Elliptic curves over a general field#
This module defines the class EllipticCurve_field
, based on
EllipticCurve_generic
, for elliptic curves over general fields.
- class sage.schemes.elliptic_curves.ell_field.EllipticCurve_field(R, data, category=None)[source]#
Bases:
EllipticCurve_generic
,ProjectivePlaneCurve_field
Constructor for elliptic curves over fields.
Identical to the constructor for elliptic curves over general rings, except for setting the default category to
AbelianVarieties
.EXAMPLES:
sage: E = EllipticCurve(QQ, [1,1]) sage: E.category() Category of abelian varieties over Rational Field sage: E = EllipticCurve(GF(101), [1,1]) sage: E.category() Category of abelian varieties over Finite Field of size 101
>>> from sage.all import * >>> E = EllipticCurve(QQ, [Integer(1),Integer(1)]) >>> E.category() Category of abelian varieties over Rational Field >>> E = EllipticCurve(GF(Integer(101)), [Integer(1),Integer(1)]) >>> E.category() Category of abelian varieties over Finite Field of size 101
- base_field()[source]#
Return the base ring of the elliptic curve.
EXAMPLES:
sage: E = EllipticCurve(GF(49, 'a'), [3,5]) # needs sage.rings.finite_rings sage: E.base_ring() # needs sage.rings.finite_rings Finite Field in a of size 7^2
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(49), 'a'), [Integer(3),Integer(5)]) # needs sage.rings.finite_rings >>> E.base_ring() # needs sage.rings.finite_rings Finite Field in a of size 7^2
sage: E = EllipticCurve([1,1]) sage: E.base_ring() Rational Field
>>> from sage.all import * >>> E = EllipticCurve([Integer(1),Integer(1)]) >>> E.base_ring() Rational Field
sage: E = EllipticCurve(ZZ, [3,5]) sage: E.base_ring() Integer Ring
>>> from sage.all import * >>> E = EllipticCurve(ZZ, [Integer(3),Integer(5)]) >>> E.base_ring() Integer Ring
- descend_to(K, f=None)[source]#
Given an elliptic curve self defined over a field \(L\) and a subfield \(K\) of \(L\), return all elliptic curves over \(K\) which are isomorphic over \(L\) to self.
INPUT:
\(K\) – a field which embeds into the base field \(L\) of self.
\(f\) (optional) – an embedding of \(K\) into \(L\). Ignored if \(K\) is \(\QQ\).
OUTPUT:
A list (possibly empty) of elliptic curves defined over \(K\) which are isomorphic to self over \(L\), up to isomorphism over \(K\).
Note
Currently only implemented over number fields. To extend to other fields of characteristic not 2 or 3, what is needed is a method giving the preimages in \(K^*/(K^*)^m\) of an element of the base field, for \(m=2,4,6\).
EXAMPLES:
sage: E = EllipticCurve([1,2,3,4,5]) sage: E.descend_to(ZZ) Traceback (most recent call last): ... TypeError: Input must be a field.
>>> from sage.all import * >>> E = EllipticCurve([Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)]) >>> E.descend_to(ZZ) Traceback (most recent call last): ... TypeError: Input must be a field.
sage: # needs sage.rings.number_field sage: F.<b> = QuadraticField(23) sage: x = polygen(ZZ, 'x') sage: G.<a> = F.extension(x^3 + 5) sage: E = EllipticCurve(j=1728*b).change_ring(G) sage: EF = E.descend_to(F); EF [Elliptic Curve defined by y^2 = x^3 + (27*b-621)*x + (-1296*b+2484) over Number Field in b with defining polynomial x^2 - 23 with b = 4.795831523312720?] sage: all(Ei.change_ring(G).is_isomorphic(E) for Ei in EF) True
>>> from sage.all import * >>> # needs sage.rings.number_field >>> F = QuadraticField(Integer(23), names=('b',)); (b,) = F._first_ngens(1) >>> x = polygen(ZZ, 'x') >>> G = F.extension(x**Integer(3) + Integer(5), names=('a',)); (a,) = G._first_ngens(1) >>> E = EllipticCurve(j=Integer(1728)*b).change_ring(G) >>> EF = E.descend_to(F); EF [Elliptic Curve defined by y^2 = x^3 + (27*b-621)*x + (-1296*b+2484) over Number Field in b with defining polynomial x^2 - 23 with b = 4.795831523312720?] >>> all(Ei.change_ring(G).is_isomorphic(E) for Ei in EF) True
sage: # needs sage.rings.number_field sage: L.<a> = NumberField(x^4 - 7) sage: K.<b> = NumberField(x^2 - 7, embedding=a^2) sage: E = EllipticCurve([a^6, 0]) sage: EK = E.descend_to(K); EK [Elliptic Curve defined by y^2 = x^3 + b*x over Number Field in b with defining polynomial x^2 - 7 with b = a^2, Elliptic Curve defined by y^2 = x^3 + 7*b*x over Number Field in b with defining polynomial x^2 - 7 with b = a^2] sage: all(Ei.change_ring(L).is_isomorphic(E) for Ei in EK) True
>>> from sage.all import * >>> # needs sage.rings.number_field >>> L = NumberField(x**Integer(4) - Integer(7), names=('a',)); (a,) = L._first_ngens(1) >>> K = NumberField(x**Integer(2) - Integer(7), embedding=a**Integer(2), names=('b',)); (b,) = K._first_ngens(1) >>> E = EllipticCurve([a**Integer(6), Integer(0)]) >>> EK = E.descend_to(K); EK [Elliptic Curve defined by y^2 = x^3 + b*x over Number Field in b with defining polynomial x^2 - 7 with b = a^2, Elliptic Curve defined by y^2 = x^3 + 7*b*x over Number Field in b with defining polynomial x^2 - 7 with b = a^2] >>> all(Ei.change_ring(L).is_isomorphic(E) for Ei in EK) True
sage: K.<a> = QuadraticField(17) # needs sage.rings.number_field sage: E = EllipticCurve(j=2*a) # needs sage.rings.number_field sage: E.descend_to(QQ) # needs sage.rings.number_field []
>>> from sage.all import * >>> K = QuadraticField(Integer(17), names=('a',)); (a,) = K._first_ngens(1)# needs sage.rings.number_field >>> E = EllipticCurve(j=Integer(2)*a) # needs sage.rings.number_field >>> E.descend_to(QQ) # needs sage.rings.number_field []
- division_field(n, names='t', map=False, **kwds)[source]#
Given an elliptic curve over a number field or finite field \(F\) and a positive integer \(n\), construct the \(n\)-division field \(F(E[n])\).
The \(n\)-division field is the smallest extension of \(F\) over which all \(n\)-torsion points of \(E\) are defined.
INPUT:
\(n\) – a positive integer
names
– (default:'t'
) a variable name for the division fieldmap
– (default:False
) also return an embedding of thebase_field()
into the resulting fieldkwds
– additional keyword arguments passed tosplitting_field()
OUTPUT:
If
map
isFalse
, the division field \(K\) as an absolute number field or a finite field. Ifmap
isTrue
, a tuple \((K, \phi)\) where \(\phi\) is an embedding of the base field in the division field \(K\).Warning
This can take a very long time when the degree of the division field is large (e.g. when \(n\) is large or when the Galois representation is surjective). The
simplify
flag also has a big influence on the running time over number fields: sometimessimplify=False
is faster, sometimes the defaultsimplify=True
is faster.EXAMPLES:
The 2-division field is the same as the splitting field of the 2-division polynomial (therefore, it has degree 1, 2, 3 or 6):
sage: # needs sage.rings.number_field sage: E = EllipticCurve('15a1') sage: K.<b> = E.division_field(2); K Number Field in b with defining polynomial x sage: E = EllipticCurve('14a1') sage: K.<b> = E.division_field(2); K Number Field in b with defining polynomial x^2 + 5*x + 92 sage: E = EllipticCurve('196b1') sage: K.<b> = E.division_field(2); K Number Field in b with defining polynomial x^3 + x^2 - 114*x - 127 sage: E = EllipticCurve('19a1') sage: K.<b> = E.division_field(2); K Number Field in b with defining polynomial x^6 + 10*x^5 + 24*x^4 - 212*x^3 + 1364*x^2 + 24072*x + 104292
>>> from sage.all import * >>> # needs sage.rings.number_field >>> E = EllipticCurve('15a1') >>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x >>> E = EllipticCurve('14a1') >>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^2 + 5*x + 92 >>> E = EllipticCurve('196b1') >>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^3 + x^2 - 114*x - 127 >>> E = EllipticCurve('19a1') >>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^6 + 10*x^5 + 24*x^4 - 212*x^3 + 1364*x^2 + 24072*x + 104292
For odd primes \(n\), the division field is either the splitting field of the \(n\)-division polynomial, or a quadratic extension of it.
sage: # needs sage.rings.number_field sage: E = EllipticCurve('50a1') sage: F.<a> = E.division_polynomial(3).splitting_field(simplify_all=True); F Number Field in a with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3 sage: K.<b> = E.division_field(3, simplify_all=True); K Number Field in b with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3
>>> from sage.all import * >>> # needs sage.rings.number_field >>> E = EllipticCurve('50a1') >>> F = E.division_polynomial(Integer(3)).splitting_field(simplify_all=True, names=('a',)); (a,) = F._first_ngens(1); F Number Field in a with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3 >>> K = E.division_field(Integer(3), simplify_all=True, names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3
If we take any quadratic twist, the splitting field of the 3-division polynomial remains the same, but the 3-division field becomes a quadratic extension:
sage: # needs sage.rings.number_field sage: E = E.quadratic_twist(5) # 50b3 sage: F.<a> = E.division_polynomial(3).splitting_field(simplify_all=True); F Number Field in a with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3 sage: K.<b> = E.division_field(3, simplify_all=True); K Number Field in b with defining polynomial x^12 - 3*x^11 + 8*x^10 - 15*x^9 + 30*x^8 - 63*x^7 + 109*x^6 - 144*x^5 + 150*x^4 - 120*x^3 + 68*x^2 - 24*x + 4
>>> from sage.all import * >>> # needs sage.rings.number_field >>> E = E.quadratic_twist(Integer(5)) # 50b3 >>> F = E.division_polynomial(Integer(3)).splitting_field(simplify_all=True, names=('a',)); (a,) = F._first_ngens(1); F Number Field in a with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3 >>> K = E.division_field(Integer(3), simplify_all=True, names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^12 - 3*x^11 + 8*x^10 - 15*x^9 + 30*x^8 - 63*x^7 + 109*x^6 - 144*x^5 + 150*x^4 - 120*x^3 + 68*x^2 - 24*x + 4
Try another quadratic twist, this time over a subfield of \(F\):
sage: # needs sage.rings.number_field sage: G.<c>,_,_ = F.subfields(3)[0] sage: E = E.base_extend(G).quadratic_twist(c); E Elliptic Curve defined by y^2 = x^3 + 5*a0*x^2 + (-200*a0^2)*x + (-42000*a0^2+42000*a0+126000) over Number Field in a0 with defining polynomial x^3 - 3*x^2 + 3*x + 9 sage: K.<b> = E.division_field(3, simplify_all=True); K Number Field in b with defining polynomial x^12 - 25*x^10 + 130*x^8 + 645*x^6 + 1050*x^4 + 675*x^2 + 225
>>> from sage.all import * >>> # needs sage.rings.number_field >>> G,_,_ = F.subfields(Integer(3))[Integer(0)]; (c,) = G._first_ngens(1) >>> E = E.base_extend(G).quadratic_twist(c); E Elliptic Curve defined by y^2 = x^3 + 5*a0*x^2 + (-200*a0^2)*x + (-42000*a0^2+42000*a0+126000) over Number Field in a0 with defining polynomial x^3 - 3*x^2 + 3*x + 9 >>> K = E.division_field(Integer(3), simplify_all=True, names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^12 - 25*x^10 + 130*x^8 + 645*x^6 + 1050*x^4 + 675*x^2 + 225
Some higher-degree examples:
sage: # needs sage.rings.number_field sage: E = EllipticCurve('11a1') sage: K.<b> = E.division_field(2); K Number Field in b with defining polynomial x^6 + 2*x^5 - 48*x^4 - 436*x^3 + 1668*x^2 + 28792*x + 73844 sage: K.<b> = E.division_field(3); K # long time Number Field in b with defining polynomial x^48 ... sage: K.<b> = E.division_field(5); K Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1 sage: E.division_field(5, 'b', simplify=False) Number Field in b with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101 sage: E.base_extend(K).torsion_subgroup() # long time Torsion Subgroup isomorphic to Z/5 + Z/5 associated to the Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1 sage: # needs sage.rings.number_field sage: E = EllipticCurve('27a1') sage: K.<b> = E.division_field(3); K Number Field in b with defining polynomial x^2 + 3*x + 9 sage: K.<b> = E.division_field(2); K Number Field in b with defining polynomial x^6 + 6*x^5 + 24*x^4 - 52*x^3 - 228*x^2 + 744*x + 3844 sage: K.<b> = E.division_field(2, simplify_all=True); K Number Field in b with defining polynomial x^6 - 3*x^5 + 5*x^3 - 3*x + 1 sage: K.<b> = E.division_field(5); K # long time Number Field in b with defining polynomial x^48 ... sage: K.<b> = E.division_field(7); K # long time Number Field in b with defining polynomial x^72 ...
>>> from sage.all import * >>> # needs sage.rings.number_field >>> E = EllipticCurve('11a1') >>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^6 + 2*x^5 - 48*x^4 - 436*x^3 + 1668*x^2 + 28792*x + 73844 >>> K = E.division_field(Integer(3), names=('b',)); (b,) = K._first_ngens(1); K # long time Number Field in b with defining polynomial x^48 ... >>> K = E.division_field(Integer(5), names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1 >>> E.division_field(Integer(5), 'b', simplify=False) Number Field in b with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101 >>> E.base_extend(K).torsion_subgroup() # long time Torsion Subgroup isomorphic to Z/5 + Z/5 associated to the Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1 >>> # needs sage.rings.number_field >>> E = EllipticCurve('27a1') >>> K = E.division_field(Integer(3), names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^2 + 3*x + 9 >>> K = E.division_field(Integer(2), names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^6 + 6*x^5 + 24*x^4 - 52*x^3 - 228*x^2 + 744*x + 3844 >>> K = E.division_field(Integer(2), simplify_all=True, names=('b',)); (b,) = K._first_ngens(1); K Number Field in b with defining polynomial x^6 - 3*x^5 + 5*x^3 - 3*x + 1 >>> K = E.division_field(Integer(5), names=('b',)); (b,) = K._first_ngens(1); K # long time Number Field in b with defining polynomial x^48 ... >>> K = E.division_field(Integer(7), names=('b',)); (b,) = K._first_ngens(1); K # long time Number Field in b with defining polynomial x^72 ...
Over a number field:
sage: # needs sage.rings.number_field sage: R.<x> = PolynomialRing(QQ) sage: K.<i> = NumberField(x^2 + 1) sage: E = EllipticCurve([0,0,0,0,i]) sage: L.<b> = E.division_field(2); L Number Field in b with defining polynomial x^4 - x^2 + 1 sage: L.<b>, phi = E.division_field(2, map=True); phi Ring morphism: From: Number Field in i with defining polynomial x^2 + 1 To: Number Field in b with defining polynomial x^4 - x^2 + 1 Defn: i |--> -b^3 sage: L.<b>, phi = E.division_field(3, map=True) sage: L Number Field in b with defining polynomial x^24 - 6*x^22 - 12*x^21 - 21*x^20 + 216*x^19 + 48*x^18 + 804*x^17 + 1194*x^16 - 13488*x^15 + 21222*x^14 + 44196*x^13 - 47977*x^12 - 102888*x^11 + 173424*x^10 - 172308*x^9 + 302046*x^8 + 252864*x^7 - 931182*x^6 + 180300*x^5 + 879567*x^4 - 415896*x^3 + 1941012*x^2 + 650220*x + 443089 sage: phi Ring morphism: From: Number Field in i with defining polynomial x^2 + 1 To: Number Field in b with defining polynomial x^24 ... Defn: i |--> -215621657062634529/183360797284413355040732*b^23 ...
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> K = NumberField(x**Integer(2) + Integer(1), names=('i',)); (i,) = K._first_ngens(1) >>> E = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(0),i]) >>> L = E.division_field(Integer(2), names=('b',)); (b,) = L._first_ngens(1); L Number Field in b with defining polynomial x^4 - x^2 + 1 >>> L, phi = E.division_field(Integer(2), map=True, names=('b',)); (b,) = L._first_ngens(1); phi Ring morphism: From: Number Field in i with defining polynomial x^2 + 1 To: Number Field in b with defining polynomial x^4 - x^2 + 1 Defn: i |--> -b^3 >>> L, phi = E.division_field(Integer(3), map=True, names=('b',)); (b,) = L._first_ngens(1) >>> L Number Field in b with defining polynomial x^24 - 6*x^22 - 12*x^21 - 21*x^20 + 216*x^19 + 48*x^18 + 804*x^17 + 1194*x^16 - 13488*x^15 + 21222*x^14 + 44196*x^13 - 47977*x^12 - 102888*x^11 + 173424*x^10 - 172308*x^9 + 302046*x^8 + 252864*x^7 - 931182*x^6 + 180300*x^5 + 879567*x^4 - 415896*x^3 + 1941012*x^2 + 650220*x + 443089 >>> phi Ring morphism: From: Number Field in i with defining polynomial x^2 + 1 To: Number Field in b with defining polynomial x^24 ... Defn: i |--> -215621657062634529/183360797284413355040732*b^23 ...
Over a finite field:
sage: E = EllipticCurve(GF(431^2), [1,0]) # needs sage.rings.finite_rings sage: E.division_field(5, map=True) # needs sage.rings.finite_rings (Finite Field in t of size 431^4, Ring morphism: From: Finite Field in z2 of size 431^2 To: Finite Field in t of size 431^4 Defn: z2 |--> 52*t^3 + 222*t^2 + 78*t + 105)
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(431)**Integer(2)), [Integer(1),Integer(0)]) # needs sage.rings.finite_rings >>> E.division_field(Integer(5), map=True) # needs sage.rings.finite_rings (Finite Field in t of size 431^4, Ring morphism: From: Finite Field in z2 of size 431^2 To: Finite Field in t of size 431^4 Defn: z2 |--> 52*t^3 + 222*t^2 + 78*t + 105)
sage: E = EllipticCurve(GF(433^2), [1,0]) # needs sage.rings.finite_rings sage: K.<v> = E.division_field(7); K # needs sage.rings.finite_rings Finite Field in v of size 433^16
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(433)**Integer(2)), [Integer(1),Integer(0)]) # needs sage.rings.finite_rings >>> K = E.division_field(Integer(7), names=('v',)); (v,) = K._first_ngens(1); K # needs sage.rings.finite_rings Finite Field in v of size 433^16
It also works for composite orders:
sage: E = EllipticCurve(GF(11), [5,5]) sage: E.change_ring(E.division_field(8)).abelian_group().torsion_subgroup(8).invariants() (8, 8) sage: E.change_ring(E.division_field(9)).abelian_group().torsion_subgroup(9).invariants() (9, 9) sage: E.change_ring(E.division_field(10)).abelian_group().torsion_subgroup(10).invariants() (10, 10) sage: E.change_ring(E.division_field(36)).abelian_group().torsion_subgroup(36).invariants() (36, 36) sage: E.change_ring(E.division_field(11)).abelian_group().torsion_subgroup(11).invariants() (11,) sage: E.change_ring(E.division_field(66)).abelian_group().torsion_subgroup(66).invariants() (6, 66)
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(11)), [Integer(5),Integer(5)]) >>> E.change_ring(E.division_field(Integer(8))).abelian_group().torsion_subgroup(Integer(8)).invariants() (8, 8) >>> E.change_ring(E.division_field(Integer(9))).abelian_group().torsion_subgroup(Integer(9)).invariants() (9, 9) >>> E.change_ring(E.division_field(Integer(10))).abelian_group().torsion_subgroup(Integer(10)).invariants() (10, 10) >>> E.change_ring(E.division_field(Integer(36))).abelian_group().torsion_subgroup(Integer(36)).invariants() (36, 36) >>> E.change_ring(E.division_field(Integer(11))).abelian_group().torsion_subgroup(Integer(11)).invariants() (11,) >>> E.change_ring(E.division_field(Integer(66))).abelian_group().torsion_subgroup(Integer(66)).invariants() (6, 66)
…also over number fields:
sage: R.<x> = PolynomialRing(QQ) sage: K.<i> = NumberField(x^2 + 1) sage: E = EllipticCurve([0,0,0,0,i]) sage: L,emb = E.division_field(6, names='b', map=True); L Number Field in b with defining polynomial x^24 + 12*x^23 + ... sage: E.change_ring(emb).torsion_subgroup().invariants() (6, 6)
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> K = NumberField(x**Integer(2) + Integer(1), names=('i',)); (i,) = K._first_ngens(1) >>> E = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(0),i]) >>> L,emb = E.division_field(Integer(6), names='b', map=True); L Number Field in b with defining polynomial x^24 + 12*x^23 + ... >>> E.change_ring(emb).torsion_subgroup().invariants() (6, 6)
See also
To compute a basis of the \(n\)-torsion once the base field has been extended, you may use
sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field.torsion_subgroup()
orsage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field.torsion_basis()
.AUTHORS:
Jeroen Demeyer (2014-01-06): Issue #11905, use
splitting_field
method, moved fromgal_reps.py
, make it work over number fields.Lorenz Panny (2022): extend to finite fields
Lorenz Panny (2023): extend to composite \(n\).
- endomorphism_ring_is_commutative()[source]#
Check whether the endomorphism ring of this elliptic curve over its base field is commutative.
ALGORITHM: The endomorphism ring is always commutative in characteristic zero. Over finite fields, it is commutative if and only if the Frobenius endomorphism is not in \(\ZZ\). All elliptic curves with non-commutative endomorphism ring are supersingular. (The converse holds over the algebraic closure, but here we consider endomorphisms over the field of definition.)
EXAMPLES:
sage: EllipticCurve(QQ, [1,1]).endomorphism_ring_is_commutative() True sage: EllipticCurve(QQ, [1,0]).endomorphism_ring_is_commutative() True sage: EllipticCurve(GF(19), [1,1]).endomorphism_ring_is_commutative() True sage: EllipticCurve(GF(19^2), [1,1]).endomorphism_ring_is_commutative() True sage: EllipticCurve(GF(19), [1,0]).endomorphism_ring_is_commutative() True sage: EllipticCurve(GF(19^2), [1,0]).endomorphism_ring_is_commutative() False sage: EllipticCurve(GF(19^3), [1,0]).endomorphism_ring_is_commutative() True
>>> from sage.all import * >>> EllipticCurve(QQ, [Integer(1),Integer(1)]).endomorphism_ring_is_commutative() True >>> EllipticCurve(QQ, [Integer(1),Integer(0)]).endomorphism_ring_is_commutative() True >>> EllipticCurve(GF(Integer(19)), [Integer(1),Integer(1)]).endomorphism_ring_is_commutative() True >>> EllipticCurve(GF(Integer(19)**Integer(2)), [Integer(1),Integer(1)]).endomorphism_ring_is_commutative() True >>> EllipticCurve(GF(Integer(19)), [Integer(1),Integer(0)]).endomorphism_ring_is_commutative() True >>> EllipticCurve(GF(Integer(19)**Integer(2)), [Integer(1),Integer(0)]).endomorphism_ring_is_commutative() False >>> EllipticCurve(GF(Integer(19)**Integer(3)), [Integer(1),Integer(0)]).endomorphism_ring_is_commutative() True
- genus()[source]#
Return 1 for elliptic curves.
EXAMPLES:
sage: E = EllipticCurve(GF(3), [0, -1, 0, -346, 2652]) sage: E.genus() 1 sage: R = FractionField(QQ['z']) sage: E = EllipticCurve(R, [0, -1, 0, -346, 2652]) sage: E.genus() 1
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(3)), [Integer(0), -Integer(1), Integer(0), -Integer(346), Integer(2652)]) >>> E.genus() 1 >>> R = FractionField(QQ['z']) >>> E = EllipticCurve(R, [Integer(0), -Integer(1), Integer(0), -Integer(346), Integer(2652)]) >>> E.genus() 1
- hasse_invariant()[source]#
Return the Hasse invariant of this elliptic curve.
OUTPUT:
The Hasse invariant of this elliptic curve, as an element of the base field. This is only defined over fields of positive characteristic, and is an element of the field which is zero if and only if the curve is supersingular. Over a field of characteristic zero, where the Hasse invariant is undefined, a
ValueError
is raised.EXAMPLES:
sage: E = EllipticCurve([Mod(1,2), Mod(1,2), 0, 0, Mod(1,2)]) sage: E.hasse_invariant() 1 sage: E = EllipticCurve([0, 0, Mod(1,3), Mod(1,3), Mod(1,3)]) sage: E.hasse_invariant() 0 sage: E = EllipticCurve([0, 0, Mod(1,5), 0, Mod(2,5)]) sage: E.hasse_invariant() 0 sage: E = EllipticCurve([0, 0, Mod(1,5), Mod(1,5), Mod(2,5)]) sage: E.hasse_invariant() 2
>>> from sage.all import * >>> E = EllipticCurve([Mod(Integer(1),Integer(2)), Mod(Integer(1),Integer(2)), Integer(0), Integer(0), Mod(Integer(1),Integer(2))]) >>> E.hasse_invariant() 1 >>> E = EllipticCurve([Integer(0), Integer(0), Mod(Integer(1),Integer(3)), Mod(Integer(1),Integer(3)), Mod(Integer(1),Integer(3))]) >>> E.hasse_invariant() 0 >>> E = EllipticCurve([Integer(0), Integer(0), Mod(Integer(1),Integer(5)), Integer(0), Mod(Integer(2),Integer(5))]) >>> E.hasse_invariant() 0 >>> E = EllipticCurve([Integer(0), Integer(0), Mod(Integer(1),Integer(5)), Mod(Integer(1),Integer(5)), Mod(Integer(2),Integer(5))]) >>> E.hasse_invariant() 2
Some examples over larger fields:
sage: # needs sage.rings.finite_rings sage: EllipticCurve(GF(101), [0,0,0,0,1]).hasse_invariant() 0 sage: EllipticCurve(GF(101), [0,0,0,1,1]).hasse_invariant() 98 sage: EllipticCurve(GF(103), [0,0,0,0,1]).hasse_invariant() 20 sage: EllipticCurve(GF(103), [0,0,0,1,1]).hasse_invariant() 17 sage: F.<a> = GF(107^2) sage: EllipticCurve(F, [0,0,0,a,1]).hasse_invariant() 62*a + 75 sage: EllipticCurve(F, [0,0,0,0,a]).hasse_invariant() 0
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> EllipticCurve(GF(Integer(101)), [Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)]).hasse_invariant() 0 >>> EllipticCurve(GF(Integer(101)), [Integer(0),Integer(0),Integer(0),Integer(1),Integer(1)]).hasse_invariant() 98 >>> EllipticCurve(GF(Integer(103)), [Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)]).hasse_invariant() 20 >>> EllipticCurve(GF(Integer(103)), [Integer(0),Integer(0),Integer(0),Integer(1),Integer(1)]).hasse_invariant() 17 >>> F = GF(Integer(107)**Integer(2), names=('a',)); (a,) = F._first_ngens(1) >>> EllipticCurve(F, [Integer(0),Integer(0),Integer(0),a,Integer(1)]).hasse_invariant() 62*a + 75 >>> EllipticCurve(F, [Integer(0),Integer(0),Integer(0),Integer(0),a]).hasse_invariant() 0
Over fields of characteristic zero, the Hasse invariant is undefined:
sage: E = EllipticCurve([0,0,0,0,1]) sage: E.hasse_invariant() Traceback (most recent call last): ... ValueError: Hasse invariant only defined in positive characteristic
>>> from sage.all import * >>> E = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)]) >>> E.hasse_invariant() Traceback (most recent call last): ... ValueError: Hasse invariant only defined in positive characteristic
- is_isogenous(other, field=None)[source]#
Return whether or not self is isogenous to other.
INPUT:
other
– another elliptic curve.field
(default None) – Currently not implemented. A field containing the base fields of the two elliptic curves onto which the two curves may be extended to test if they are isogenous over this field. By defaultis_isogenous
will not try to find this field unless one of the curves can be be extended into the base field of the other, in which case it will test over the larger base field.
OUTPUT:
(bool) True if there is an isogeny from curve
self
to curveother
defined overfield
.METHOD:
Over general fields this is only implemented in trivial cases.
EXAMPLES:
sage: E1 = EllipticCurve(CC, [1,18]); E1 Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000 over Complex Field with 53 bits of precision sage: E2 = EllipticCurve(CC, [2,7]); E2 Elliptic Curve defined by y^2 = x^3 + 2.00000000000000*x + 7.00000000000000 over Complex Field with 53 bits of precision sage: E1.is_isogenous(E2) Traceback (most recent call last): ... NotImplementedError: Only implemented for isomorphic curves over general fields. sage: E1 = EllipticCurve(Frac(PolynomialRing(ZZ,'t')), [2,19]); E1 Elliptic Curve defined by y^2 = x^3 + 2*x + 19 over Fraction Field of Univariate Polynomial Ring in t over Integer Ring sage: E2 = EllipticCurve(CC, [23,4]); E2 Elliptic Curve defined by y^2 = x^3 + 23.0000000000000*x + 4.00000000000000 over Complex Field with 53 bits of precision sage: E1.is_isogenous(E2) Traceback (most recent call last): ... NotImplementedError: Only implemented for isomorphic curves over general fields.
>>> from sage.all import * >>> E1 = EllipticCurve(CC, [Integer(1),Integer(18)]); E1 Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000 over Complex Field with 53 bits of precision >>> E2 = EllipticCurve(CC, [Integer(2),Integer(7)]); E2 Elliptic Curve defined by y^2 = x^3 + 2.00000000000000*x + 7.00000000000000 over Complex Field with 53 bits of precision >>> E1.is_isogenous(E2) Traceback (most recent call last): ... NotImplementedError: Only implemented for isomorphic curves over general fields. >>> E1 = EllipticCurve(Frac(PolynomialRing(ZZ,'t')), [Integer(2),Integer(19)]); E1 Elliptic Curve defined by y^2 = x^3 + 2*x + 19 over Fraction Field of Univariate Polynomial Ring in t over Integer Ring >>> E2 = EllipticCurve(CC, [Integer(23),Integer(4)]); E2 Elliptic Curve defined by y^2 = x^3 + 23.0000000000000*x + 4.00000000000000 over Complex Field with 53 bits of precision >>> E1.is_isogenous(E2) Traceback (most recent call last): ... NotImplementedError: Only implemented for isomorphic curves over general fields.
- is_quadratic_twist(other)[source]#
Determine whether this curve is a quadratic twist of another.
INPUT:
other
– an elliptic curve with the same base field asself
.
OUTPUT:
Either 0, if the curves are not quadratic twists, or \(D\) if
other
isself.quadratic_twist(D)
(up to isomorphism). Ifself
andother
are isomorphic, returns 1.If the curves are defined over \(\QQ\), the output \(D\) is a squarefree integer.
Note
Not fully implemented in characteristic 2, or in characteristic 3 when both \(j\)-invariants are 0.
EXAMPLES:
sage: E = EllipticCurve('11a1') sage: Et = E.quadratic_twist(-24) sage: E.is_quadratic_twist(Et) -6 sage: E1 = EllipticCurve([0,0,1,0,0]) sage: E1.j_invariant() 0 sage: E2 = EllipticCurve([0,0,0,0,2]) sage: E1.is_quadratic_twist(E2) 2 sage: E1.is_quadratic_twist(E1) 1 sage: type(E1.is_quadratic_twist(E1)) == type(E1.is_quadratic_twist(E2)) # Issue #6574 True
>>> from sage.all import * >>> E = EllipticCurve('11a1') >>> Et = E.quadratic_twist(-Integer(24)) >>> E.is_quadratic_twist(Et) -6 >>> E1 = EllipticCurve([Integer(0),Integer(0),Integer(1),Integer(0),Integer(0)]) >>> E1.j_invariant() 0 >>> E2 = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(0),Integer(2)]) >>> E1.is_quadratic_twist(E2) 2 >>> E1.is_quadratic_twist(E1) 1 >>> type(E1.is_quadratic_twist(E1)) == type(E1.is_quadratic_twist(E2)) # Issue #6574 True
sage: E1 = EllipticCurve([0,0,0,1,0]) sage: E1.j_invariant() 1728 sage: E2 = EllipticCurve([0,0,0,2,0]) sage: E1.is_quadratic_twist(E2) 0 sage: E2 = EllipticCurve([0,0,0,25,0]) sage: E1.is_quadratic_twist(E2) 5
>>> from sage.all import * >>> E1 = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(1),Integer(0)]) >>> E1.j_invariant() 1728 >>> E2 = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(2),Integer(0)]) >>> E1.is_quadratic_twist(E2) 0 >>> E2 = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(25),Integer(0)]) >>> E1.is_quadratic_twist(E2) 5
sage: # needs sage.rings.finite_rings sage: F = GF(101) sage: E1 = EllipticCurve(F, [4,7]) sage: E2 = E1.quadratic_twist() sage: D = E1.is_quadratic_twist(E2); D != 0 True sage: F = GF(101) sage: E1 = EllipticCurve(F, [4,7]) sage: E2 = E1.quadratic_twist() sage: D = E1.is_quadratic_twist(E2) sage: E1.quadratic_twist(D).is_isomorphic(E2) True sage: E1.is_isomorphic(E2) False sage: F2 = GF(101^2,'a') sage: E1.change_ring(F2).is_isomorphic(E2.change_ring(F2)) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> F = GF(Integer(101)) >>> E1 = EllipticCurve(F, [Integer(4),Integer(7)]) >>> E2 = E1.quadratic_twist() >>> D = E1.is_quadratic_twist(E2); D != Integer(0) True >>> F = GF(Integer(101)) >>> E1 = EllipticCurve(F, [Integer(4),Integer(7)]) >>> E2 = E1.quadratic_twist() >>> D = E1.is_quadratic_twist(E2) >>> E1.quadratic_twist(D).is_isomorphic(E2) True >>> E1.is_isomorphic(E2) False >>> F2 = GF(Integer(101)**Integer(2),'a') >>> E1.change_ring(F2).is_isomorphic(E2.change_ring(F2)) True
A characteristic 3 example:
sage: # needs sage.rings.finite_rings sage: F = GF(3^5,'a') sage: E1 = EllipticCurve_from_j(F(1)) sage: E2 = E1.quadratic_twist(-1) sage: D = E1.is_quadratic_twist(E2); D != 0 True sage: E1.quadratic_twist(D).is_isomorphic(E2) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> F = GF(Integer(3)**Integer(5),'a') >>> E1 = EllipticCurve_from_j(F(Integer(1))) >>> E2 = E1.quadratic_twist(-Integer(1)) >>> D = E1.is_quadratic_twist(E2); D != Integer(0) True >>> E1.quadratic_twist(D).is_isomorphic(E2) True
sage: # needs sage.rings.finite_rings sage: E1 = EllipticCurve_from_j(F(0)) sage: E2 = E1.quadratic_twist() sage: D = E1.is_quadratic_twist(E2); D 1 sage: E1.is_isomorphic(E2) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> E1 = EllipticCurve_from_j(F(Integer(0))) >>> E2 = E1.quadratic_twist() >>> D = E1.is_quadratic_twist(E2); D 1 >>> E1.is_isomorphic(E2) True
- is_quartic_twist(other)[source]#
Determine whether this curve is a quartic twist of another.
INPUT:
other
– an elliptic curves with the same base field as self.
OUTPUT:
Either 0, if the curves are not quartic twists, or \(D\) if
other
isself.quartic_twist(D)
(up to isomorphism). Ifself
andother
are isomorphic, returns 1.Note
Not fully implemented in characteristics 2 or 3.
EXAMPLES:
sage: E = EllipticCurve_from_j(GF(13)(1728)) sage: E1 = E.quartic_twist(2) sage: D = E.is_quartic_twist(E1); D!=0 True sage: E.quartic_twist(D).is_isomorphic(E1) True
>>> from sage.all import * >>> E = EllipticCurve_from_j(GF(Integer(13))(Integer(1728))) >>> E1 = E.quartic_twist(Integer(2)) >>> D = E.is_quartic_twist(E1); D!=Integer(0) True >>> E.quartic_twist(D).is_isomorphic(E1) True
sage: E = EllipticCurve_from_j(1728) sage: E1 = E.quartic_twist(12345) sage: D = E.is_quartic_twist(E1); D 15999120 sage: (D/12345).is_perfect_power(4) True
>>> from sage.all import * >>> E = EllipticCurve_from_j(Integer(1728)) >>> E1 = E.quartic_twist(Integer(12345)) >>> D = E.is_quartic_twist(E1); D 15999120 >>> (D/Integer(12345)).is_perfect_power(Integer(4)) True
- is_sextic_twist(other)[source]#
Determine whether this curve is a sextic twist of another.
INPUT:
other
– an elliptic curves with the same base field as self.
OUTPUT:
Either 0, if the curves are not sextic twists, or \(D\) if
other
isself.sextic_twist(D)
(up to isomorphism). Ifself
andother
are isomorphic, returns 1.Note
Not fully implemented in characteristics 2 or 3.
EXAMPLES:
sage: E = EllipticCurve_from_j(GF(13)(0)) sage: E1 = E.sextic_twist(2) sage: D = E.is_sextic_twist(E1); D != 0 True sage: E.sextic_twist(D).is_isomorphic(E1) True
>>> from sage.all import * >>> E = EllipticCurve_from_j(GF(Integer(13))(Integer(0))) >>> E1 = E.sextic_twist(Integer(2)) >>> D = E.is_sextic_twist(E1); D != Integer(0) True >>> E.sextic_twist(D).is_isomorphic(E1) True
sage: E = EllipticCurve_from_j(0) sage: E1 = E.sextic_twist(12345) sage: D = E.is_sextic_twist(E1); D 575968320 sage: (D/12345).is_perfect_power(6) True
>>> from sage.all import * >>> E = EllipticCurve_from_j(Integer(0)) >>> E1 = E.sextic_twist(Integer(12345)) >>> D = E.is_sextic_twist(E1); D 575968320 >>> (D/Integer(12345)).is_perfect_power(Integer(6)) True
- isogenies_prime_degree(l=None, max_l=31)[source]#
Return a list of all separable isogenies of given prime degree(s) with domain equal to
self
, which are defined over the base field ofself
.INPUT:
l
– a prime or a list of primes.max_l
– (default: 31) a bound on the primes to be tested. This is only used ifl
is None.
OUTPUT:
(list) All separable \(l\)-isogenies for the given \(l\) with domain self.
ALGORITHM:
Calls the generic function
isogenies_prime_degree()
. This is generic code, valid for all fields. It requires that certain operations have been implemented over the base field, such as root-finding for univariate polynomials.EXAMPLES:
Examples over finite fields:
sage: # needs sage.libs.pari sage: E = EllipticCurve(GF(next_prime(1000000)), [7,8]) sage: E.isogenies_prime_degree(2) [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003] sage: E.isogenies_prime_degree(3) [] sage: E.isogenies_prime_degree(5) [] sage: E.isogenies_prime_degree(7) [] sage: E.isogenies_prime_degree(11) [] sage: E.isogenies_prime_degree(13) [Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003] sage: E.isogenies_prime_degree(max_l=13) [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003] sage: E.isogenies_prime_degree() # Default limit of 31 [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 347438*x + 594729 over Finite Field of size 1000003, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 674846*x + 7392 over Finite Field of size 1000003, Isogeny of degree 23 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 390065*x + 605596 over Finite Field of size 1000003] sage: E = EllipticCurve(GF(17), [2,0]) sage: E.isogenies_prime_degree(3) [] sage: E.isogenies_prime_degree(2) [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 9*x over Finite Field of size 17, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 5*x + 9 over Finite Field of size 17, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 5*x + 8 over Finite Field of size 17]
>>> from sage.all import * >>> # needs sage.libs.pari >>> E = EllipticCurve(GF(next_prime(Integer(1000000))), [Integer(7),Integer(8)]) >>> E.isogenies_prime_degree(Integer(2)) [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003] >>> E.isogenies_prime_degree(Integer(3)) [] >>> E.isogenies_prime_degree(Integer(5)) [] >>> E.isogenies_prime_degree(Integer(7)) [] >>> E.isogenies_prime_degree(Integer(11)) [] >>> E.isogenies_prime_degree(Integer(13)) [Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003] >>> E.isogenies_prime_degree(max_l=Integer(13)) [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003] >>> E.isogenies_prime_degree() # Default limit of 31 [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 347438*x + 594729 over Finite Field of size 1000003, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 674846*x + 7392 over Finite Field of size 1000003, Isogeny of degree 23 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 390065*x + 605596 over Finite Field of size 1000003] >>> E = EllipticCurve(GF(Integer(17)), [Integer(2),Integer(0)]) >>> E.isogenies_prime_degree(Integer(3)) [] >>> E.isogenies_prime_degree(Integer(2)) [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 9*x over Finite Field of size 17, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 5*x + 9 over Finite Field of size 17, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 5*x + 8 over Finite Field of size 17]
The base field matters, over a field extension we find more isogenies:
sage: E = EllipticCurve(GF(13), [2,8]) sage: E.isogenies_prime_degree(max_l=3) [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field of size 13, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field of size 13] sage: # needs sage.rings.finite_rings sage: E = EllipticCurve(GF(13^6), [2,8]) sage: E.isogenies_prime_degree(max_l=3) [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field in z6 of size 13^6, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (2*z6^5+6*z6^4+9*z6^3+8*z6+7)*x + (3*z6^5+9*z6^4+7*z6^3+12*z6+7) over Finite Field in z6 of size 13^6, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (11*z6^5+7*z6^4+4*z6^3+5*z6+9)*x + (10*z6^5+4*z6^4+6*z6^3+z6+10) over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (3*z6^5+5*z6^4+8*z6^3+11*z6^2+5*z6+12)*x + (12*z6^5+6*z6^4+8*z6^3+4*z6^2+7*z6+6) over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (7*z6^4+12*z6^3+7*z6^2+4)*x + (6*z6^5+10*z6^3+12*z6^2+10*z6+8) over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (10*z6^5+z6^4+6*z6^3+8*z6^2+8*z6)*x + (8*z6^5+7*z6^4+8*z6^3+10*z6^2+9*z6+7) over Finite Field in z6 of size 13^6]
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(13)), [Integer(2),Integer(8)]) >>> E.isogenies_prime_degree(max_l=Integer(3)) [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field of size 13, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field of size 13] >>> # needs sage.rings.finite_rings >>> E = EllipticCurve(GF(Integer(13)**Integer(6)), [Integer(2),Integer(8)]) >>> E.isogenies_prime_degree(max_l=Integer(3)) [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field in z6 of size 13^6, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (2*z6^5+6*z6^4+9*z6^3+8*z6+7)*x + (3*z6^5+9*z6^4+7*z6^3+12*z6+7) over Finite Field in z6 of size 13^6, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (11*z6^5+7*z6^4+4*z6^3+5*z6+9)*x + (10*z6^5+4*z6^4+6*z6^3+z6+10) over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (3*z6^5+5*z6^4+8*z6^3+11*z6^2+5*z6+12)*x + (12*z6^5+6*z6^4+8*z6^3+4*z6^2+7*z6+6) over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (7*z6^4+12*z6^3+7*z6^2+4)*x + (6*z6^5+10*z6^3+12*z6^2+10*z6+8) over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (10*z6^5+z6^4+6*z6^3+8*z6^2+8*z6)*x + (8*z6^5+7*z6^4+8*z6^3+10*z6^2+9*z6+7) over Finite Field in z6 of size 13^6]
If the degree equals the characteristic, we find only separable isogenies:
sage: E = EllipticCurve(GF(13), [2,8]) sage: E.isogenies_prime_degree(13) [Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over Finite Field of size 13] sage: E = EllipticCurve(GF(5), [1,1]) sage: E.isogenies_prime_degree(5) [Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 to Elliptic Curve defined by y^2 = x^3 + x + 4 over Finite Field of size 5] sage: # needs sage.rings.finite_rings sage: k.<a> = GF(3^4) sage: E = EllipticCurve(k, [0,1,0,0,a]) sage: E.isogenies_prime_degree(3) [Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + x^2 + a over Finite Field in a of size 3^4 to Elliptic Curve defined by y^2 = x^3 + x^2 + (2*a^3+a^2+2)*x + (a^2+2) over Finite Field in a of size 3^4]
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(13)), [Integer(2),Integer(8)]) >>> E.isogenies_prime_degree(Integer(13)) [Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over Finite Field of size 13] >>> E = EllipticCurve(GF(Integer(5)), [Integer(1),Integer(1)]) >>> E.isogenies_prime_degree(Integer(5)) [Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 to Elliptic Curve defined by y^2 = x^3 + x + 4 over Finite Field of size 5] >>> # needs sage.rings.finite_rings >>> k = GF(Integer(3)**Integer(4), names=('a',)); (a,) = k._first_ngens(1) >>> E = EllipticCurve(k, [Integer(0),Integer(1),Integer(0),Integer(0),a]) >>> E.isogenies_prime_degree(Integer(3)) [Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + x^2 + a over Finite Field in a of size 3^4 to Elliptic Curve defined by y^2 = x^3 + x^2 + (2*a^3+a^2+2)*x + (a^2+2) over Finite Field in a of size 3^4]
In the supersingular case, there are no separable isogenies of degree equal to the characteristic:
sage: E = EllipticCurve(GF(5), [0,1]) sage: E.isogenies_prime_degree(5) []
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(5)), [Integer(0),Integer(1)]) >>> E.isogenies_prime_degree(Integer(5)) []
An example over a rational function field:
sage: R.<t> = GF(5)[] sage: K = R.fraction_field() sage: E = EllipticCurve(K, [1, t^5]) sage: E.isogenies_prime_degree(5) [Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x + t^5 over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 to Elliptic Curve defined by y^2 = x^3 + x + 4*t over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5]
>>> from sage.all import * >>> R = GF(Integer(5))['t']; (t,) = R._first_ngens(1) >>> K = R.fraction_field() >>> E = EllipticCurve(K, [Integer(1), t**Integer(5)]) >>> E.isogenies_prime_degree(Integer(5)) [Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x + t^5 over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 to Elliptic Curve defined by y^2 = x^3 + x + 4*t over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5]
Examples over number fields (other than QQ):
sage: # needs sage.rings.number_field sage: x = polygen(ZZ, 'x') sage: QQroot2.<e> = NumberField(x^2 - 2) sage: E = EllipticCurve(QQroot2, j=8000) sage: E.isogenies_prime_degree() [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (-36750)*x + 2401000 over Number Field in e with defining polynomial x^2 - 2, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (220500*e-257250)*x + (54022500*e-88837000) over Number Field in e with defining polynomial x^2 - 2, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (-220500*e-257250)*x + (-54022500*e-88837000) over Number Field in e with defining polynomial x^2 - 2] sage: E = EllipticCurve(QQroot2, [1,0,1,4, -6]); E Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 sage: E.isogenies_prime_degree(2) [Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-36)*x + (-70) over Number Field in e with defining polynomial x^2 - 2] sage: E.isogenies_prime_degree(3) [Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-1)*x over Number Field in e with defining polynomial x^2 - 2, Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-171)*x + (-874) over Number Field in e with defining polynomial x^2 - 2]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> x = polygen(ZZ, 'x') >>> QQroot2 = NumberField(x**Integer(2) - Integer(2), names=('e',)); (e,) = QQroot2._first_ngens(1) >>> E = EllipticCurve(QQroot2, j=Integer(8000)) >>> E.isogenies_prime_degree() [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (-36750)*x + 2401000 over Number Field in e with defining polynomial x^2 - 2, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (220500*e-257250)*x + (54022500*e-88837000) over Number Field in e with defining polynomial x^2 - 2, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (-220500*e-257250)*x + (-54022500*e-88837000) over Number Field in e with defining polynomial x^2 - 2] >>> E = EllipticCurve(QQroot2, [Integer(1),Integer(0),Integer(1),Integer(4), -Integer(6)]); E Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 >>> E.isogenies_prime_degree(Integer(2)) [Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-36)*x + (-70) over Number Field in e with defining polynomial x^2 - 2] >>> E.isogenies_prime_degree(Integer(3)) [Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-1)*x over Number Field in e with defining polynomial x^2 - 2, Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-171)*x + (-874) over Number Field in e with defining polynomial x^2 - 2]
These are not implemented yet:
sage: E = EllipticCurve(QQbar, [1,18]); E # needs sage.rings.number_field Elliptic Curve defined by y^2 = x^3 + x + 18 over Algebraic Field sage: E.isogenies_prime_degree() # needs sage.rings.number_field Traceback (most recent call last): ... NotImplementedError: This code could be implemented for QQbar, but has not been yet. sage: E = EllipticCurve(CC, [1,18]); E Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000 over Complex Field with 53 bits of precision sage: E.isogenies_prime_degree(11) Traceback (most recent call last): ... NotImplementedError: This code could be implemented for general complex fields, but has not been yet.
>>> from sage.all import * >>> E = EllipticCurve(QQbar, [Integer(1),Integer(18)]); E # needs sage.rings.number_field Elliptic Curve defined by y^2 = x^3 + x + 18 over Algebraic Field >>> E.isogenies_prime_degree() # needs sage.rings.number_field Traceback (most recent call last): ... NotImplementedError: This code could be implemented for QQbar, but has not been yet. >>> E = EllipticCurve(CC, [Integer(1),Integer(18)]); E Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000 over Complex Field with 53 bits of precision >>> E.isogenies_prime_degree(Integer(11)) Traceback (most recent call last): ... NotImplementedError: This code could be implemented for general complex fields, but has not been yet.
- isogeny(kernel, codomain=None, degree=None, model=None, check=True, algorithm=None, velu_sqrt_bound=None)[source]#
Return an elliptic-curve isogeny from this elliptic curve.
The isogeny can be specified in two ways, by passing either a polynomial or a set of torsion points. The methods used are:
Factored Isogenies (see
hom_composite
): Given a point, or a list of points which generate a composite-order subgroup, decomposes the isogeny into prime-degree steps. This can be used to construct isogenies of extremely large, smooth degree. When applicable, this algorithm is selected as default (see below). After factoring the degree single isogenies are computed using the other methods. This algorithm is selected usingalgorithm="factored"
.Vélu’s Formulas: Vélu’s original formulas for computing isogenies. This algorithm is selected by giving as the
kernel
parameter a single point generating a finite subgroup.Kohel’s Formulas: Kohel’s original formulas for computing isogenies. This algorithm is selected by giving as the
kernel
parameter a monic polynomial (or a coefficient list in little endian) which will define the kernel of the isogeny. Kohel’s algorithm is currently only implemented for cyclic isogenies, with the exception of \([2]\).√élu Algorithm (see
hom_velusqrt
): A variant of Vélu’s formulas with essentially square-root instead of linear complexity (in the degree). Currently only available over finite fields. The input must be a single kernel point of odd order \(\geq 5\). This algorithm is selected usingalgorithm="velusqrt"
.
INPUT:
kernel
– a kernel: either a point on this curve, a list of points on this curve, a monic kernel polynomial, orNone
. If initializing from a codomain, this must beNone
.codomain
– an elliptic curve (default:None
).If
kernel
isNone
, thendegree
must be given as well and the givencodomain
must be the codomain of a cyclic, separable, normalized isogeny of the given degree.If
kernel
is notNone
, then this must be isomorphic to the codomain of the separable isogeny defined bykernel
; in this case, the isogeny is post-composed with an isomorphism so that the codomain equals the given curve.
degree
– an integer (default:None
).If
kernel
isNone
, then this is the degree of the isogeny from this curve tocodomain
.If
kernel
is notNone
, then this is used to determine whether or not to skip a \(\gcd\) of the given kernel polynomial with the two-torsion polynomial of this curve.
model
– a string (default:None
). Supported values (cf.compute_model()
):"minimal"
: Ifself
is a curve over the rationals or over a number field, then the codomain is a global minimal model where this exists."short_weierstrass"
: The codomain is a short Weierstrass curve, assuming one exists."montgomery"
: The codomain is an (untwisted) Montgomery curve, assuming one exists over this field.
check
(default:True
) – check whether the input is valid. Setting this toFalse
can lead to significant speedups.algorithm
– string (optional). The possible choices are:"velusqrt"
: UseEllipticCurveHom_velusqrt
."factored"
: UseEllipticCurveHom_composite
to decompose the isogeny into prime-degree steps."traditional"
: UseEllipticCurveIsogeny
.
When
algorithm
is not specified, andkernel
is notNone
, an algorithm is selected using the following criteria:if
kernel
is a list of multiple points,"factored"
is selected.If
kernel
is a single point, or a list containing a single point:if the order of the point is unknown,
"traditional"
is selected.If the order is known and composite,
"factored"
is selected.If the order is known and prime, a choice between
"velusqrt"
and"traditional"
is done according to thevelu_sqrt_bound
parameter (see below).
If none of the previous apply,
"traditional"
is selected.velu_sqrt_bound
– an integer (default:None
). Establish the highest (prime) degree for which the"traditional"
algorithm should be selected instead of"velusqrt"
. IfNone
, the default value from_VeluBoundObj
is used. This value is initially set to 1000, but can be modified by the user. If an integer is supplied and the isogeny computation goes through the"factored"
algorithm, the same integer is supplied to each factor.
The
degree
parameter is not supported when analgorithm
is specified.OUTPUT:
An isogeny between elliptic curves. This is a morphism of curves. (In all cases, the returned object will be an instance of
EllipticCurveHom
.)EXAMPLES:
sage: # needs sage.rings.finite_rings sage: F = GF(2^5, 'alpha'); alpha = F.gen() sage: E = EllipticCurve(F, [1,0,1,1,1]) sage: R.<x> = F[] sage: phi = E.isogeny(x + 1) sage: phi.rational_maps() ((x^2 + x + 1)/(x + 1), (x^2*y + x)/(x^2 + 1))
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> F = GF(Integer(2)**Integer(5), 'alpha'); alpha = F.gen() >>> E = EllipticCurve(F, [Integer(1),Integer(0),Integer(1),Integer(1),Integer(1)]) >>> R = F['x']; (x,) = R._first_ngens(1) >>> phi = E.isogeny(x + Integer(1)) >>> phi.rational_maps() ((x^2 + x + 1)/(x + 1), (x^2*y + x)/(x^2 + 1))
sage: E = EllipticCurve('11a1') sage: P = E.torsion_points()[1] sage: E.isogeny(P) Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over Rational Field
>>> from sage.all import * >>> E = EllipticCurve('11a1') >>> P = E.torsion_points()[Integer(1)] >>> E.isogeny(P) Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over Rational Field
sage: E = EllipticCurve(GF(19),[1,1]) sage: P = E(15,3); Q = E(2,12) sage: (P.order(), Q.order()) (7, 3) sage: phi = E.isogeny([P,Q]); phi Composite morphism of degree 21 = 7*3: From: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 19 To: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 19 sage: phi(E.random_point()) # all points defined over GF(19) are in the kernel (0 : 1 : 0)
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(19)),[Integer(1),Integer(1)]) >>> P = E(Integer(15),Integer(3)); Q = E(Integer(2),Integer(12)) >>> (P.order(), Q.order()) (7, 3) >>> phi = E.isogeny([P,Q]); phi Composite morphism of degree 21 = 7*3: From: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 19 To: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 19 >>> phi(E.random_point()) # all points defined over GF(19) are in the kernel (0 : 1 : 0)
sage: E = EllipticCurve(GF(2^32 - 5), [170246996, 2036646110]) # needs sage.rings.finite_rings sage: P = E.lift_x(2) # needs sage.rings.finite_rings sage: E.isogeny(P, algorithm="factored") # needs sage.rings.finite_rings Composite morphism of degree 1073721825 = 3^4*5^2*11*19*43*59: From: Elliptic Curve defined by y^2 = x^3 + 170246996*x + 2036646110 over Finite Field of size 4294967291 To: Elliptic Curve defined by y^2 = x^3 + 272790262*x + 1903695400 over Finite Field of size 4294967291
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(2)**Integer(32) - Integer(5)), [Integer(170246996), Integer(2036646110)]) # needs sage.rings.finite_rings >>> P = E.lift_x(Integer(2)) # needs sage.rings.finite_rings >>> E.isogeny(P, algorithm="factored") # needs sage.rings.finite_rings Composite morphism of degree 1073721825 = 3^4*5^2*11*19*43*59: From: Elliptic Curve defined by y^2 = x^3 + 170246996*x + 2036646110 over Finite Field of size 4294967291 To: Elliptic Curve defined by y^2 = x^3 + 272790262*x + 1903695400 over Finite Field of size 4294967291
Not all polynomials define a finite subgroup (Issue #6384):
sage: E = EllipticCurve(GF(31), [1,0,0,1,2]) sage: phi = E.isogeny([14,27,4,1]) Traceback (most recent call last): ... ValueError: the polynomial x^3 + 4*x^2 + 27*x + 14 does not define a finite subgroup of Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(31)), [Integer(1),Integer(0),Integer(0),Integer(1),Integer(2)]) >>> phi = E.isogeny([Integer(14),Integer(27),Integer(4),Integer(1)]) Traceback (most recent call last): ... ValueError: the polynomial x^3 + 4*x^2 + 27*x + 14 does not define a finite subgroup of Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31
Order of the point known and composite:
sage: E = EllipticCurve(GF(31), [1,0,0,1,2]) sage: P = E(26, 4) sage: assert P.order() == 12 sage: print(P._order) 12 sage: E.isogeny(P) Composite morphism of degree 12 = 2^2*3: From: Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31 To: Elliptic Curve defined by y^2 + x*y = x^3 + 26*x + 8 over Finite Field of size 31
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(31)), [Integer(1),Integer(0),Integer(0),Integer(1),Integer(2)]) >>> P = E(Integer(26), Integer(4)) >>> assert P.order() == Integer(12) >>> print(P._order) 12 >>> E.isogeny(P) Composite morphism of degree 12 = 2^2*3: From: Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31 To: Elliptic Curve defined by y^2 + x*y = x^3 + 26*x + 8 over Finite Field of size 31
kernel
is a list of points:sage: E = EllipticCurve(GF(31), [1,0,0,1,2]) sage: P = E(21,2) sage: Q = E(7, 12) sage: print(P.order()) 6 sage: print(Q.order()) 2 sage: E.isogeny([P, Q]) Composite morphism of degree 12 = 2*3*2: From: Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31 To: Elliptic Curve defined by y^2 + x*y = x^3 + 2*x + 26 over Finite Field of size 31
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(31)), [Integer(1),Integer(0),Integer(0),Integer(1),Integer(2)]) >>> P = E(Integer(21),Integer(2)) >>> Q = E(Integer(7), Integer(12)) >>> print(P.order()) 6 >>> print(Q.order()) 2 >>> E.isogeny([P, Q]) Composite morphism of degree 12 = 2*3*2: From: Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31 To: Elliptic Curve defined by y^2 + x*y = x^3 + 2*x + 26 over Finite Field of size 31
Multiple ways to set the \(velu_sqrt_bound\):
sage: E = EllipticCurve_from_j(GF(97)(42)) sage: P = E.gens()[0]*4 sage: print(P.order()) 23 sage: E.isogeny(P) Isogeny of degree 23 from Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 to Elliptic Curve defined by y^2 = x^3 + 72*x + 29 over Finite Field of size 97 sage: E.isogeny(P, velu_sqrt_bound=10) Elliptic-curve isogeny (using square-root Vélu) of degree 23: From: Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 To: Elliptic Curve defined by y^2 = x^3 + 95*x + 68 over Finite Field of size 97 sage: from sage.schemes.elliptic_curves.hom_velusqrt import _velu_sqrt_bound sage: _velu_sqrt_bound.set(10) sage: E.isogeny(P) Elliptic-curve isogeny (using square-root Vélu) of degree 23: From: Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 To: Elliptic Curve defined by y^2 = x^3 + 95*x + 68 over Finite Field of size 97 sage: _velu_sqrt_bound.set(1000) # Reset bound
>>> from sage.all import * >>> E = EllipticCurve_from_j(GF(Integer(97))(Integer(42))) >>> P = E.gens()[Integer(0)]*Integer(4) >>> print(P.order()) 23 >>> E.isogeny(P) Isogeny of degree 23 from Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 to Elliptic Curve defined by y^2 = x^3 + 72*x + 29 over Finite Field of size 97 >>> E.isogeny(P, velu_sqrt_bound=Integer(10)) Elliptic-curve isogeny (using square-root Vélu) of degree 23: From: Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 To: Elliptic Curve defined by y^2 = x^3 + 95*x + 68 over Finite Field of size 97 >>> from sage.schemes.elliptic_curves.hom_velusqrt import _velu_sqrt_bound >>> _velu_sqrt_bound.set(Integer(10)) >>> E.isogeny(P) Elliptic-curve isogeny (using square-root Vélu) of degree 23: From: Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 To: Elliptic Curve defined by y^2 = x^3 + 95*x + 68 over Finite Field of size 97 >>> _velu_sqrt_bound.set(Integer(1000)) # Reset bound
If the order of the point is unknown, fall back to
"traditional"
:sage: E = EllipticCurve_from_j(GF(97)(42)) sage: P = E(2, 39) sage: from sage.schemes.elliptic_curves.hom_velusqrt import _velu_sqrt_bound sage: _velu_sqrt_bound.set(1) sage: E.isogeny(P) Isogeny of degree 46 from Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 to Elliptic Curve defined by y^2 = x^3 + 87*x + 47 over Finite Field of size 97 sage: _velu_sqrt_bound.set(1000) # Reset bound
>>> from sage.all import * >>> E = EllipticCurve_from_j(GF(Integer(97))(Integer(42))) >>> P = E(Integer(2), Integer(39)) >>> from sage.schemes.elliptic_curves.hom_velusqrt import _velu_sqrt_bound >>> _velu_sqrt_bound.set(Integer(1)) >>> E.isogeny(P) Isogeny of degree 46 from Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of size 97 to Elliptic Curve defined by y^2 = x^3 + 87*x + 47 over Finite Field of size 97 >>> _velu_sqrt_bound.set(Integer(1000)) # Reset bound
- isogeny_codomain(kernel)[source]#
Return the codomain of the isogeny from
self
with given kernel.INPUT:
kernel
– Either a list of points in the kernel of the isogeny, or a kernel polynomial (specified as either a univariate polynomial or a coefficient list.)
OUTPUT:
An elliptic curve, the codomain of the separable normalized isogeny defined by this kernel.
EXAMPLES:
sage: E = EllipticCurve('17a1') sage: R.<x> = QQ[] sage: E2 = E.isogeny_codomain(x - 11/4); E2 Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 1461/16*x - 19681/64 over Rational Field
>>> from sage.all import * >>> E = EllipticCurve('17a1') >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> E2 = E.isogeny_codomain(x - Integer(11)/Integer(4)); E2 Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 1461/16*x - 19681/64 over Rational Field
- isogeny_ell_graph(l, directed=True, label_by_j=False)[source]#
Return a graph representing the
l
-degreeK
-isogenies betweenK
-isomorphism classes of elliptic curves forK = self.base_field()
.INPUT:
l
– prime degree of isogeniesdirected
– boolean (default:True
); whether to return a directed or undirected graph. In the undirected case, the in-degrees and out-degrees of the vertices must be balanced and therefore the number of out-edges from the vertices corresponding to j-invariants 0 and 1728 (if they are part of the graph) are reduced to match the number of in-edges.label_by_j
– boolean (default:False
); whether to label graph vertices by the j-invariant corresponding to the isomorphism class of curves. If the j-invariant is not unique in the isogeny class, append*
to it to indicate a twist. Otherwise, ifFalse
label vertices by the equation of a representative curve.
EXAMPLES:
Ordinary curve over finite extension field of degree 2:
sage: # needs sage.graphs sage.rings.finite_rings sage: x = polygen(ZZ, 'x') sage: E = EllipticCurve(GF(59^2, "i", x^2 + 1), j=5) sage: G = E.isogeny_ell_graph(5, directed=False, label_by_j=True); G Graph on 20 vertices sage: G.vertices(sort=True) ['1', '12', ... 'i + 55'] sage: G.edges(sort=True) [('1', '28*i + 11', None), ('1', '31*i + 11', None), ... ('8', 'i + 1', None)]
>>> from sage.all import * >>> # needs sage.graphs sage.rings.finite_rings >>> x = polygen(ZZ, 'x') >>> E = EllipticCurve(GF(Integer(59)**Integer(2), "i", x**Integer(2) + Integer(1)), j=Integer(5)) >>> G = E.isogeny_ell_graph(Integer(5), directed=False, label_by_j=True); G Graph on 20 vertices >>> G.vertices(sort=True) ['1', '12', ... 'i + 55'] >>> G.edges(sort=True) [('1', '28*i + 11', None), ('1', '31*i + 11', None), ... ('8', 'i + 1', None)]
Supersingular curve over prime field:
sage: # needs sage.graphs sage.rings.finite_rings sage: E = EllipticCurve(GF(419), j=1728) sage: G3 = E.isogeny_ell_graph(3, directed=False, label_by_j=True); G3 Graph on 27 vertices sage: G3.vertices(sort=True) ['0', '0*', ... '98*'] sage: G3.edges(sort=True) [('0', '0*', None), ('0', '13', None), ... ('48*', '98*', None)] sage: G5 = E.isogeny_ell_graph(5, directed=False, label_by_j=True); G5 Graph on 9 vertices sage: G5.vertices(sort=True) ['13', '13*', '407', '407*', '52', '62', '62*', '98', '98*'] sage: G5.edges(sort=True) [('13', '52', None), ('13', '98', None), ... ('62*', '98*', None)]
>>> from sage.all import * >>> # needs sage.graphs sage.rings.finite_rings >>> E = EllipticCurve(GF(Integer(419)), j=Integer(1728)) >>> G3 = E.isogeny_ell_graph(Integer(3), directed=False, label_by_j=True); G3 Graph on 27 vertices >>> G3.vertices(sort=True) ['0', '0*', ... '98*'] >>> G3.edges(sort=True) [('0', '0*', None), ('0', '13', None), ... ('48*', '98*', None)] >>> G5 = E.isogeny_ell_graph(Integer(5), directed=False, label_by_j=True); G5 Graph on 9 vertices >>> G5.vertices(sort=True) ['13', '13*', '407', '407*', '52', '62', '62*', '98', '98*'] >>> G5.edges(sort=True) [('13', '52', None), ('13', '98', None), ... ('62*', '98*', None)]
Supersingular curve over finite extension field of degree 2:
sage: # needs sage.graphs sage.rings.finite_rings sage: K = GF(431^2, "i", x^2 + 1) sage: E = EllipticCurve(K, j=0) sage: E.is_supersingular() True sage: G = E.isogeny_ell_graph(2, directed=True, label_by_j=True); G Looped multi-digraph on 37 vertices sage: G.vertices(sort=True) ['0', '102', ... '87*i + 190'] sage: G.edges(sort=True) [('0', '125', None), ('0', '125', None), ... '81*i + 65', None)] sage: H = E.isogeny_ell_graph(2, directed=False, label_by_j=True); H Looped multi-graph on 37 vertices sage: H.vertices(sort=True) ['0', '102', ... '87*i + 190'] sage: H.edges(sort=True) [('0', '125', None), ('102', '125', None), ... ('81*i + 65', '87*i + 190', None)]
>>> from sage.all import * >>> # needs sage.graphs sage.rings.finite_rings >>> K = GF(Integer(431)**Integer(2), "i", x**Integer(2) + Integer(1)) >>> E = EllipticCurve(K, j=Integer(0)) >>> E.is_supersingular() True >>> G = E.isogeny_ell_graph(Integer(2), directed=True, label_by_j=True); G Looped multi-digraph on 37 vertices >>> G.vertices(sort=True) ['0', '102', ... '87*i + 190'] >>> G.edges(sort=True) [('0', '125', None), ('0', '125', None), ... '81*i + 65', None)] >>> H = E.isogeny_ell_graph(Integer(2), directed=False, label_by_j=True); H Looped multi-graph on 37 vertices >>> H.vertices(sort=True) ['0', '102', ... '87*i + 190'] >>> H.edges(sort=True) [('0', '125', None), ('102', '125', None), ... ('81*i + 65', '87*i + 190', None)]
Curve over a quadratic number field:
sage: # needs sage.graphs sage.rings.finite_rings sage.rings.number_field sage: K.<e> = NumberField(x^2 - 2) sage: E = EllipticCurve(K, [1, 0, 1, 4, -6]) sage: G2 = E.isogeny_ell_graph(2, directed=False) sage: G2.vertices(sort=True) ['y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038)', 'y^2 + x*y + y = x^3 + (-36)*x + (-70)', 'y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038)', 'y^2 + x*y + y = x^3 + 4*x + (-6)'] sage: G2.edges(sort=True) [('y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038)', 'y^2 + x*y + y = x^3 + (-36)*x + (-70)', None), ('y^2 + x*y + y = x^3 + (-36)*x + (-70)', 'y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038)', None), ('y^2 + x*y + y = x^3 + (-36)*x + (-70)', 'y^2 + x*y + y = x^3 + 4*x + (-6)', None)] sage: G3 = E.isogeny_ell_graph(3, directed=False) sage: G3.vertices(sort=True) ['y^2 + x*y + y = x^3 + (-1)*x', 'y^2 + x*y + y = x^3 + (-171)*x + (-874)', 'y^2 + x*y + y = x^3 + 4*x + (-6)'] sage: G3.edges(sort=True) [('y^2 + x*y + y = x^3 + (-1)*x', 'y^2 + x*y + y = x^3 + 4*x + (-6)', None), ('y^2 + x*y + y = x^3 + (-171)*x + (-874)', 'y^2 + x*y + y = x^3 + 4*x + (-6)', None)]
>>> from sage.all import * >>> # needs sage.graphs sage.rings.finite_rings sage.rings.number_field >>> K = NumberField(x**Integer(2) - Integer(2), names=('e',)); (e,) = K._first_ngens(1) >>> E = EllipticCurve(K, [Integer(1), Integer(0), Integer(1), Integer(4), -Integer(6)]) >>> G2 = E.isogeny_ell_graph(Integer(2), directed=False) >>> G2.vertices(sort=True) ['y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038)', 'y^2 + x*y + y = x^3 + (-36)*x + (-70)', 'y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038)', 'y^2 + x*y + y = x^3 + 4*x + (-6)'] >>> G2.edges(sort=True) [('y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038)', 'y^2 + x*y + y = x^3 + (-36)*x + (-70)', None), ('y^2 + x*y + y = x^3 + (-36)*x + (-70)', 'y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038)', None), ('y^2 + x*y + y = x^3 + (-36)*x + (-70)', 'y^2 + x*y + y = x^3 + 4*x + (-6)', None)] >>> G3 = E.isogeny_ell_graph(Integer(3), directed=False) >>> G3.vertices(sort=True) ['y^2 + x*y + y = x^3 + (-1)*x', 'y^2 + x*y + y = x^3 + (-171)*x + (-874)', 'y^2 + x*y + y = x^3 + 4*x + (-6)'] >>> G3.edges(sort=True) [('y^2 + x*y + y = x^3 + (-1)*x', 'y^2 + x*y + y = x^3 + 4*x + (-6)', None), ('y^2 + x*y + y = x^3 + (-171)*x + (-874)', 'y^2 + x*y + y = x^3 + 4*x + (-6)', None)]
- kernel_polynomial_from_divisor(f, l, check)[source]#
Given an irreducible divisor \(f\) of the \(l\)-division polynomial on this curve, return the kernel polynomial defining the subgroup defined by \(f\).
If the given polynomial does not define a rational subgroup, a
ValueError
is raised.This method is currently only implemented for prime \(l\).
EXAMPLES:
sage: E = EllipticCurve(GF(101^2), [0,1]) sage: f,_ = E.division_polynomial(5).factor()[0] sage: ker = E.kernel_polynomial_from_divisor(f, 5); ker x^2 + (49*z2 + 10)*x + 30*z2 + 80 sage: E.isogeny(ker) Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in z2 of size 101^2 to Elliptic Curve defined by y^2 = x^3 + (6*z2+16)*x + 18 over Finite Field in z2 of size 101^2
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(101)**Integer(2)), [Integer(0),Integer(1)]) >>> f,_ = E.division_polynomial(Integer(5)).factor()[Integer(0)] >>> ker = E.kernel_polynomial_from_divisor(f, Integer(5)); ker x^2 + (49*z2 + 10)*x + 30*z2 + 80 >>> E.isogeny(ker) Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in z2 of size 101^2 to Elliptic Curve defined by y^2 = x^3 + (6*z2+16)*x + 18 over Finite Field in z2 of size 101^2
The method detects invalid inputs:
sage: E = EllipticCurve(GF(101), [0,1]) sage: f,_ = E.division_polynomial(5).factor()[-1] sage: E.kernel_polynomial_from_divisor(f, 5) Traceback (most recent call last): ... ValueError: given polynomial does not define a rational 5-isogeny
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(101)), [Integer(0),Integer(1)]) >>> f,_ = E.division_polynomial(Integer(5)).factor()[-Integer(1)] >>> E.kernel_polynomial_from_divisor(f, Integer(5)) Traceback (most recent call last): ... ValueError: given polynomial does not define a rational 5-isogeny
sage: E = EllipticCurve(GF(101), [1,1]) sage: f,_ = E.division_polynomial(7).factor()[-1] sage: E.kernel_polynomial_from_divisor(f, 7) Traceback (most recent call last): ... ValueError: given polynomial does not define a rational 7-isogeny
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(101)), [Integer(1),Integer(1)]) >>> f,_ = E.division_polynomial(Integer(7)).factor()[-Integer(1)] >>> E.kernel_polynomial_from_divisor(f, Integer(7)) Traceback (most recent call last): ... ValueError: given polynomial does not define a rational 7-isogeny
sage: x = polygen(QQ) sage: K.<t> = NumberField(x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13) sage: E = EllipticCurve(K, [1,0]) sage: ker = E.kernel_polynomial_from_divisor(x - t, 13); ker x^6 + (-169/64*t^10 + 169/32*t^8 - 247/32*t^6 - 377/8*t^4 - 2977/64*t^2 - 105/32)*x^4 + (-169/32*t^10 + 169/16*t^8 - 247/16*t^6 - 377/4*t^4 - 2977/32*t^2 - 89/16)*x^2 - 13/64*t^10 + 13/32*t^8 - 19/32*t^6 - 29/8*t^4 - 229/64*t^2 - 13/32 sage: phi = E.isogeny(ker, check=True); phi Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + x over Number Field in t with defining polynomial x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13 to Elliptic Curve defined by y^2 = x^3 + (-2535/16*t^10+2535/8*t^8-3705/8*t^6-5655/2*t^4-44655/16*t^2-2047/8)*x over Number Field in t with defining polynomial x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13
>>> from sage.all import * >>> x = polygen(QQ) >>> K = NumberField(x**Integer(12) - Integer(2)*x**Integer(10) + Integer(3)*x**Integer(8) + Integer(228)/Integer(13)*x**Integer(6) + Integer(235)/Integer(13)*x**Integer(4) + Integer(22)/Integer(13)*x**Integer(2) + Integer(1)/Integer(13), names=('t',)); (t,) = K._first_ngens(1) >>> E = EllipticCurve(K, [Integer(1),Integer(0)]) >>> ker = E.kernel_polynomial_from_divisor(x - t, Integer(13)); ker x^6 + (-169/64*t^10 + 169/32*t^8 - 247/32*t^6 - 377/8*t^4 - 2977/64*t^2 - 105/32)*x^4 + (-169/32*t^10 + 169/16*t^8 - 247/16*t^6 - 377/4*t^4 - 2977/32*t^2 - 89/16)*x^2 - 13/64*t^10 + 13/32*t^8 - 19/32*t^6 - 29/8*t^4 - 229/64*t^2 - 13/32 >>> phi = E.isogeny(ker, check=True); phi Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + x over Number Field in t with defining polynomial x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13 to Elliptic Curve defined by y^2 = x^3 + (-2535/16*t^10+2535/8*t^8-3705/8*t^6-5655/2*t^4-44655/16*t^2-2047/8)*x over Number Field in t with defining polynomial x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13
ALGORITHM: [EPSV2023], Algorithm 3 (
KernelPolynomialFromDivisor
).
- kernel_polynomial_from_point(P, algorithm)[source]#
Given a point \(P\) on this curve which generates a rational subgroup, return the kernel polynomial of that subgroup as a polynomial over the base field of the curve. (The point \(P\) itself may be defined over an extension.)
EXAMPLES:
sage: E = EllipticCurve(GF(101), [1,1]) sage: F = GF(101^3) sage: EE = E.change_ring(F) sage: xK = F([77, 28, 8]); xK 8*z3^2 + 28*z3 + 77 sage: K = EE.lift_x(xK); K.order() 43 sage: E.kernel_polynomial_from_point(K) x^21 + 7*x^20 + 22*x^19 + 4*x^18 + 7*x^17 + 81*x^16 + 41*x^15 + 68*x^14 + 18*x^13 + 58*x^12 + 31*x^11 + 26*x^10 + 62*x^9 + 20*x^8 + 73*x^7 + 23*x^6 + 66*x^5 + 79*x^4 + 12*x^3 + 40*x^2 + 50*x + 93
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(101)), [Integer(1),Integer(1)]) >>> F = GF(Integer(101)**Integer(3)) >>> EE = E.change_ring(F) >>> xK = F([Integer(77), Integer(28), Integer(8)]); xK 8*z3^2 + 28*z3 + 77 >>> K = EE.lift_x(xK); K.order() 43 >>> E.kernel_polynomial_from_point(K) x^21 + 7*x^20 + 22*x^19 + 4*x^18 + 7*x^17 + 81*x^16 + 41*x^15 + 68*x^14 + 18*x^13 + 58*x^12 + 31*x^11 + 26*x^10 + 62*x^9 + 20*x^8 + 73*x^7 + 23*x^6 + 66*x^5 + 79*x^4 + 12*x^3 + 40*x^2 + 50*x + 93
The
"minpoly"
algorithm is often much faster than the"basic"
algorithm:sage: from sage.schemes.elliptic_curves.ell_field import EllipticCurve_field, point_of_order sage: p = 2^127 - 1 sage: E = EllipticCurve(GF(p), [1,0]) sage: P = point_of_order(E, 31) sage: %timeit E.kernel_polynomial_from_point(P, algorithm='basic') # not tested 4.38 ms ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) sage: %timeit E.kernel_polynomial_from_point(P, algorithm='minpoly') # not tested 854 µs ± 1.56 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.ell_field import EllipticCurve_field, point_of_order >>> p = Integer(2)**Integer(127) - Integer(1) >>> E = EllipticCurve(GF(p), [Integer(1),Integer(0)]) >>> P = point_of_order(E, Integer(31)) >>> %timeit E.kernel_polynomial_from_point(P, algorithm='basic') # not tested 4.38 ms ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) >>> %timeit E.kernel_polynomial_from_point(P, algorithm='minpoly') # not tested 854 µs ± 1.56 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
Example of finding all the rational isogenies using this method:
sage: E = EllipticCurve(GF(71), [1,2,3,4,5]) sage: F = E.division_field(11) sage: EE = E.change_ring(F) sage: fs = set() sage: for K in EE(0).division_points(11): ....: if not K: ....: continue ....: Kp = EE.frobenius_isogeny()(K) ....: if Kp.weil_pairing(K, 11) == 1: ....: fs.add(E.kernel_polynomial_from_point(K)) sage: fs = sorted(fs); fs [x^5 + 10*x^4 + 18*x^3 + 10*x^2 + 43*x + 46, x^5 + 65*x^4 + 39*x^2 + 20*x + 63] sage: from sage.schemes.elliptic_curves.isogeny_small_degree import is_kernel_polynomial sage: {is_kernel_polynomial(E, 11, f) for f in fs} {True} sage: isogs = [E.isogeny(f) for f in fs] sage: isogs[0] Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 71 to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 34*x + 42 over Finite Field of size 71 sage: isogs[1] Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 71 to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 12*x + 40 over Finite Field of size 71 sage: set(isogs) == set(E.isogenies_prime_degree(11)) True
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(71)), [Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)]) >>> F = E.division_field(Integer(11)) >>> EE = E.change_ring(F) >>> fs = set() >>> for K in EE(Integer(0)).division_points(Integer(11)): ... if not K: ... continue ... Kp = EE.frobenius_isogeny()(K) ... if Kp.weil_pairing(K, Integer(11)) == Integer(1): ... fs.add(E.kernel_polynomial_from_point(K)) >>> fs = sorted(fs); fs [x^5 + 10*x^4 + 18*x^3 + 10*x^2 + 43*x + 46, x^5 + 65*x^4 + 39*x^2 + 20*x + 63] >>> from sage.schemes.elliptic_curves.isogeny_small_degree import is_kernel_polynomial >>> {is_kernel_polynomial(E, Integer(11), f) for f in fs} {True} >>> isogs = [E.isogeny(f) for f in fs] >>> isogs[Integer(0)] Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 71 to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 34*x + 42 over Finite Field of size 71 >>> isogs[Integer(1)] Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 71 to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 12*x + 40 over Finite Field of size 71 >>> set(isogs) == set(E.isogenies_prime_degree(Integer(11))) True
ALGORITHM:
The
"basic"
algorithm is to multiply together all the linear factors \((X - x([i]P))\) of the kernel polynomial using a product tree, then converting the result to the base field of the curve. Its complexity is \(\widetilde O(\ell k)\) where \(k\) is the extension degree.The
"minpoly"
algorithm is [EPSV2023], Algorithm 4 (KernelPolynomialFromIrrationalX
). Over finite fields, its complexity is \(O(\ell k) + \widetilde O(\ell)\) where \(k\) is the extension degree.
- quadratic_twist(D=None)[source]#
Return the quadratic twist of this curve by
D
.INPUT:
D
(default None) the twisting parameter (see below).
In characteristics other than 2, \(D\) must be nonzero, and the twist is isomorphic to self after adjoining \(\sqrt(D)\) to the base.
In characteristic 2, \(D\) is arbitrary, and the twist is isomorphic to self after adjoining a root of \(x^2+x+D\) to the base.
In characteristic 2 when \(j=0\), this is not implemented.
If the base field \(F\) is finite, \(D\) need not be specified, and the curve returned is the unique curve (up to isomorphism) defined over \(F\) isomorphic to the original curve over the quadratic extension of \(F\) but not over \(F\) itself. Over infinite fields, an error is raised if \(D\) is not given.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: E = EllipticCurve([GF(1103)(1), 0, 0, 107, 340]); E Elliptic Curve defined by y^2 + x*y = x^3 + 107*x + 340 over Finite Field of size 1103 sage: F = E.quadratic_twist(-1); F Elliptic Curve defined by y^2 = x^3 + 1102*x^2 + 609*x + 300 over Finite Field of size 1103 sage: E.is_isomorphic(F) False sage: E.is_isomorphic(F, GF(1103^2,'a')) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> E = EllipticCurve([GF(Integer(1103))(Integer(1)), Integer(0), Integer(0), Integer(107), Integer(340)]); E Elliptic Curve defined by y^2 + x*y = x^3 + 107*x + 340 over Finite Field of size 1103 >>> F = E.quadratic_twist(-Integer(1)); F Elliptic Curve defined by y^2 = x^3 + 1102*x^2 + 609*x + 300 over Finite Field of size 1103 >>> E.is_isomorphic(F) False >>> E.is_isomorphic(F, GF(Integer(1103)**Integer(2),'a')) True
A characteristic 2 example:
sage: E = EllipticCurve(GF(2), [1,0,1,1,1]) sage: E1 = E.quadratic_twist(1) sage: E.is_isomorphic(E1) False sage: E.is_isomorphic(E1, GF(4,'a')) True
>>> from sage.all import * >>> E = EllipticCurve(GF(Integer(2)), [Integer(1),Integer(0),Integer(1),Integer(1),Integer(1)]) >>> E1 = E.quadratic_twist(Integer(1)) >>> E.is_isomorphic(E1) False >>> E.is_isomorphic(E1, GF(Integer(4),'a')) True
Over finite fields, the twisting parameter may be omitted:
sage: # needs sage.rings.finite_rings sage: k.<a> = GF(2^10) sage: E = EllipticCurve(k, [a^2,a,1,a+1,1]) sage: Et = E.quadratic_twist() sage: Et # random (only determined up to isomorphism) Elliptic Curve defined by y^2 + x*y = x^3 + (a^7+a^4+a^3+a^2+a+1)*x^2 + (a^8+a^6+a^4+1) over Finite Field in a of size 2^10 sage: E.is_isomorphic(Et) False sage: E.j_invariant() == Et.j_invariant() True sage: # needs sage.rings.finite_rings sage: p = next_prime(10^10) sage: k = GF(p) sage: E = EllipticCurve(k, [1,2,3,4,5]) sage: Et = E.quadratic_twist() sage: Et # random (only determined up to isomorphism) Elliptic Curve defined by y^2 = x^3 + 7860088097*x^2 + 9495240877*x + 3048660957 over Finite Field of size 10000000019 sage: E.is_isomorphic(Et) False sage: k2 = GF(p^2,'a') sage: E.change_ring(k2).is_isomorphic(Et.change_ring(k2)) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(2)**Integer(10), names=('a',)); (a,) = k._first_ngens(1) >>> E = EllipticCurve(k, [a**Integer(2),a,Integer(1),a+Integer(1),Integer(1)]) >>> Et = E.quadratic_twist() >>> Et # random (only determined up to isomorphism) Elliptic Curve defined by y^2 + x*y = x^3 + (a^7+a^4+a^3+a^2+a+1)*x^2 + (a^8+a^6+a^4+1) over Finite Field in a of size 2^10 >>> E.is_isomorphic(Et) False >>> E.j_invariant() == Et.j_invariant() True >>> # needs sage.rings.finite_rings >>> p = next_prime(Integer(10)**Integer(10)) >>> k = GF(p) >>> E = EllipticCurve(k, [Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)]) >>> Et = E.quadratic_twist() >>> Et # random (only determined up to isomorphism) Elliptic Curve defined by y^2 = x^3 + 7860088097*x^2 + 9495240877*x + 3048660957 over Finite Field of size 10000000019 >>> E.is_isomorphic(Et) False >>> k2 = GF(p**Integer(2),'a') >>> E.change_ring(k2).is_isomorphic(Et.change_ring(k2)) True
- quartic_twist(D)[source]#
Return the quartic twist of this curve by \(D\).
INPUT:
D
(must be nonzero) – the twisting parameter
Note
The characteristic must not be 2 or 3, and the \(j\)-invariant must be 1728.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: E = EllipticCurve_from_j(GF(13)(1728)); E Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 13 sage: E1 = E.quartic_twist(2); E1 Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 13 sage: E.is_isomorphic(E1) False sage: E.is_isomorphic(E1, GF(13^2,'a')) False sage: E.is_isomorphic(E1, GF(13^4,'a')) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> E = EllipticCurve_from_j(GF(Integer(13))(Integer(1728))); E Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 13 >>> E1 = E.quartic_twist(Integer(2)); E1 Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 13 >>> E.is_isomorphic(E1) False >>> E.is_isomorphic(E1, GF(Integer(13)**Integer(2),'a')) False >>> E.is_isomorphic(E1, GF(Integer(13)**Integer(4),'a')) True
- sextic_twist(D)[source]#
Return the sextic twist of this curve by \(D\).
INPUT:
D
(must be nonzero) – the twisting parameter
Note
The characteristic must not be 2 or 3, and the \(j\)-invariant must be 0.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: E = EllipticCurve_from_j(GF(13)(0)); E Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 13 sage: E1 = E.sextic_twist(2); E1 Elliptic Curve defined by y^2 = x^3 + 11 over Finite Field of size 13 sage: E.is_isomorphic(E1) False sage: E.is_isomorphic(E1, GF(13^2,'a')) False sage: E.is_isomorphic(E1, GF(13^4,'a')) False sage: E.is_isomorphic(E1, GF(13^6,'a')) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> E = EllipticCurve_from_j(GF(Integer(13))(Integer(0))); E Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 13 >>> E1 = E.sextic_twist(Integer(2)); E1 Elliptic Curve defined by y^2 = x^3 + 11 over Finite Field of size 13 >>> E.is_isomorphic(E1) False >>> E.is_isomorphic(E1, GF(Integer(13)**Integer(2),'a')) False >>> E.is_isomorphic(E1, GF(Integer(13)**Integer(4),'a')) False >>> E.is_isomorphic(E1, GF(Integer(13)**Integer(6),'a')) True
- two_torsion_rank()[source]#
Return the dimension of the 2-torsion subgroup of \(E(K)\).
This will be 0, 1 or 2.
EXAMPLES:
sage: E = EllipticCurve('11a1') sage: E.two_torsion_rank() 0 sage: K.<alpha> = QQ.extension(E.division_polynomial(2).monic()) # needs sage.rings.number_field sage: E.base_extend(K).two_torsion_rank() # needs sage.rings.number_field 1 sage: E.reduction(53).two_torsion_rank() 2
>>> from sage.all import * >>> E = EllipticCurve('11a1') >>> E.two_torsion_rank() 0 >>> K = QQ.extension(E.division_polynomial(Integer(2)).monic(), names=('alpha',)); (alpha,) = K._first_ngens(1)# needs sage.rings.number_field >>> E.base_extend(K).two_torsion_rank() # needs sage.rings.number_field 1 >>> E.reduction(Integer(53)).two_torsion_rank() 2
sage: E = EllipticCurve('14a1') sage: E.two_torsion_rank() 1 sage: f = E.division_polynomial(2).monic().factor()[1][0] sage: K.<alpha> = QQ.extension(f) # needs sage.rings.number_field sage: E.base_extend(K).two_torsion_rank() # needs sage.rings.number_field 2
>>> from sage.all import * >>> E = EllipticCurve('14a1') >>> E.two_torsion_rank() 1 >>> f = E.division_polynomial(Integer(2)).monic().factor()[Integer(1)][Integer(0)] >>> K = QQ.extension(f, names=('alpha',)); (alpha,) = K._first_ngens(1)# needs sage.rings.number_field >>> E.base_extend(K).two_torsion_rank() # needs sage.rings.number_field 2
sage: EllipticCurve('15a1').two_torsion_rank() 2
>>> from sage.all import * >>> EllipticCurve('15a1').two_torsion_rank() 2
- weierstrass_p(prec=20, algorithm=None)[source]#
Compute the Weierstrass \(\wp\)-function of this elliptic curve.
ALGORITHM:
sage.schemes.elliptic_curves.ell_wp.weierstrass_p()
INPUT:
prec
– precisionalgorithm
– string orNone
(default:None
): a choice of algorithm among"pari"
,"fast"
,"quadratic"
; orNone
to let this function determine the best algorithm to use.
OUTPUT:
A Laurent series in one variable \(z\) with coefficients in the base field \(k\) of \(E\).
EXAMPLES:
sage: E = EllipticCurve('11a1') sage: E.weierstrass_p(prec=10) z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10) sage: E.weierstrass_p(prec=8) z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8) sage: Esh = E.short_weierstrass_model() sage: Esh.weierstrass_p(prec=8) z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8) sage: E.weierstrass_p(prec=20, algorithm='fast') z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14 + 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20) sage: E.weierstrass_p(prec=20, algorithm='pari') z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14 + 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20) sage: E.weierstrass_p(prec=20, algorithm='quadratic') z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14 + 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20)
>>> from sage.all import * >>> E = EllipticCurve('11a1') >>> E.weierstrass_p(prec=Integer(10)) z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10) >>> E.weierstrass_p(prec=Integer(8)) z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8) >>> Esh = E.short_weierstrass_model() >>> Esh.weierstrass_p(prec=Integer(8)) z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8) >>> E.weierstrass_p(prec=Integer(20), algorithm='fast') z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14 + 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20) >>> E.weierstrass_p(prec=Integer(20), algorithm='pari') z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14 + 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20) >>> E.weierstrass_p(prec=Integer(20), algorithm='quadratic') z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14 + 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 + O(z^20)
- sage.schemes.elliptic_curves.ell_field.compute_model(E, name)[source]#
Return a model of an elliptic curve
E
of the type specified in thename
parameter.Used as a helper function in
EllipticCurveIsogeny
.INPUT:
E
(elliptic curve)name
(string) – current options:"minimal"
: Return a global minimal model ofE
if it exists, and a semi-global minimal model otherwise. For this choice,E
must be defined over a number field. Seeglobal_minimal_model()
."short_weierstrass"
: Return a short Weierstrass model ofE
assuming one exists. Seeshort_weierstrass_model()
."montgomery"
: Return an (untwisted) Montgomery model ofE
assuming one exists over this field. Seemontgomery_model()
.
OUTPUT:
An elliptic curve of the specified type isomorphic to \(E\).
EXAMPLES:
sage: from sage.schemes.elliptic_curves.ell_field import compute_model sage: E = EllipticCurve([12/7, 405/49, 0, -81/8, 135/64]) sage: compute_model(E, 'minimal') Elliptic Curve defined by y^2 = x^3 - x^2 - 7*x + 10 over Rational Field sage: compute_model(E, 'short_weierstrass') Elliptic Curve defined by y^2 = x^3 - 48114*x + 4035015 over Rational Field sage: compute_model(E, 'montgomery') Elliptic Curve defined by y^2 = x^3 + 5*x^2 + x over Rational Field
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.ell_field import compute_model >>> E = EllipticCurve([Integer(12)/Integer(7), Integer(405)/Integer(49), Integer(0), -Integer(81)/Integer(8), Integer(135)/Integer(64)]) >>> compute_model(E, 'minimal') Elliptic Curve defined by y^2 = x^3 - x^2 - 7*x + 10 over Rational Field >>> compute_model(E, 'short_weierstrass') Elliptic Curve defined by y^2 = x^3 - 48114*x + 4035015 over Rational Field >>> compute_model(E, 'montgomery') Elliptic Curve defined by y^2 = x^3 + 5*x^2 + x over Rational Field
- sage.schemes.elliptic_curves.ell_field.point_of_order(E, n)[source]#
Given an elliptic curve \(E\) over a finite field or a number field and an integer \(n \geq 1\), construct a point of order \(n\) on \(E\), possibly defined over an extension of the base field of \(E\).
Currently only prime powers \(n\) are supported.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.ell_field import point_of_order sage: E = EllipticCurve(GF(101), [1,2,3,4,5]) sage: P = point_of_order(E, 5); P # random (50*Y^5 + 48*Y^4 + 26*Y^3 + 37*Y^2 + 48*Y + 15 : 25*Y^5 + 31*Y^4 + 79*Y^3 + 39*Y^2 + 3*Y + 20 : 1) sage: P.base_ring() Finite Field in Y of size 101^6 sage: P.order() 5 sage: P.curve().a_invariants() (1, 2, 3, 4, 5)
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.ell_field import point_of_order >>> E = EllipticCurve(GF(Integer(101)), [Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)]) >>> P = point_of_order(E, Integer(5)); P # random (50*Y^5 + 48*Y^4 + 26*Y^3 + 37*Y^2 + 48*Y + 15 : 25*Y^5 + 31*Y^4 + 79*Y^3 + 39*Y^2 + 3*Y + 20 : 1) >>> P.base_ring() Finite Field in Y of size 101^6 >>> P.order() 5 >>> P.curve().a_invariants() (1, 2, 3, 4, 5)
sage: Q = point_of_order(E, 8); Q # random (69*x^5 + 24*x^4 + 100*x^3 + 65*x^2 + 88*x + 97 : 65*x^5 + 28*x^4 + 5*x^3 + 45*x^2 + 42*x + 18 : 1) sage: 8*Q == 0 and 4*Q != 0 True
>>> from sage.all import * >>> Q = point_of_order(E, Integer(8)); Q # random (69*x^5 + 24*x^4 + 100*x^3 + 65*x^2 + 88*x + 97 : 65*x^5 + 28*x^4 + 5*x^3 + 45*x^2 + 42*x + 18 : 1) >>> Integer(8)*Q == Integer(0) and Integer(4)*Q != Integer(0) True
sage: from sage.schemes.elliptic_curves.ell_field import point_of_order sage: E = EllipticCurve(QQ, [7,7]) sage: P = point_of_order(E, 3); P # random (x : -Y : 1) sage: P.base_ring() Number Field in Y with defining polynomial Y^2 - x^3 - 7*x - 7 over its base field sage: P.base_ring().base_field() Number Field in x with defining polynomial x^4 + 14*x^2 + 28*x - 49/3 sage: P.order() 3 sage: P.curve().a_invariants() (0, 0, 0, 7, 7)
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.ell_field import point_of_order >>> E = EllipticCurve(QQ, [Integer(7),Integer(7)]) >>> P = point_of_order(E, Integer(3)); P # random (x : -Y : 1) >>> P.base_ring() Number Field in Y with defining polynomial Y^2 - x^3 - 7*x - 7 over its base field >>> P.base_ring().base_field() Number Field in x with defining polynomial x^4 + 14*x^2 + 28*x - 49/3 >>> P.order() 3 >>> P.curve().a_invariants() (0, 0, 0, 7, 7)
sage: Q = point_of_order(E, 4); Q # random (x : Y : 1) sage: Q.base_ring() Number Field in Y with defining polynomial Y^2 - x^3 - 7*x - 7 over its base field sage: Q.base_ring().base_field() Number Field in x with defining polynomial x^6 + 35*x^4 + 140*x^3 - 245*x^2 - 196*x - 735 sage: Q.order() 4
>>> from sage.all import * >>> Q = point_of_order(E, Integer(4)); Q # random (x : Y : 1) >>> Q.base_ring() Number Field in Y with defining polynomial Y^2 - x^3 - 7*x - 7 over its base field >>> Q.base_ring().base_field() Number Field in x with defining polynomial x^6 + 35*x^4 + 140*x^3 - 245*x^2 - 196*x - 735 >>> Q.order() 4