F, [4,7])
sage: D = E1.is_quadratic_twist(E2); D != 0
True
sage: F = GF(101)
sage: E1 = EllipticCurve(F, [4,7])
True
sage: E1.is_isomorphic(E2)
False
sage: F2 = GF(101^2,'a')
sage: E1.change_ring(F2).is_isomorphic(E2.change_ring(F2))
True

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> F = GF(Integer(101))
>>> E1 = EllipticCurve(F, [Integer(4),Integer(7)])
>>> D = E1.is_quadratic_twist(E2); D != Integer(0)
True
>>> F = GF(Integer(101))
>>> E1 = EllipticCurve(F, [Integer(4),Integer(7)])
True
>>> E1.is_isomorphic(E2)
False
>>> F2 = GF(Integer(101)**Integer(2),'a')
>>> E1.change_ring(F2).is_isomorphic(E2.change_ring(F2))
True


A characteristic 3 example:

sage: # needs sage.rings.finite_rings
sage: F = GF(3^5,'a')
sage: E1 = EllipticCurve_from_j(F(1))
sage: D = E1.is_quadratic_twist(E2); D != 0
True
True

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> F = GF(Integer(3)**Integer(5),'a')
>>> E1 = EllipticCurve_from_j(F(Integer(1)))
>>> D = E1.is_quadratic_twist(E2); D != Integer(0)
True
True

sage: # needs sage.rings.finite_rings
sage: E1 = EllipticCurve_from_j(F(0))
1
sage: E1.is_isomorphic(E2)
True

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> E1 = EllipticCurve_from_j(F(Integer(0)))
1
>>> E1.is_isomorphic(E2)
True

is_quartic_twist(other)[source]#

Determine whether this curve is a quartic twist of another.

INPUT:

• other – an elliptic curves with the same base field as self.

OUTPUT:

Either 0, if the curves are not quartic twists, or $$D$$ if other is self.quartic_twist(D) (up to isomorphism). If self and other are isomorphic, returns 1.

Note

Not fully implemented in characteristics 2 or 3.

EXAMPLES:

sage: E = EllipticCurve_from_j(GF(13)(1728))
sage: E1 = E.quartic_twist(2)
sage: D = E.is_quartic_twist(E1); D!=0
True
sage: E.quartic_twist(D).is_isomorphic(E1)
True

>>> from sage.all import *
>>> E = EllipticCurve_from_j(GF(Integer(13))(Integer(1728)))
>>> E1 = E.quartic_twist(Integer(2))
>>> D = E.is_quartic_twist(E1); D!=Integer(0)
True
>>> E.quartic_twist(D).is_isomorphic(E1)
True

sage: E = EllipticCurve_from_j(1728)
sage: E1 = E.quartic_twist(12345)
sage: D = E.is_quartic_twist(E1); D
15999120
sage: (D/12345).is_perfect_power(4)
True

>>> from sage.all import *
>>> E = EllipticCurve_from_j(Integer(1728))
>>> E1 = E.quartic_twist(Integer(12345))
>>> D = E.is_quartic_twist(E1); D
15999120
>>> (D/Integer(12345)).is_perfect_power(Integer(4))
True

is_sextic_twist(other)[source]#

Determine whether this curve is a sextic twist of another.

INPUT:

• other – an elliptic curves with the same base field as self.

OUTPUT:

Either 0, if the curves are not sextic twists, or $$D$$ if other is self.sextic_twist(D) (up to isomorphism). If self and other are isomorphic, returns 1.

Note

Not fully implemented in characteristics 2 or 3.

EXAMPLES:

sage: E = EllipticCurve_from_j(GF(13)(0))
sage: E1 = E.sextic_twist(2)
sage: D = E.is_sextic_twist(E1); D != 0
True
sage: E.sextic_twist(D).is_isomorphic(E1)
True

>>> from sage.all import *
>>> E = EllipticCurve_from_j(GF(Integer(13))(Integer(0)))
>>> E1 = E.sextic_twist(Integer(2))
>>> D = E.is_sextic_twist(E1); D != Integer(0)
True
>>> E.sextic_twist(D).is_isomorphic(E1)
True

sage: E = EllipticCurve_from_j(0)
sage: E1 = E.sextic_twist(12345)
sage: D = E.is_sextic_twist(E1); D
575968320
sage: (D/12345).is_perfect_power(6)
True

>>> from sage.all import *
>>> E = EllipticCurve_from_j(Integer(0))
>>> E1 = E.sextic_twist(Integer(12345))
>>> D = E.is_sextic_twist(E1); D
575968320
>>> (D/Integer(12345)).is_perfect_power(Integer(6))
True

isogenies_prime_degree(l=None, max_l=31)[source]#

Return a list of all separable isogenies of given prime degree(s) with domain equal to self, which are defined over the base field of self.

INPUT:

• l – a prime or a list of primes.

• max_l – (default: 31) a bound on the primes to be tested. This is only used if l is None.

OUTPUT:

(list) All separable $$l$$-isogenies for the given $$l$$ with domain self.

ALGORITHM:

Calls the generic function isogenies_prime_degree(). This is generic code, valid for all fields. It requires that certain operations have been implemented over the base field, such as root-finding for univariate polynomials.

EXAMPLES:

Examples over finite fields:

sage: # needs sage.libs.pari
sage: E = EllipticCurve(GF(next_prime(1000000)), [7,8])
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003]
sage: E.isogenies_prime_degree(3)
[]
sage: E.isogenies_prime_degree(5)
[]
sage: E.isogenies_prime_degree(7)
[]
sage: E.isogenies_prime_degree(11)
[]
sage: E.isogenies_prime_degree(13)
[Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003]
sage: E.isogenies_prime_degree(max_l=13)
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003]
sage: E.isogenies_prime_degree()  # Default limit of 31
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003,
Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 347438*x + 594729 over Finite Field of size 1000003,
Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 674846*x + 7392 over Finite Field of size 1000003,
Isogeny of degree 23
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 390065*x + 605596 over Finite Field of size 1000003]

sage: E = EllipticCurve(GF(17), [2,0])
sage: E.isogenies_prime_degree(3)
[]
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17
to Elliptic Curve defined by y^2 = x^3 + 9*x over Finite Field of size 17,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17
to Elliptic Curve defined by y^2 = x^3 + 5*x + 9 over Finite Field of size 17,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17
to Elliptic Curve defined by y^2 = x^3 + 5*x + 8 over Finite Field of size 17]

>>> from sage.all import *
>>> # needs sage.libs.pari
>>> E = EllipticCurve(GF(next_prime(Integer(1000000))), [Integer(7),Integer(8)])
>>> E.isogenies_prime_degree(Integer(2))
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003]
>>> E.isogenies_prime_degree(Integer(3))
[]
>>> E.isogenies_prime_degree(Integer(5))
[]
>>> E.isogenies_prime_degree(Integer(7))
[]
>>> E.isogenies_prime_degree(Integer(11))
[]
>>> E.isogenies_prime_degree(Integer(13))
[Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003]
>>> E.isogenies_prime_degree(max_l=Integer(13))
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003]
>>> E.isogenies_prime_degree()  # Default limit of 31
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003,
Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 347438*x + 594729 over Finite Field of size 1000003,
Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 674846*x + 7392 over Finite Field of size 1000003,
Isogeny of degree 23
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003
to Elliptic Curve defined by y^2 = x^3 + 390065*x + 605596 over Finite Field of size 1000003]

>>> E = EllipticCurve(GF(Integer(17)), [Integer(2),Integer(0)])
>>> E.isogenies_prime_degree(Integer(3))
[]
>>> E.isogenies_prime_degree(Integer(2))
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17
to Elliptic Curve defined by y^2 = x^3 + 9*x over Finite Field of size 17,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17
to Elliptic Curve defined by y^2 = x^3 + 5*x + 9 over Finite Field of size 17,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17
to Elliptic Curve defined by y^2 = x^3 + 5*x + 8 over Finite Field of size 17]


The base field matters, over a field extension we find more isogenies:

sage: E = EllipticCurve(GF(13), [2,8])
sage: E.isogenies_prime_degree(max_l=3)
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13
to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field of size 13,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13
to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field of size 13]

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(13^6), [2,8])
sage: E.isogenies_prime_degree(max_l=3)
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field in z6 of size 13^6,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (2*z6^5+6*z6^4+9*z6^3+8*z6+7)*x + (3*z6^5+9*z6^4+7*z6^3+12*z6+7) over Finite Field in z6 of size 13^6,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (11*z6^5+7*z6^4+4*z6^3+5*z6+9)*x + (10*z6^5+4*z6^4+6*z6^3+z6+10) over Finite Field in z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field in z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (3*z6^5+5*z6^4+8*z6^3+11*z6^2+5*z6+12)*x + (12*z6^5+6*z6^4+8*z6^3+4*z6^2+7*z6+6) over Finite Field in z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (7*z6^4+12*z6^3+7*z6^2+4)*x + (6*z6^5+10*z6^3+12*z6^2+10*z6+8) over Finite Field in z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (10*z6^5+z6^4+6*z6^3+8*z6^2+8*z6)*x + (8*z6^5+7*z6^4+8*z6^3+10*z6^2+9*z6+7) over Finite Field in z6 of size 13^6]

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(13)), [Integer(2),Integer(8)])
>>> E.isogenies_prime_degree(max_l=Integer(3))
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13
to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field of size 13,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13
to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field of size 13]

>>> # needs sage.rings.finite_rings
>>> E = EllipticCurve(GF(Integer(13)**Integer(6)), [Integer(2),Integer(8)])
>>> E.isogenies_prime_degree(max_l=Integer(3))
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field in z6 of size 13^6,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (2*z6^5+6*z6^4+9*z6^3+8*z6+7)*x + (3*z6^5+9*z6^4+7*z6^3+12*z6+7) over Finite Field in z6 of size 13^6,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (11*z6^5+7*z6^4+4*z6^3+5*z6+9)*x + (10*z6^5+4*z6^4+6*z6^3+z6+10) over Finite Field in z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field in z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (3*z6^5+5*z6^4+8*z6^3+11*z6^2+5*z6+12)*x + (12*z6^5+6*z6^4+8*z6^3+4*z6^2+7*z6+6) over Finite Field in z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (7*z6^4+12*z6^3+7*z6^2+4)*x + (6*z6^5+10*z6^3+12*z6^2+10*z6+8) over Finite Field in z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (10*z6^5+z6^4+6*z6^3+8*z6^2+8*z6)*x + (8*z6^5+7*z6^4+8*z6^3+10*z6^2+9*z6+7) over Finite Field in z6 of size 13^6]


If the degree equals the characteristic, we find only separable isogenies:

sage: E = EllipticCurve(GF(13), [2,8])
sage: E.isogenies_prime_degree(13)
[Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13
to Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over Finite Field of size 13]
sage: E = EllipticCurve(GF(5), [1,1])
sage: E.isogenies_prime_degree(5)
[Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5
to Elliptic Curve defined by y^2 = x^3 + x + 4 over Finite Field of size 5]

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(3^4)
sage: E = EllipticCurve(k, [0,1,0,0,a])
sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + x^2 + a
over Finite Field in a of size 3^4
to Elliptic Curve defined by y^2 = x^3 + x^2 + (2*a^3+a^2+2)*x + (a^2+2)
over Finite Field in a of size 3^4]

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(13)), [Integer(2),Integer(8)])
>>> E.isogenies_prime_degree(Integer(13))
[Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13
to Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over Finite Field of size 13]
>>> E = EllipticCurve(GF(Integer(5)), [Integer(1),Integer(1)])
>>> E.isogenies_prime_degree(Integer(5))
[Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5
to Elliptic Curve defined by y^2 = x^3 + x + 4 over Finite Field of size 5]

>>> # needs sage.rings.finite_rings
>>> k = GF(Integer(3)**Integer(4), names=('a',)); (a,) = k._first_ngens(1)
>>> E = EllipticCurve(k, [Integer(0),Integer(1),Integer(0),Integer(0),a])
>>> E.isogenies_prime_degree(Integer(3))
[Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + x^2 + a
over Finite Field in a of size 3^4
to Elliptic Curve defined by y^2 = x^3 + x^2 + (2*a^3+a^2+2)*x + (a^2+2)
over Finite Field in a of size 3^4]


In the supersingular case, there are no separable isogenies of degree equal to the characteristic:

sage: E = EllipticCurve(GF(5), [0,1])
sage: E.isogenies_prime_degree(5)
[]

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(5)), [Integer(0),Integer(1)])
>>> E.isogenies_prime_degree(Integer(5))
[]


An example over a rational function field:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: E = EllipticCurve(K, [1, t^5])
sage: E.isogenies_prime_degree(5)
[Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + x + t^5 over Fraction Field
of Univariate Polynomial Ring in t over Finite Field of size 5
to Elliptic Curve defined by y^2 = x^3 + x + 4*t over Fraction Field
of Univariate Polynomial Ring in t over Finite Field of size 5]

>>> from sage.all import *
>>> R = GF(Integer(5))['t']; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()
>>> E = EllipticCurve(K, [Integer(1), t**Integer(5)])
>>> E.isogenies_prime_degree(Integer(5))
[Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + x + t^5 over Fraction Field
of Univariate Polynomial Ring in t over Finite Field of size 5
to Elliptic Curve defined by y^2 = x^3 + x + 4*t over Fraction Field
of Univariate Polynomial Ring in t over Finite Field of size 5]


Examples over number fields (other than QQ):

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: QQroot2.<e> = NumberField(x^2 - 2)
sage: E = EllipticCurve(QQroot2, j=8000)
sage: E.isogenies_prime_degree()
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 = x^3 + (-36750)*x + 2401000
over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 = x^3 + (220500*e-257250)*x + (54022500*e-88837000)
over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 = x^3 + (-220500*e-257250)*x + (-54022500*e-88837000)
over Number Field in e with defining polynomial x^2 - 2]
sage: E = EllipticCurve(QQroot2, [1,0,1,4, -6]); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
over Number Field in e with defining polynomial x^2 - 2
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2
from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-36)*x + (-70)
over Number Field in e with defining polynomial x^2 - 2]
sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3
from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-1)*x
over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 3
from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-171)*x + (-874)
over Number Field in e with defining polynomial x^2 - 2]

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> x = polygen(ZZ, 'x')
>>> QQroot2 = NumberField(x**Integer(2) - Integer(2), names=('e',)); (e,) = QQroot2._first_ngens(1)
>>> E = EllipticCurve(QQroot2, j=Integer(8000))
>>> E.isogenies_prime_degree()
[Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 = x^3 + (-36750)*x + 2401000
over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 = x^3 + (220500*e-257250)*x + (54022500*e-88837000)
over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 = x^3 + (-220500*e-257250)*x + (-54022500*e-88837000)
over Number Field in e with defining polynomial x^2 - 2]
>>> E = EllipticCurve(QQroot2, [Integer(1),Integer(0),Integer(1),Integer(4), -Integer(6)]); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
over Number Field in e with defining polynomial x^2 - 2
>>> E.isogenies_prime_degree(Integer(2))
[Isogeny of degree 2
from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-36)*x + (-70)
over Number Field in e with defining polynomial x^2 - 2]
>>> E.isogenies_prime_degree(Integer(3))
[Isogeny of degree 3
from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-1)*x
over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 3
from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-171)*x + (-874)
over Number Field in e with defining polynomial x^2 - 2]


These are not implemented yet:

sage: E = EllipticCurve(QQbar, [1,18]); E                                   # needs sage.rings.number_field
Elliptic Curve defined by y^2 = x^3 + x + 18 over Algebraic Field
sage: E.isogenies_prime_degree()                                            # needs sage.rings.number_field
Traceback (most recent call last):
...
NotImplementedError: This code could be implemented for QQbar, but has not been yet.

sage: E = EllipticCurve(CC, [1,18]); E
Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000
over Complex Field with 53 bits of precision
sage: E.isogenies_prime_degree(11)
Traceback (most recent call last):
...
NotImplementedError: This code could be implemented for general complex fields,
but has not been yet.

>>> from sage.all import *
>>> E = EllipticCurve(QQbar, [Integer(1),Integer(18)]); E                                   # needs sage.rings.number_field
Elliptic Curve defined by y^2 = x^3 + x + 18 over Algebraic Field
>>> E.isogenies_prime_degree()                                            # needs sage.rings.number_field
Traceback (most recent call last):
...
NotImplementedError: This code could be implemented for QQbar, but has not been yet.

>>> E = EllipticCurve(CC, [Integer(1),Integer(18)]); E
Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000
over Complex Field with 53 bits of precision
>>> E.isogenies_prime_degree(Integer(11))
Traceback (most recent call last):
...
NotImplementedError: This code could be implemented for general complex fields,
but has not been yet.

isogeny(kernel, codomain=None, degree=None, model=None, check=True, algorithm=None, velu_sqrt_bound=None)[source]#

Return an elliptic-curve isogeny from this elliptic curve.

The isogeny can be specified in two ways, by passing either a polynomial or a set of torsion points. The methods used are:

• Factored Isogenies (see hom_composite): Given a point, or a list of points which generate a composite-order subgroup, decomposes the isogeny into prime-degree steps. This can be used to construct isogenies of extremely large, smooth degree. When applicable, this algorithm is selected as default (see below). After factoring the degree single isogenies are computed using the other methods. This algorithm is selected using algorithm="factored".

• Vélu’s Formulas: Vélu’s original formulas for computing isogenies. This algorithm is selected by giving as the kernel parameter a single point generating a finite subgroup.

• Kohel’s Formulas: Kohel’s original formulas for computing isogenies. This algorithm is selected by giving as the kernel parameter a monic polynomial (or a coefficient list in little endian) which will define the kernel of the isogeny. Kohel’s algorithm is currently only implemented for cyclic isogenies, with the exception of $$[2]$$.

• √élu Algorithm (see hom_velusqrt): A variant of Vélu’s formulas with essentially square-root instead of linear complexity (in the degree). Currently only available over finite fields. The input must be a single kernel point of odd order $$\geq 5$$. This algorithm is selected using algorithm="velusqrt".

INPUT:

• kernel – a kernel: either a point on this curve, a list of points on this curve, a monic kernel polynomial, or None. If initializing from a codomain, this must be None.

• codomain – an elliptic curve (default: None).

• If kernel is None, then degree must be given as well and the given codomain must be the codomain of a cyclic, separable, normalized isogeny of the given degree.

• If kernel is not None, then this must be isomorphic to the codomain of the separable isogeny defined by kernel; in this case, the isogeny is post-composed with an isomorphism so that the codomain equals the given curve.

• degree – an integer (default: None).

• If kernel is None, then this is the degree of the isogeny from this curve to codomain.

• If kernel is not None, then this is used to determine whether or not to skip a $$\gcd$$ of the given kernel polynomial with the two-torsion polynomial of this curve.

• model – a string (default: None). Supported values (cf. compute_model()):

• "minimal": If self is a curve over the rationals or over a number field, then the codomain is a global minimal model where this exists.

• "short_weierstrass": The codomain is a short Weierstrass curve, assuming one exists.

• "montgomery": The codomain is an (untwisted) Montgomery curve, assuming one exists over this field.

• check (default: True) – check whether the input is valid. Setting this to False can lead to significant speedups.

• algorithm – string (optional). The possible choices are:

When algorithm is not specified, and kernel is not None, an algorithm is selected using the following criteria:

• if kernel is a list of multiple points, "factored" is selected.

• If kernel is a single point, or a list containing a single point:

• if the order of the point is unknown, "traditional" is selected.

• If the order is known and composite, "factored" is selected.

• If the order is known and prime, a choice between "velusqrt" and "traditional" is done according to the velu_sqrt_bound parameter (see below).

If none of the previous apply, "traditional" is selected.

• velu_sqrt_bound – an integer (default: None). Establish the highest (prime) degree for which the "traditional" algorithm should be selected instead of "velusqrt". If None, the default value from _VeluBoundObj is used. This value is initially set to 1000, but can be modified by the user. If an integer is supplied and the isogeny computation goes through the "factored" algorithm, the same integer is supplied to each factor.

The degree parameter is not supported when an algorithm is specified.

OUTPUT:

An isogeny between elliptic curves. This is a morphism of curves. (In all cases, the returned object will be an instance of EllipticCurveHom.)

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F = GF(2^5, 'alpha'); alpha = F.gen()
sage: E = EllipticCurve(F, [1,0,1,1,1])
sage: R.<x> = F[]
sage: phi = E.isogeny(x + 1)
sage: phi.rational_maps()
((x^2 + x + 1)/(x + 1), (x^2*y + x)/(x^2 + 1))

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> F = GF(Integer(2)**Integer(5), 'alpha'); alpha = F.gen()
>>> E = EllipticCurve(F, [Integer(1),Integer(0),Integer(1),Integer(1),Integer(1)])
>>> R = F['x']; (x,) = R._first_ngens(1)
>>> phi = E.isogeny(x + Integer(1))
>>> phi.rational_maps()
((x^2 + x + 1)/(x + 1), (x^2*y + x)/(x^2 + 1))

sage: E = EllipticCurve('11a1')
sage: P = E.torsion_points()[1]
sage: E.isogeny(P)
Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20
over Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580
over Rational Field

>>> from sage.all import *
>>> E = EllipticCurve('11a1')
>>> P = E.torsion_points()[Integer(1)]
>>> E.isogeny(P)
Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20
over Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580
over Rational Field

sage: E = EllipticCurve(GF(19),[1,1])
sage: P = E(15,3); Q = E(2,12)
sage: (P.order(), Q.order())
(7, 3)
sage: phi = E.isogeny([P,Q]); phi
Composite morphism of degree 21 = 7*3:
From: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 19
To:   Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 19
sage: phi(E.random_point())  # all points defined over GF(19) are in the kernel
(0 : 1 : 0)

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(19)),[Integer(1),Integer(1)])
>>> P = E(Integer(15),Integer(3)); Q = E(Integer(2),Integer(12))
>>> (P.order(), Q.order())
(7, 3)
>>> phi = E.isogeny([P,Q]); phi
Composite morphism of degree 21 = 7*3:
From: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 19
To:   Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 19
>>> phi(E.random_point())  # all points defined over GF(19) are in the kernel
(0 : 1 : 0)

sage: E = EllipticCurve(GF(2^32 - 5), [170246996, 2036646110])              # needs sage.rings.finite_rings
sage: P = E.lift_x(2)                                                       # needs sage.rings.finite_rings
sage: E.isogeny(P, algorithm="factored")                                    # needs sage.rings.finite_rings
Composite morphism of degree 1073721825 = 3^4*5^2*11*19*43*59:
From: Elliptic Curve defined by y^2 = x^3 + 170246996*x + 2036646110
over Finite Field of size 4294967291
To:   Elliptic Curve defined by y^2 = x^3 + 272790262*x + 1903695400
over Finite Field of size 4294967291

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(2)**Integer(32) - Integer(5)), [Integer(170246996), Integer(2036646110)])              # needs sage.rings.finite_rings
>>> P = E.lift_x(Integer(2))                                                       # needs sage.rings.finite_rings
>>> E.isogeny(P, algorithm="factored")                                    # needs sage.rings.finite_rings
Composite morphism of degree 1073721825 = 3^4*5^2*11*19*43*59:
From: Elliptic Curve defined by y^2 = x^3 + 170246996*x + 2036646110
over Finite Field of size 4294967291
To:   Elliptic Curve defined by y^2 = x^3 + 272790262*x + 1903695400
over Finite Field of size 4294967291


Not all polynomials define a finite subgroup (Issue #6384):

sage: E = EllipticCurve(GF(31), [1,0,0,1,2])
sage: phi = E.isogeny([14,27,4,1])
Traceback (most recent call last):
...
ValueError: the polynomial x^3 + 4*x^2 + 27*x + 14 does not define a finite
subgroup of Elliptic Curve defined by y^2 + x*y = x^3 + x + 2
over Finite Field of size 31

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(31)), [Integer(1),Integer(0),Integer(0),Integer(1),Integer(2)])
>>> phi = E.isogeny([Integer(14),Integer(27),Integer(4),Integer(1)])
Traceback (most recent call last):
...
ValueError: the polynomial x^3 + 4*x^2 + 27*x + 14 does not define a finite
subgroup of Elliptic Curve defined by y^2 + x*y = x^3 + x + 2
over Finite Field of size 31


Order of the point known and composite:

sage: E = EllipticCurve(GF(31), [1,0,0,1,2])
sage: P = E(26, 4)
sage: assert P.order() == 12
sage: print(P._order)
12
sage: E.isogeny(P)
Composite morphism of degree 12 = 2^2*3:
From: Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31
To:   Elliptic Curve defined by y^2 + x*y = x^3 + 26*x + 8 over Finite Field of size 31

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(31)), [Integer(1),Integer(0),Integer(0),Integer(1),Integer(2)])
>>> P = E(Integer(26), Integer(4))
>>> assert P.order() == Integer(12)
>>> print(P._order)
12
>>> E.isogeny(P)
Composite morphism of degree 12 = 2^2*3:
From: Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31
To:   Elliptic Curve defined by y^2 + x*y = x^3 + 26*x + 8 over Finite Field of size 31


kernel is a list of points:

sage: E = EllipticCurve(GF(31), [1,0,0,1,2])
sage: P = E(21,2)
sage: Q = E(7, 12)
sage: print(P.order())
6
sage: print(Q.order())
2
sage: E.isogeny([P, Q])
Composite morphism of degree 12 = 2*3*2:
From: Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31
To:   Elliptic Curve defined by y^2 + x*y = x^3 + 2*x + 26 over Finite Field of size 31

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(31)), [Integer(1),Integer(0),Integer(0),Integer(1),Integer(2)])
>>> P = E(Integer(21),Integer(2))
>>> Q = E(Integer(7), Integer(12))
>>> print(P.order())
6
>>> print(Q.order())
2
>>> E.isogeny([P, Q])
Composite morphism of degree 12 = 2*3*2:
From: Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31
To:   Elliptic Curve defined by y^2 + x*y = x^3 + 2*x + 26 over Finite Field of size 31


Multiple ways to set the $$velu_sqrt_bound$$:

sage: E = EllipticCurve_from_j(GF(97)(42))
sage: P = E.gens()[0]*4
sage: print(P.order())
23
sage: E.isogeny(P)
Isogeny of degree 23 from Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 to Elliptic Curve defined by y^2 = x^3 + 72*x + 29 over Finite Field of size 97
sage: E.isogeny(P, velu_sqrt_bound=10)
Elliptic-curve isogeny (using square-root Vélu) of degree 23:
From: Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97
To:   Elliptic Curve defined by y^2 = x^3 + 95*x + 68 over Finite Field of size 97
sage: from sage.schemes.elliptic_curves.hom_velusqrt import _velu_sqrt_bound
sage: _velu_sqrt_bound.set(10)
sage: E.isogeny(P)
Elliptic-curve isogeny (using square-root Vélu) of degree 23:
From: Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97
To:   Elliptic Curve defined by y^2 = x^3 + 95*x + 68 over Finite Field of size 97
sage: _velu_sqrt_bound.set(1000) # Reset bound

>>> from sage.all import *
>>> E = EllipticCurve_from_j(GF(Integer(97))(Integer(42)))
>>> P = E.gens()[Integer(0)]*Integer(4)
>>> print(P.order())
23
>>> E.isogeny(P)
Isogeny of degree 23 from Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 to Elliptic Curve defined by y^2 = x^3 + 72*x + 29 over Finite Field of size 97
>>> E.isogeny(P, velu_sqrt_bound=Integer(10))
Elliptic-curve isogeny (using square-root Vélu) of degree 23:
From: Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97
To:   Elliptic Curve defined by y^2 = x^3 + 95*x + 68 over Finite Field of size 97
>>> from sage.schemes.elliptic_curves.hom_velusqrt import _velu_sqrt_bound
>>> _velu_sqrt_bound.set(Integer(10))
>>> E.isogeny(P)
Elliptic-curve isogeny (using square-root Vélu) of degree 23:
From: Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97
To:   Elliptic Curve defined by y^2 = x^3 + 95*x + 68 over Finite Field of size 97
>>> _velu_sqrt_bound.set(Integer(1000)) # Reset bound


If the order of the point is unknown, fall back to "traditional":

sage: E = EllipticCurve_from_j(GF(97)(42))
sage: P = E(2, 39)
sage: from sage.schemes.elliptic_curves.hom_velusqrt import _velu_sqrt_bound
sage: _velu_sqrt_bound.set(1)
sage: E.isogeny(P)
Isogeny of degree 46 from Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 to Elliptic Curve defined by y^2 = x^3 + 87*x + 47 over Finite Field of size 97
sage: _velu_sqrt_bound.set(1000) # Reset bound

>>> from sage.all import *
>>> E = EllipticCurve_from_j(GF(Integer(97))(Integer(42)))
>>> P = E(Integer(2), Integer(39))
>>> from sage.schemes.elliptic_curves.hom_velusqrt import _velu_sqrt_bound
>>> _velu_sqrt_bound.set(Integer(1))
>>> E.isogeny(P)
Isogeny of degree 46 from Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 to Elliptic Curve defined by y^2 = x^3 + 87*x + 47 over Finite Field of size 97
>>> _velu_sqrt_bound.set(Integer(1000)) # Reset bound

isogeny_codomain(kernel)[source]#

Return the codomain of the isogeny from self with given kernel.

INPUT:

• kernel – Either a list of points in the kernel of the isogeny, or a kernel polynomial (specified as either a univariate polynomial or a coefficient list.)

OUTPUT:

An elliptic curve, the codomain of the separable normalized isogeny defined by this kernel.

EXAMPLES:

sage: E = EllipticCurve('17a1')
sage: R.<x> = QQ[]
sage: E2 = E.isogeny_codomain(x - 11/4); E2
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 1461/16*x - 19681/64
over Rational Field

>>> from sage.all import *
>>> E = EllipticCurve('17a1')
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> E2 = E.isogeny_codomain(x - Integer(11)/Integer(4)); E2
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 1461/16*x - 19681/64
over Rational Field

isogeny_ell_graph(l, directed=True, label_by_j=False)[source]#

Return a graph representing the l-degree K-isogenies between K-isomorphism classes of elliptic curves for K = self.base_field().

INPUT:

• l – prime degree of isogenies

• directed – boolean (default: True); whether to return a directed or undirected graph. In the undirected case, the in-degrees and out-degrees of the vertices must be balanced and therefore the number of out-edges from the vertices corresponding to j-invariants 0 and 1728 (if they are part of the graph) are reduced to match the number of in-edges.

• label_by_j – boolean (default: False); whether to label graph vertices by the j-invariant corresponding to the isomorphism class of curves. If the j-invariant is not unique in the isogeny class, append * to it to indicate a twist. Otherwise, if False label vertices by the equation of a representative curve.

OUTPUT: A Graph or DiGraph.

EXAMPLES:

Ordinary curve over finite extension field of degree 2:

sage: # needs sage.graphs sage.rings.finite_rings
sage: x = polygen(ZZ, 'x')
sage: E = EllipticCurve(GF(59^2, "i", x^2 + 1), j=5)
sage: G = E.isogeny_ell_graph(5, directed=False, label_by_j=True); G
Graph on 20 vertices
sage: G.vertices(sort=True)
['1',
'12',
...
'i + 55']
sage: G.edges(sort=True)
[('1', '28*i + 11', None),
('1', '31*i + 11', None),
...
('8', 'i + 1', None)]

>>> from sage.all import *
>>> # needs sage.graphs sage.rings.finite_rings
>>> x = polygen(ZZ, 'x')
>>> E = EllipticCurve(GF(Integer(59)**Integer(2), "i", x**Integer(2) + Integer(1)), j=Integer(5))
>>> G = E.isogeny_ell_graph(Integer(5), directed=False, label_by_j=True); G
Graph on 20 vertices
>>> G.vertices(sort=True)
['1',
'12',
...
'i + 55']
>>> G.edges(sort=True)
[('1', '28*i + 11', None),
('1', '31*i + 11', None),
...
('8', 'i + 1', None)]


Supersingular curve over prime field:

sage: # needs sage.graphs sage.rings.finite_rings
sage: E = EllipticCurve(GF(419), j=1728)
sage: G3 = E.isogeny_ell_graph(3, directed=False, label_by_j=True); G3
Graph on 27 vertices
sage: G3.vertices(sort=True)
['0',
'0*',
...
'98*']
sage: G3.edges(sort=True)
[('0', '0*', None),
('0', '13', None),
...
('48*', '98*', None)]
sage: G5 = E.isogeny_ell_graph(5, directed=False, label_by_j=True); G5
Graph on 9 vertices
sage: G5.vertices(sort=True)
['13', '13*', '407', '407*', '52', '62', '62*', '98', '98*']
sage: G5.edges(sort=True)
[('13', '52', None),
('13', '98', None),
...
('62*', '98*', None)]

>>> from sage.all import *
>>> # needs sage.graphs sage.rings.finite_rings
>>> E = EllipticCurve(GF(Integer(419)), j=Integer(1728))
>>> G3 = E.isogeny_ell_graph(Integer(3), directed=False, label_by_j=True); G3
Graph on 27 vertices
>>> G3.vertices(sort=True)
['0',
'0*',
...
'98*']
>>> G3.edges(sort=True)
[('0', '0*', None),
('0', '13', None),
...
('48*', '98*', None)]
>>> G5 = E.isogeny_ell_graph(Integer(5), directed=False, label_by_j=True); G5
Graph on 9 vertices
>>> G5.vertices(sort=True)
['13', '13*', '407', '407*', '52', '62', '62*', '98', '98*']
>>> G5.edges(sort=True)
[('13', '52', None),
('13', '98', None),
...
('62*', '98*', None)]


Supersingular curve over finite extension field of degree 2:

sage: # needs sage.graphs sage.rings.finite_rings
sage: K = GF(431^2, "i", x^2 + 1)
sage: E = EllipticCurve(K, j=0)
sage: E.is_supersingular()
True
sage: G = E.isogeny_ell_graph(2, directed=True, label_by_j=True); G
Looped multi-digraph on 37 vertices
sage: G.vertices(sort=True)
['0',
'102',
...
'87*i + 190']
sage: G.edges(sort=True)
[('0', '125', None),
('0', '125', None),
...
'81*i + 65', None)]
sage: H = E.isogeny_ell_graph(2, directed=False, label_by_j=True); H
Looped multi-graph on 37 vertices
sage: H.vertices(sort=True)
['0',
'102',
...
'87*i + 190']
sage: H.edges(sort=True)
[('0', '125', None),
('102', '125', None),
...
('81*i + 65', '87*i + 190', None)]

>>> from sage.all import *
>>> # needs sage.graphs sage.rings.finite_rings
>>> K = GF(Integer(431)**Integer(2), "i", x**Integer(2) + Integer(1))
>>> E = EllipticCurve(K, j=Integer(0))
>>> E.is_supersingular()
True
>>> G = E.isogeny_ell_graph(Integer(2), directed=True, label_by_j=True); G
Looped multi-digraph on 37 vertices
>>> G.vertices(sort=True)
['0',
'102',
...
'87*i + 190']
>>> G.edges(sort=True)
[('0', '125', None),
('0', '125', None),
...
'81*i + 65', None)]
>>> H = E.isogeny_ell_graph(Integer(2), directed=False, label_by_j=True); H
Looped multi-graph on 37 vertices
>>> H.vertices(sort=True)
['0',
'102',
...
'87*i + 190']
>>> H.edges(sort=True)
[('0', '125', None),
('102', '125', None),
...
('81*i + 65', '87*i + 190', None)]


Curve over a quadratic number field:

sage: # needs sage.graphs sage.rings.finite_rings sage.rings.number_field
sage: K.<e> = NumberField(x^2 - 2)
sage: E = EllipticCurve(K, [1, 0, 1, 4, -6])
sage: G2 = E.isogeny_ell_graph(2, directed=False)
sage: G2.vertices(sort=True)
['y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038)',
'y^2 + x*y + y = x^3 + (-36)*x + (-70)',
'y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038)',
'y^2 + x*y + y = x^3 + 4*x + (-6)']
sage: G2.edges(sort=True)
[('y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038)',
'y^2 + x*y + y = x^3 + (-36)*x + (-70)', None),
('y^2 + x*y + y = x^3 + (-36)*x + (-70)',
'y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038)', None),
('y^2 + x*y + y = x^3 + (-36)*x + (-70)',
'y^2 + x*y + y = x^3 + 4*x + (-6)', None)]
sage: G3 = E.isogeny_ell_graph(3, directed=False)
sage: G3.vertices(sort=True)
['y^2 + x*y + y = x^3 + (-1)*x',
'y^2 + x*y + y = x^3 + (-171)*x + (-874)',
'y^2 + x*y + y = x^3 + 4*x + (-6)']
sage: G3.edges(sort=True)
[('y^2 + x*y + y = x^3 + (-1)*x',
'y^2 + x*y + y = x^3 + 4*x + (-6)', None),
('y^2 + x*y + y = x^3 + (-171)*x + (-874)',
'y^2 + x*y + y = x^3 + 4*x + (-6)', None)]

>>> from sage.all import *
>>> # needs sage.graphs sage.rings.finite_rings sage.rings.number_field
>>> K = NumberField(x**Integer(2) - Integer(2), names=('e',)); (e,) = K._first_ngens(1)
>>> E = EllipticCurve(K, [Integer(1), Integer(0), Integer(1), Integer(4), -Integer(6)])
>>> G2 = E.isogeny_ell_graph(Integer(2), directed=False)
>>> G2.vertices(sort=True)
['y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038)',
'y^2 + x*y + y = x^3 + (-36)*x + (-70)',
'y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038)',
'y^2 + x*y + y = x^3 + 4*x + (-6)']
>>> G2.edges(sort=True)
[('y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038)',
'y^2 + x*y + y = x^3 + (-36)*x + (-70)', None),
('y^2 + x*y + y = x^3 + (-36)*x + (-70)',
'y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038)', None),
('y^2 + x*y + y = x^3 + (-36)*x + (-70)',
'y^2 + x*y + y = x^3 + 4*x + (-6)', None)]
>>> G3 = E.isogeny_ell_graph(Integer(3), directed=False)
>>> G3.vertices(sort=True)
['y^2 + x*y + y = x^3 + (-1)*x',
'y^2 + x*y + y = x^3 + (-171)*x + (-874)',
'y^2 + x*y + y = x^3 + 4*x + (-6)']
>>> G3.edges(sort=True)
[('y^2 + x*y + y = x^3 + (-1)*x',
'y^2 + x*y + y = x^3 + 4*x + (-6)', None),
('y^2 + x*y + y = x^3 + (-171)*x + (-874)',
'y^2 + x*y + y = x^3 + 4*x + (-6)', None)]

kernel_polynomial_from_divisor(f, l, check)[source]#

Given an irreducible divisor $$f$$ of the $$l$$-division polynomial on this curve, return the kernel polynomial defining the subgroup defined by $$f$$.

If the given polynomial does not define a rational subgroup, a ValueError is raised.

This method is currently only implemented for prime $$l$$.

EXAMPLES:

sage: E = EllipticCurve(GF(101^2), [0,1])
sage: f,_ = E.division_polynomial(5).factor()[0]
sage: ker = E.kernel_polynomial_from_divisor(f, 5); ker
x^2 + (49*z2 + 10)*x + 30*z2 + 80
sage: E.isogeny(ker)
Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in z2 of size 101^2
to Elliptic Curve defined by y^2 = x^3 + (6*z2+16)*x + 18 over Finite Field in z2 of size 101^2

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(101)**Integer(2)), [Integer(0),Integer(1)])
>>> f,_ = E.division_polynomial(Integer(5)).factor()[Integer(0)]
>>> ker = E.kernel_polynomial_from_divisor(f, Integer(5)); ker
x^2 + (49*z2 + 10)*x + 30*z2 + 80
>>> E.isogeny(ker)
Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in z2 of size 101^2
to Elliptic Curve defined by y^2 = x^3 + (6*z2+16)*x + 18 over Finite Field in z2 of size 101^2


The method detects invalid inputs:

sage: E = EllipticCurve(GF(101), [0,1])
sage: f,_ = E.division_polynomial(5).factor()[-1]
sage: E.kernel_polynomial_from_divisor(f, 5)
Traceback (most recent call last):
...
ValueError: given polynomial does not define a rational 5-isogeny

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(101)), [Integer(0),Integer(1)])
>>> f,_ = E.division_polynomial(Integer(5)).factor()[-Integer(1)]
>>> E.kernel_polynomial_from_divisor(f, Integer(5))
Traceback (most recent call last):
...
ValueError: given polynomial does not define a rational 5-isogeny

sage: E = EllipticCurve(GF(101), [1,1])
sage: f,_ = E.division_polynomial(7).factor()[-1]
sage: E.kernel_polynomial_from_divisor(f, 7)
Traceback (most recent call last):
...
ValueError: given polynomial does not define a rational 7-isogeny

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(101)), [Integer(1),Integer(1)])
>>> f,_ = E.division_polynomial(Integer(7)).factor()[-Integer(1)]
>>> E.kernel_polynomial_from_divisor(f, Integer(7))
Traceback (most recent call last):
...
ValueError: given polynomial does not define a rational 7-isogeny

sage: x = polygen(QQ)
sage: K.<t> = NumberField(x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13)
sage: E = EllipticCurve(K, [1,0])
sage: ker = E.kernel_polynomial_from_divisor(x - t, 13); ker
x^6 + (-169/64*t^10 + 169/32*t^8 - 247/32*t^6 - 377/8*t^4 - 2977/64*t^2 - 105/32)*x^4 + (-169/32*t^10 + 169/16*t^8 - 247/16*t^6 - 377/4*t^4 - 2977/32*t^2 - 89/16)*x^2 - 13/64*t^10 + 13/32*t^8 - 19/32*t^6 - 29/8*t^4 - 229/64*t^2 - 13/32
sage: phi = E.isogeny(ker, check=True); phi
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + x
over Number Field in t with defining polynomial x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13
to Elliptic Curve defined by y^2 = x^3 + (-2535/16*t^10+2535/8*t^8-3705/8*t^6-5655/2*t^4-44655/16*t^2-2047/8)*x
over Number Field in t with defining polynomial x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13

>>> from sage.all import *
>>> x = polygen(QQ)
>>> K = NumberField(x**Integer(12) - Integer(2)*x**Integer(10) + Integer(3)*x**Integer(8) + Integer(228)/Integer(13)*x**Integer(6) + Integer(235)/Integer(13)*x**Integer(4) + Integer(22)/Integer(13)*x**Integer(2) + Integer(1)/Integer(13), names=('t',)); (t,) = K._first_ngens(1)
>>> E = EllipticCurve(K, [Integer(1),Integer(0)])
>>> ker = E.kernel_polynomial_from_divisor(x - t, Integer(13)); ker
x^6 + (-169/64*t^10 + 169/32*t^8 - 247/32*t^6 - 377/8*t^4 - 2977/64*t^2 - 105/32)*x^4 + (-169/32*t^10 + 169/16*t^8 - 247/16*t^6 - 377/4*t^4 - 2977/32*t^2 - 89/16)*x^2 - 13/64*t^10 + 13/32*t^8 - 19/32*t^6 - 29/8*t^4 - 229/64*t^2 - 13/32
>>> phi = E.isogeny(ker, check=True); phi
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + x
over Number Field in t with defining polynomial x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13
to Elliptic Curve defined by y^2 = x^3 + (-2535/16*t^10+2535/8*t^8-3705/8*t^6-5655/2*t^4-44655/16*t^2-2047/8)*x
over Number Field in t with defining polynomial x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13


ALGORITHM: [EPSV2023], Algorithm 3 (KernelPolynomialFromDivisor).

kernel_polynomial_from_point(P, algorithm)[source]#

Given a point $$P$$ on this curve which generates a rational subgroup, return the kernel polynomial of that subgroup as a polynomial over the base field of the curve. (The point $$P$$ itself may be defined over an extension.)

EXAMPLES:

sage: E = EllipticCurve(GF(101), [1,1])
sage: F = GF(101^3)
sage: EE = E.change_ring(F)
sage: xK = F([77, 28, 8]); xK
8*z3^2 + 28*z3 + 77
sage: K = EE.lift_x(xK); K.order()
43
sage: E.kernel_polynomial_from_point(K)
x^21 + 7*x^20 + 22*x^19 + 4*x^18 + 7*x^17 + 81*x^16 + 41*x^15 + 68*x^14 + 18*x^13 + 58*x^12 + 31*x^11 + 26*x^10 + 62*x^9 + 20*x^8 + 73*x^7 + 23*x^6 + 66*x^5 + 79*x^4 + 12*x^3 + 40*x^2 + 50*x + 93

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(101)), [Integer(1),Integer(1)])
>>> F = GF(Integer(101)**Integer(3))
>>> EE = E.change_ring(F)
>>> xK = F([Integer(77), Integer(28), Integer(8)]); xK
8*z3^2 + 28*z3 + 77
>>> K = EE.lift_x(xK); K.order()
43
>>> E.kernel_polynomial_from_point(K)
x^21 + 7*x^20 + 22*x^19 + 4*x^18 + 7*x^17 + 81*x^16 + 41*x^15 + 68*x^14 + 18*x^13 + 58*x^12 + 31*x^11 + 26*x^10 + 62*x^9 + 20*x^8 + 73*x^7 + 23*x^6 + 66*x^5 + 79*x^4 + 12*x^3 + 40*x^2 + 50*x + 93


The "minpoly" algorithm is often much faster than the "basic" algorithm:

sage: from sage.schemes.elliptic_curves.ell_field import EllipticCurve_field, point_of_order
sage: p = 2^127 - 1
sage: E = EllipticCurve(GF(p), [1,0])
sage: P = point_of_order(E, 31)
sage: %timeit E.kernel_polynomial_from_point(P, algorithm='basic')    # not tested
4.38 ms ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
sage: %timeit E.kernel_polynomial_from_point(P, algorithm='minpoly')  # not tested
854 µs ± 1.56 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

>>> from sage.all import *
>>> from sage.schemes.elliptic_curves.ell_field import EllipticCurve_field, point_of_order
>>> p = Integer(2)**Integer(127) - Integer(1)
>>> E = EllipticCurve(GF(p), [Integer(1),Integer(0)])
>>> P = point_of_order(E, Integer(31))
>>> %timeit E.kernel_polynomial_from_point(P, algorithm='basic')    # not tested
4.38 ms ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
>>> %timeit E.kernel_polynomial_from_point(P, algorithm='minpoly')  # not tested
854 µs ± 1.56 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)


Example of finding all the rational isogenies using this method:

sage: E = EllipticCurve(GF(71), [1,2,3,4,5])
sage: F = E.division_field(11)
sage: EE = E.change_ring(F)
sage: fs = set()
sage: for K in EE(0).division_points(11):
....:     if not K:
....:         continue
....:     Kp = EE.frobenius_isogeny()(K)
....:     if Kp.weil_pairing(K, 11) == 1:
sage: fs = sorted(fs); fs
[x^5 + 10*x^4 + 18*x^3 + 10*x^2 + 43*x + 46,
x^5 + 65*x^4 + 39*x^2 + 20*x + 63]
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import is_kernel_polynomial
sage: {is_kernel_polynomial(E, 11, f) for f in fs}
{True}
sage: isogs = [E.isogeny(f) for f in fs]
sage: isogs[0]
Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 71 to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 34*x + 42 over Finite Field of size 71
sage: isogs[1]
Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 71 to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 12*x + 40 over Finite Field of size 71
sage: set(isogs) == set(E.isogenies_prime_degree(11))
True

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(71)), [Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)])
>>> F = E.division_field(Integer(11))
>>> EE = E.change_ring(F)
>>> fs = set()
>>> for K in EE(Integer(0)).division_points(Integer(11)):
...     if not K:
...         continue
...     Kp = EE.frobenius_isogeny()(K)
...     if Kp.weil_pairing(K, Integer(11)) == Integer(1):
>>> fs = sorted(fs); fs
[x^5 + 10*x^4 + 18*x^3 + 10*x^2 + 43*x + 46,
x^5 + 65*x^4 + 39*x^2 + 20*x + 63]
>>> from sage.schemes.elliptic_curves.isogeny_small_degree import is_kernel_polynomial
>>> {is_kernel_polynomial(E, Integer(11), f) for f in fs}
{True}
>>> isogs = [E.isogeny(f) for f in fs]
>>> isogs[Integer(0)]
Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 71 to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 34*x + 42 over Finite Field of size 71
>>> isogs[Integer(1)]
Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 71 to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 12*x + 40 over Finite Field of size 71
>>> set(isogs) == set(E.isogenies_prime_degree(Integer(11)))
True


ALGORITHM:

• The "basic" algorithm is to multiply together all the linear factors $$(X - x([i]P))$$ of the kernel polynomial using a product tree, then converting the result to the base field of the curve. Its complexity is $$\widetilde O(\ell k)$$ where $$k$$ is the extension degree.

• The "minpoly" algorithm is [EPSV2023], Algorithm 4 (KernelPolynomialFromIrrationalX). Over finite fields, its complexity is $$O(\ell k) + \widetilde O(\ell)$$ where $$k$$ is the extension degree.

Return the quadratic twist of this curve by D.

INPUT:

• D (default None) the twisting parameter (see below).

In characteristics other than 2, $$D$$ must be nonzero, and the twist is isomorphic to self after adjoining $$\sqrt(D)$$ to the base.

In characteristic 2, $$D$$ is arbitrary, and the twist is isomorphic to self after adjoining a root of $$x^2+x+D$$ to the base.

In characteristic 2 when $$j=0$$, this is not implemented.

If the base field $$F$$ is finite, $$D$$ need not be specified, and the curve returned is the unique curve (up to isomorphism) defined over $$F$$ isomorphic to the original curve over the quadratic extension of $$F$$ but not over $$F$$ itself. Over infinite fields, an error is raised if $$D$$ is not given.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve([GF(1103)(1), 0, 0, 107, 340]); E
Elliptic Curve defined by y^2 + x*y  = x^3 + 107*x + 340
over Finite Field of size 1103
Elliptic Curve defined by y^2  = x^3 + 1102*x^2 + 609*x + 300
over Finite Field of size 1103
sage: E.is_isomorphic(F)
False
sage: E.is_isomorphic(F, GF(1103^2,'a'))
True

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> E = EllipticCurve([GF(Integer(1103))(Integer(1)), Integer(0), Integer(0), Integer(107), Integer(340)]); E
Elliptic Curve defined by y^2 + x*y  = x^3 + 107*x + 340
over Finite Field of size 1103
Elliptic Curve defined by y^2  = x^3 + 1102*x^2 + 609*x + 300
over Finite Field of size 1103
>>> E.is_isomorphic(F)
False
>>> E.is_isomorphic(F, GF(Integer(1103)**Integer(2),'a'))
True


A characteristic 2 example:

sage: E = EllipticCurve(GF(2), [1,0,1,1,1])
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1, GF(4,'a'))
True

>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(2)), [Integer(1),Integer(0),Integer(1),Integer(1),Integer(1)])
>>> E.is_isomorphic(E1)
False
>>> E.is_isomorphic(E1, GF(Integer(4),'a'))
True


Over finite fields, the twisting parameter may be omitted:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(2^10)
sage: E = EllipticCurve(k, [a^2,a,1,a+1,1])
sage: Et  # random (only determined up to isomorphism)
Elliptic Curve defined
by y^2 + x*y  = x^3 + (a^7+a^4+a^3+a^2+a+1)*x^2 + (a^8+a^6+a^4+1)
over Finite Field in a of size 2^10
sage: E.is_isomorphic(Et)
False
sage: E.j_invariant() == Et.j_invariant()
True

sage: # needs sage.rings.finite_rings
sage: p = next_prime(10^10)
sage: k = GF(p)
sage: E = EllipticCurve(k, [1,2,3,4,5])
sage: Et  # random (only determined up to isomorphism)
Elliptic Curve defined
by y^2  = x^3 + 7860088097*x^2 + 9495240877*x + 3048660957
over Finite Field of size 10000000019
sage: E.is_isomorphic(Et)
False
sage: k2 = GF(p^2,'a')
sage: E.change_ring(k2).is_isomorphic(Et.change_ring(k2))
True

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> k = GF(Integer(2)**Integer(10), names=('a',)); (a,) = k._first_ngens(1)
>>> E = EllipticCurve(k, [a**Integer(2),a,Integer(1),a+Integer(1),Integer(1)])
>>> Et  # random (only determined up to isomorphism)
Elliptic Curve defined
by y^2 + x*y  = x^3 + (a^7+a^4+a^3+a^2+a+1)*x^2 + (a^8+a^6+a^4+1)
over Finite Field in a of size 2^10
>>> E.is_isomorphic(Et)
False
>>> E.j_invariant() == Et.j_invariant()
True

>>> # needs sage.rings.finite_rings
>>> p = next_prime(Integer(10)**Integer(10))
>>> k = GF(p)
>>> E = EllipticCurve(k, [Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)])
>>> Et  # random (only determined up to isomorphism)
Elliptic Curve defined
by y^2  = x^3 + 7860088097*x^2 + 9495240877*x + 3048660957
over Finite Field of size 10000000019
>>> E.is_isomorphic(Et)
False
>>> k2 = GF(p**Integer(2),'a')
>>> E.change_ring(k2).is_isomorphic(Et.change_ring(k2))
True

quartic_twist(D)[source]#

Return the quartic twist of this curve by $$D$$.

INPUT:

• D (must be nonzero) – the twisting parameter

Note

The characteristic must not be 2 or 3, and the $$j$$-invariant must be 1728.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve_from_j(GF(13)(1728)); E
Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 13
sage: E1 = E.quartic_twist(2); E1
Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 13
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1, GF(13^2,'a'))
False
sage: E.is_isomorphic(E1, GF(13^4,'a'))
True

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> E = EllipticCurve_from_j(GF(Integer(13))(Integer(1728))); E
Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 13
>>> E1 = E.quartic_twist(Integer(2)); E1
Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 13
>>> E.is_isomorphic(E1)
False
>>> E.is_isomorphic(E1, GF(Integer(13)**Integer(2),'a'))
False
>>> E.is_isomorphic(E1, GF(Integer(13)**Integer(4),'a'))
True

sextic_twist(D)[source]#

Return the sextic twist of this curve by $$D$$.

INPUT:

• D (must be nonzero) – the twisting parameter

Note

The characteristic must not be 2 or 3, and the $$j$$-invariant must be 0.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve_from_j(GF(13)(0)); E
Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 13
sage: E1 = E.sextic_twist(2); E1
Elliptic Curve defined by y^2 = x^3 + 11 over Finite Field of size 13
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1, GF(13^2,'a'))
False
sage: E.is_isomorphic(E1, GF(13^4,'a'))
False
sage: E.is_isomorphic(E1, GF(13^6,'a'))
True

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> E = EllipticCurve_from_j(GF(Integer(13))(Integer(0))); E
Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 13
>>> E1 = E.sextic_twist(Integer(2)); E1
Elliptic Curve defined by y^2 = x^3 + 11 over Finite Field of size 13
>>> E.is_isomorphic(E1)
False
>>> E.is_isomorphic(E1, GF(Integer(13)**Integer(2),'a'))
False
>>> E.is_isomorphic(E1, GF(Integer(13)**Integer(4),'a'))
False
>>> E.is_isomorphic(E1, GF(Integer(13)**Integer(6),'a'))
True

two_torsion_rank()[source]#

Return the dimension of the 2-torsion subgroup of $$E(K)$$.

This will be 0, 1 or 2.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.two_torsion_rank()
0
sage: K.<alpha> = QQ.extension(E.division_polynomial(2).monic())            # needs sage.rings.number_field
sage: E.base_extend(K).two_torsion_rank()                                   # needs sage.rings.number_field
1
sage: E.reduction(53).two_torsion_rank()
2

>>> from sage.all import *
>>> E = EllipticCurve('11a1')
>>> E.two_torsion_rank()
0
>>> K = QQ.extension(E.division_polynomial(Integer(2)).monic(), names=('alpha',)); (alpha,) = K._first_ngens(1)# needs sage.rings.number_field
>>> E.base_extend(K).two_torsion_rank()                                   # needs sage.rings.number_field
1
>>> E.reduction(Integer(53)).two_torsion_rank()
2

sage: E = EllipticCurve('14a1')
sage: E.two_torsion_rank()
1
sage: f = E.division_polynomial(2).monic().factor()[1][0]
sage: K.<alpha> = QQ.extension(f)                                           # needs sage.rings.number_field
sage: E.base_extend(K).two_torsion_rank()                                   # needs sage.rings.number_field
2

>>> from sage.all import *
>>> E = EllipticCurve('14a1')
>>> E.two_torsion_rank()
1
>>> f = E.division_polynomial(Integer(2)).monic().factor()[Integer(1)][Integer(0)]
>>> K = QQ.extension(f, names=('alpha',)); (alpha,) = K._first_ngens(1)# needs sage.rings.number_field
>>> E.base_extend(K).two_torsion_rank()                                   # needs sage.rings.number_field
2

sage: EllipticCurve('15a1').two_torsion_rank()
2

>>> from sage.all import *
>>> EllipticCurve('15a1').two_torsion_rank()
2

weierstrass_p(prec=20, algorithm=None)[source]#

Compute the Weierstrass $$\wp$$-function of this elliptic curve.

INPUT:

• prec – precision

• algorithm – string or None (default: None): a choice of algorithm among "pari", "fast", "quadratic"; or None to let this function determine the best algorithm to use.

OUTPUT:

A Laurent series in one variable $$z$$ with coefficients in the base field $$k$$ of $$E$$.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.weierstrass_p(prec=10)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10)
sage: E.weierstrass_p(prec=8)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: Esh = E.short_weierstrass_model()
sage: Esh.weierstrass_p(prec=8)
z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8)
sage: E.weierstrass_p(prec=20, algorithm='fast')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8
+ 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14
+ 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20)
sage: E.weierstrass_p(prec=20, algorithm='pari')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8
+ 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14
+ 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8
+ 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14
+ 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20)

>>> from sage.all import *
>>> E = EllipticCurve('11a1')
>>> E.weierstrass_p(prec=Integer(10))
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10)
>>> E.weierstrass_p(prec=Integer(8))
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
>>> Esh = E.short_weierstrass_model()
>>> Esh.weierstrass_p(prec=Integer(8))
z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8)
>>> E.weierstrass_p(prec=Integer(20), algorithm='fast')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8
+ 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14
+ 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20)
>>> E.weierstrass_p(prec=Integer(20), algorithm='pari')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8
+ 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14
+ 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8
+ 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14
+ 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20)

sage.schemes.elliptic_curves.ell_field.compute_model(E, name)[source]#

Return a model of an elliptic curve E of the type specified in the name parameter.

Used as a helper function in EllipticCurveIsogeny.

INPUT:

• E (elliptic curve)

• name (string) – current options:

• "minimal": Return a global minimal model of E if it exists, and a semi-global minimal model otherwise. For this choice, E must be defined over a number field. See global_minimal_model().

• "short_weierstrass": Return a short Weierstrass model of E assuming one exists. See short_weierstrass_model().

• "montgomery": Return an (untwisted) Montgomery model of E assuming one exists over this field. See montgomery_model().

OUTPUT:

An elliptic curve of the specified type isomorphic to $$E$$.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_field import compute_model
sage: E = EllipticCurve([12/7, 405/49, 0, -81/8, 135/64])
sage: compute_model(E, 'minimal')
Elliptic Curve defined by y^2 = x^3 - x^2 - 7*x + 10 over Rational Field
sage: compute_model(E, 'short_weierstrass')
Elliptic Curve defined by y^2 = x^3 - 48114*x + 4035015 over Rational Field
sage: compute_model(E, 'montgomery')
Elliptic Curve defined by y^2 = x^3 + 5*x^2 + x over Rational Field

>>> from sage.all import *
>>> from sage.schemes.elliptic_curves.ell_field import compute_model
>>> E = EllipticCurve([Integer(12)/Integer(7), Integer(405)/Integer(49), Integer(0), -Integer(81)/Integer(8), Integer(135)/Integer(64)])
>>> compute_model(E, 'minimal')
Elliptic Curve defined by y^2 = x^3 - x^2 - 7*x + 10 over Rational Field
>>> compute_model(E, 'short_weierstrass')
Elliptic Curve defined by y^2 = x^3 - 48114*x + 4035015 over Rational Field
>>> compute_model(E, 'montgomery')
Elliptic Curve defined by y^2 = x^3 + 5*x^2 + x over Rational Field

sage.schemes.elliptic_curves.ell_field.point_of_order(E, n)[source]#

Given an elliptic curve $$E$$ over a finite field or a number field and an integer $$n \geq 1$$, construct a point of order $$n$$ on $$E$$, possibly defined over an extension of the base field of $$E$$.

Currently only prime powers $$n$$ are supported.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_field import point_of_order
sage: E = EllipticCurve(GF(101), [1,2,3,4,5])
sage: P = point_of_order(E, 5); P  # random
(50*Y^5 + 48*Y^4 + 26*Y^3 + 37*Y^2 + 48*Y + 15 : 25*Y^5 + 31*Y^4 + 79*Y^3 + 39*Y^2 + 3*Y + 20 : 1)
sage: P.base_ring()
Finite Field in Y of size 101^6
sage: P.order()
5
sage: P.curve().a_invariants()
(1, 2, 3, 4, 5)

>>> from sage.all import *
>>> from sage.schemes.elliptic_curves.ell_field import point_of_order
>>> E = EllipticCurve(GF(Integer(101)), [Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)])
>>> P = point_of_order(E, Integer(5)); P  # random
(50*Y^5 + 48*Y^4 + 26*Y^3 + 37*Y^2 + 48*Y + 15 : 25*Y^5 + 31*Y^4 + 79*Y^3 + 39*Y^2 + 3*Y + 20 : 1)
>>> P.base_ring()
Finite Field in Y of size 101^6
>>> P.order()
5
>>> P.curve().a_invariants()
(1, 2, 3, 4, 5)

sage: Q = point_of_order(E, 8); Q  # random
(69*x^5 + 24*x^4 + 100*x^3 + 65*x^2 + 88*x + 97 : 65*x^5 + 28*x^4 + 5*x^3 + 45*x^2 + 42*x + 18 : 1)
sage: 8*Q == 0 and 4*Q != 0
True

>>> from sage.all import *
>>> Q = point_of_order(E, Integer(8)); Q  # random
(69*x^5 + 24*x^4 + 100*x^3 + 65*x^2 + 88*x + 97 : 65*x^5 + 28*x^4 + 5*x^3 + 45*x^2 + 42*x + 18 : 1)
>>> Integer(8)*Q == Integer(0) and Integer(4)*Q != Integer(0)
True

sage: from sage.schemes.elliptic_curves.ell_field import point_of_order
sage: E = EllipticCurve(QQ, [7,7])
sage: P = point_of_order(E, 3); P  # random
(x : -Y : 1)
sage: P.base_ring()
Number Field in Y with defining polynomial Y^2 - x^3 - 7*x - 7 over its base field
sage: P.base_ring().base_field()
Number Field in x with defining polynomial x^4 + 14*x^2 + 28*x - 49/3
sage: P.order()
3
sage: P.curve().a_invariants()
(0, 0, 0, 7, 7)

>>> from sage.all import *
>>> from sage.schemes.elliptic_curves.ell_field import point_of_order
>>> E = EllipticCurve(QQ, [Integer(7),Integer(7)])
>>> P = point_of_order(E, Integer(3)); P  # random
(x : -Y : 1)
>>> P.base_ring()
Number Field in Y with defining polynomial Y^2 - x^3 - 7*x - 7 over its base field
>>> P.base_ring().base_field()
Number Field in x with defining polynomial x^4 + 14*x^2 + 28*x - 49/3
>>> P.order()
3
>>> P.curve().a_invariants()
(0, 0, 0, 7, 7)

sage: Q = point_of_order(E, 4); Q  # random
(x : Y : 1)
sage: Q.base_ring()
Number Field in Y with defining polynomial Y^2 - x^3 - 7*x - 7 over its base field
sage: Q.base_ring().base_field()
Number Field in x with defining polynomial x^6 + 35*x^4 + 140*x^3 - 245*x^2 - 196*x - 735
sage: Q.order()
4

>>> from sage.all import *
>>> Q = point_of_order(E, Integer(4)); Q  # random
(x : Y : 1)
>>> Q.base_ring()
Number Field in Y with defining polynomial Y^2 - x^3 - 7*x - 7 over its base field
>>> Q.base_ring().base_field()
Number Field in x with defining polynomial x^6 + 35*x^4 + 140*x^3 - 245*x^2 - 196*x - 735
>>> Q.order()
4