Interface to GAP#
Sage provides an interface to the GAP system. This system provides extensive group theory, combinatorics, etc.
The GAP interface will only work if GAP is installed on your computer; this should be the case, since GAP is included with Sage. The interface offers three pieces of functionality:
gap_console()
– A function that dumps you into an interactive command-line GAP session.gap(expr)
– Evaluation of arbitrary GAP expressions, with the result returned as a string.gap.new(expr)
– Creation of a Sage object that wraps a GAP object. This provides a Pythonic interface to GAP. For example, iff=gap.new(10)
, thenf.Factors()
returns the prime factorization of \(10\) computed using GAP.
First Examples#
We factor an integer using GAP:
sage: n = gap(20062006); n
20062006
sage: n.parent()
Gap
sage: fac = n.Factors(); fac
[ 2, 17, 59, 73, 137 ]
sage: fac.parent()
Gap
sage: fac[1]
2
>>> from sage.all import *
>>> n = gap(Integer(20062006)); n
20062006
>>> n.parent()
Gap
>>> fac = n.Factors(); fac
[ 2, 17, 59, 73, 137 ]
>>> fac.parent()
Gap
>>> fac[Integer(1)]
2
GAP and Singular#
This example illustrates conversion between Singular and GAP via Sage as an intermediate step. First we create and factor a Singular polynomial.
sage: singular(389)
389
sage: R1 = singular.ring(0, '(x,y)', 'dp')
sage: f = singular('9*x^16-18*x^13*y^2-9*x^12*y^3+9*x^10*y^4-18*x^11*y^2+36*x^8*y^4+18*x^7*y^5-18*x^5*y^6+9*x^6*y^4-18*x^3*y^6-9*x^2*y^7+9*y^8')
sage: F = f.factorize()
sage: print(F)
[1]:
_[1]=9
_[2]=x^6-2*x^3*y^2-x^2*y^3+y^4
_[3]=-x^5+y^2
[2]:
1,1,2
>>> from sage.all import *
>>> singular(Integer(389))
389
>>> R1 = singular.ring(Integer(0), '(x,y)', 'dp')
>>> f = singular('9*x^16-18*x^13*y^2-9*x^12*y^3+9*x^10*y^4-18*x^11*y^2+36*x^8*y^4+18*x^7*y^5-18*x^5*y^6+9*x^6*y^4-18*x^3*y^6-9*x^2*y^7+9*y^8')
>>> F = f.factorize()
>>> print(F)
[1]:
_[1]=9
_[2]=x^6-2*x^3*y^2-x^2*y^3+y^4
_[3]=-x^5+y^2
[2]:
1,1,2
Next we convert the factor \(-x^5+y^2\) to a Sage multivariate polynomial. Note that it is important to let \(x\) and \(y\) be the generators of a polynomial ring, so the eval command works.
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: s = F[1][3].sage_polystring(); s
'-x**5+y**2'
sage: g = eval(s); g
-x^5 + y^2
>>> from sage.all import *
>>> R = PolynomialRing(QQ,Integer(2), names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> s = F[Integer(1)][Integer(3)].sage_polystring(); s
'-x**5+y**2'
>>> g = eval(s); g
-x^5 + y^2
Next we create a polynomial ring in GAP and obtain its indeterminates:
sage: R = gap.PolynomialRing('Rationals', 2); R
PolynomialRing( Rationals, ["x_1", "x_2"] )
sage: I = R.IndeterminatesOfPolynomialRing(); I
[ x_1, x_2 ]
>>> from sage.all import *
>>> R = gap.PolynomialRing('Rationals', Integer(2)); R
PolynomialRing( Rationals, ["x_1", "x_2"] )
>>> I = R.IndeterminatesOfPolynomialRing(); I
[ x_1, x_2 ]
In order to eval \(g\) in GAP, we need to tell GAP to view
the variables x0
and x1
as the two
generators of \(R\). This is the one tricky part. In the GAP
interpreter the object I
has its own name (which
isn’t I
). We can access its name using
I.name()
.
sage: _ = gap.eval("x := %s[1];; y := %s[2];;"%(I.name(), I.name()))
>>> from sage.all import *
>>> _ = gap.eval("x := %s[1];; y := %s[2];;"%(I.name(), I.name()))
Now \(x_0\) and \(x_1\) are defined, so we can construct the GAP polynomial \(f\) corresponding to \(g\):
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: f = gap(str(g)); f
-x_1^5+x_2^2
>>> from sage.all import *
>>> R = PolynomialRing(QQ,Integer(2), names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> f = gap(str(g)); f
-x_1^5+x_2^2
We can call GAP functions on \(f\). For example, we evaluate
the GAP Value
function, which evaluates \(f\)
at the point \((1,2)\).
sage: f.Value(I, [1,2])
3
sage: g(1,2) # agrees
3
>>> from sage.all import *
>>> f.Value(I, [Integer(1),Integer(2)])
3
>>> g(Integer(1),Integer(2)) # agrees
3
Saving and loading objects#
Saving and loading GAP objects (using the dumps method, etc.) is
not supported, since the output string representation of Gap
objects is sometimes not valid input to GAP. Creating classes that
wrap GAP objects is supported, via simply defining the a
_gap_init_ member function that returns a string that when
evaluated in GAP constructs the object. See
groups/perm_gps/permgroup.py
for a nontrivial
example of this.
Long Input#
The GAP interface reads in even very long input (using files) in a robust manner, as long as you are creating a new object.
Note
Using gap.eval
for long input is much less robust, and is not
recommended.
sage: t = '"%s"'%10^10000 # ten thousand character string.
sage: a = gap(t)
>>> from sage.all import *
>>> t = '"%s"'%Integer(10)**Integer(10000) # ten thousand character string.
>>> a = gap(t)
Changing which GAP is used, and how#
Set the environment variable SAGE_GAP_COMMAND
to specify
how GAP executable is called. E.g.
$ SAGE_GAP_COMMAND = "/usr/local/bin/gap -s 4G" ./sage
will use GAP installed in \(/usr/local/bin\), with 4Gb RAM.
Set the environment variable SAGE_GAP_MEMORY
to specify the amount
of RAM allocated to libgap
and to the GAP executable.
If SAGE_GAP_COMMAND
is set, as well, then
SAGE_GAP_MEMORY
is only used for \(libgap\).
sage: gap.eval('GAPInfo.CommandLineOptions.s') # not tested
'"42m"'
>>> from sage.all import *
>>> gap.eval('GAPInfo.CommandLineOptions.s') # not tested
'"42m"'
After the GAP interface initialisation, setting SAGE_GAP_MEMORY
has no effect:
sage: os.environ['SAGE_GAP_MEMORY'] = '24M'
sage: gap.eval('GAPInfo.CommandLineOptions.s') # not tested
'"4g"'
>>> from sage.all import *
>>> os.environ['SAGE_GAP_MEMORY'] = '24M'
>>> gap.eval('GAPInfo.CommandLineOptions.s') # not tested
'"4g"'
AUTHORS:
David Joyner and William Stein: initial version(s)
William Stein (2006-02-01): modified gap_console command so it uses exactly the same startup command as Gap.__init__.
William Stein (2006-03-02): added tab completions: gap.[tab], x = gap(…), x.[tab], and docs, e.g., gap.function? and x.function?
- class sage.interfaces.gap.Gap(max_workspace_size=None, maxread=None, script_subdirectory=None, use_workspace_cache=True, server=None, server_tmpdir=None, logfile=None, seed=None, env={})[source]#
Bases:
Gap_generic
Interface to the GAP interpreter.
AUTHORS:
William Stein and David Joyner
- console()[source]#
Spawn a new GAP command-line session.
EXAMPLES:
sage: gap.console() # not tested ********* GAP, Version 4.5.7 of 14-Dec-2012 (free software, GPL) * GAP * https://www.gap-system.org ********* Architecture: x86_64-unknown-linux-gnu-gcc-default64 Libs used: gmp, readline Loading the library and packages ... Packages: GAPDoc 1.5.1 Try '?help' for help. See also '?copyright' and '?authors' gap>
>>> from sage.all import * >>> gap.console() # not tested ********* GAP, Version 4.5.7 of 14-Dec-2012 (free software, GPL) * GAP * https://www.gap-system.org ********* Architecture: x86_64-unknown-linux-gnu-gcc-default64 Libs used: gmp, readline Loading the library and packages ... Packages: GAPDoc 1.5.1 Try '?help' for help. See also '?copyright' and '?authors' gap>
- cputime(t=None)[source]#
Returns the amount of CPU time that the GAP session has used. If
t
is not None, then it returns the difference between the current CPU time andt
.EXAMPLES:
sage: t = gap.cputime() sage: t #random 0.13600000000000001 sage: gap.Order(gap.SymmetricGroup(5)) 120 sage: gap.cputime(t) #random 0.059999999999999998
>>> from sage.all import * >>> t = gap.cputime() >>> t #random 0.13600000000000001 >>> gap.Order(gap.SymmetricGroup(Integer(5))) 120 >>> gap.cputime(t) #random 0.059999999999999998
- get(var, use_file=False)[source]#
Get the string representation of the variable var.
EXAMPLES:
sage: gap.set('x', '2') sage: gap.get('x') '2'
>>> from sage.all import * >>> gap.set('x', '2') >>> gap.get('x') '2'
- help(s, pager=True)[source]#
Print help on a given topic.
EXAMPLES:
Note: In order to ensure consistent unicode handling from GAP we start a GAP instance with a forced UTF-8 locale:
sage: gap = Gap(env={'LC_CTYPE': 'en_US.UTF-8'}) sage: print(gap.help('SymmetricGroup', pager=False)) 50.1-... SymmetricGroup ‣ SymmetricGroup( [filt, ]deg ) ─────────────────────────────────── function ...
>>> from sage.all import * >>> gap = Gap(env={'LC_CTYPE': 'en_US.UTF-8'}) >>> print(gap.help('SymmetricGroup', pager=False)) <BLANKLINE> 50.1-... SymmetricGroup <BLANKLINE> ‣ SymmetricGroup( [filt, ]deg ) ─────────────────────────────────── function ... <BLANKLINE>
- set(var, value)[source]#
Set the variable var to the given value.
EXAMPLES:
sage: gap.set('x', '2') sage: gap.get('x') '2'
>>> from sage.all import * >>> gap.set('x', '2') >>> gap.get('x') '2'
- set_seed(seed=None)[source]#
Set the seed for gap interpreter.
The seed should be an integer.
EXAMPLES:
sage: g = Gap() sage: g.set_seed(0) 0 sage: [g.Random(1,10) for i in range(5)] [2, 3, 3, 4, 2]
>>> from sage.all import * >>> g = Gap() >>> g.set_seed(Integer(0)) 0 >>> [g.Random(Integer(1),Integer(10)) for i in range(Integer(5))] [2, 3, 3, 4, 2]
- class sage.interfaces.gap.GapElement(parent, value, is_name=False, name=None)[source]#
Bases:
GapElement_generic
,GapElement
- class sage.interfaces.gap.GapElement_generic(parent, value, is_name=False, name=None)[source]#
Bases:
ModuleElement
,ExtraTabCompletion
,ExpectElement
Generic interface to the GAP3/GAP4 interpreters.
AUTHORS:
William Stein and David Joyner (interface for GAP4)
Franco Saliola (Feb 2010): refactored to separate out the generic code
- class sage.interfaces.gap.GapFunction(parent, name)[source]#
Bases:
ExpectFunction
- class sage.interfaces.gap.GapFunctionElement(obj, name)[source]#
Bases:
FunctionElement
- class sage.interfaces.gap.Gap_generic(name, prompt, command=None, env={}, server=None, server_tmpdir=None, ulimit=None, maxread=None, script_subdirectory=None, restart_on_ctrlc=False, verbose_start=False, init_code=[], max_startup_time=None, logfile=None, eval_using_file_cutoff=0, do_cleaner=True, remote_cleaner=False, path=None, terminal_echo=True)[source]#
Bases:
ExtraTabCompletion
,Expect
Generic interface to the GAP3/GAP4 interpreters.
AUTHORS:
William Stein and David Joyner (interface for GAP4)
Franco Saliola (Feb 2010): refactored to separate out the generic code
- eval(x, newlines=False, strip=True, split_lines=True, **kwds)[source]#
Send the code in the string s to the GAP interpreter and return the output as a string.
INPUT:
s
– string containing GAP code.newlines
– bool (default:True
); if False, remove all backslash-newlines inserted by the GAP output formatter.strip
– ignoredsplit_lines
– bool (default:True
); if True then each line is evaluated separately. If False, then the whole block of code is evaluated all at once.
EXAMPLES:
sage: gap.eval('2+2') '4' sage: gap.eval('Print(4); #test\n Print(6);') '46' sage: gap.eval('Print("#"); Print(6);') '#6' sage: gap.eval('4; \n 6;') '4\n6' sage: gap.eval('if 3>2 then\nPrint("hi");\nfi;') 'hi' sage: gap.eval('## this is a test\nPrint("OK")') 'OK' sage: gap.eval('Print("This is a test. Oh no, a #");# but this is a comment\nPrint("OK")') 'This is a test. Oh no, a #OK' sage: gap.eval('if 4>3 then') '' sage: gap.eval('Print("Hi how are you?")') 'Hi how are you?' sage: gap.eval('fi') ''
>>> from sage.all import * >>> gap.eval('2+2') '4' >>> gap.eval('Print(4); #test\n Print(6);') '46' >>> gap.eval('Print("#"); Print(6);') '#6' >>> gap.eval('4; \n 6;') '4\n6' >>> gap.eval('if 3>2 then\nPrint("hi");\nfi;') 'hi' >>> gap.eval('## this is a test\nPrint("OK")') 'OK' >>> gap.eval('Print("This is a test. Oh no, a #");# but this is a comment\nPrint("OK")') 'This is a test. Oh no, a #OK' >>> gap.eval('if 4>3 then') '' >>> gap.eval('Print("Hi how are you?")') 'Hi how are you?' >>> gap.eval('fi') ''
- function_call(function, args=None, kwds=None)[source]#
Calls the GAP function with args and kwds.
EXAMPLES:
sage: gap.function_call('SymmetricGroup', [5]) SymmetricGroup( [ 1 .. 5 ] )
>>> from sage.all import * >>> gap.function_call('SymmetricGroup', [Integer(5)]) SymmetricGroup( [ 1 .. 5 ] )
If the GAP function does not return a value, but prints something to the screen, then a string of the printed output is returned.
sage: s = gap.function_call('Display', [gap.SymmetricGroup(5).CharacterTable()]) sage: type(s) <class 'sage.interfaces.interface.AsciiArtString'> sage: s.startswith('CT') True
>>> from sage.all import * >>> s = gap.function_call('Display', [gap.SymmetricGroup(Integer(5)).CharacterTable()]) >>> type(s) <class 'sage.interfaces.interface.AsciiArtString'> >>> s.startswith('CT') True
- get_record_element(record, name)[source]#
Return the element of a GAP record identified by
name
.INPUT:
record
– a GAP recordname
– str
OUTPUT:
EXAMPLES:
sage: rec = gap('rec( a := 1, b := "2" )') sage: gap.get_record_element(rec, 'a') 1 sage: gap.get_record_element(rec, 'b') 2
>>> from sage.all import * >>> rec = gap('rec( a := 1, b := "2" )') >>> gap.get_record_element(rec, 'a') 1 >>> gap.get_record_element(rec, 'b') 2
- interrupt(tries=None, timeout=1, quit_on_fail=True)[source]#
Interrupt the GAP process
Gap installs a SIGINT handler, we call it directly instead of trying to sent Ctrl-C. Unlike
interrupt()
, we only try once since we are knowing what we are doing.Sometimes GAP dies while interrupting.
EXAMPLES:
sage: gap._eval_line('while(1=1) do i:=1;; od;', wait_for_prompt=False) '' sage: rc = gap.interrupt(timeout=1) sage: [ gap(i) for i in range(10) ] # check that it is still working [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> from sage.all import * >>> gap._eval_line('while(1=1) do i:=1;; od;', wait_for_prompt=False) '' >>> rc = gap.interrupt(timeout=Integer(1)) >>> [ gap(i) for i in range(Integer(10)) ] # check that it is still working [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- load_package(pkg, verbose=False)[source]#
Load the Gap package with the given name.
If loading fails, raise a
RuntimeError
exception.
- unbind(var)[source]#
Clear the variable named var.
EXAMPLES:
sage: gap.set('x', '2') sage: gap.get('x') '2' sage: gap.unbind('x') sage: gap.get('x') Traceback (most recent call last): ... RuntimeError: Gap produced error output Error, Variable: 'x' must have a value ...
>>> from sage.all import * >>> gap.set('x', '2') >>> gap.get('x') '2' >>> gap.unbind('x') >>> gap.get('x') Traceback (most recent call last): ... RuntimeError: Gap produced error output Error, Variable: 'x' must have a value ...
- sage.interfaces.gap.gap_console()[source]#
Spawn a new GAP command-line session.
Note that in gap-4.5.7 you cannot use a workspace cache that had no commandline to restore a gap session with commandline.
EXAMPLES:
sage: gap_console() # not tested ********* GAP, Version 4.5.7 of 14-Dec-2012 (free software, GPL) * GAP * https://www.gap-system.org ********* Architecture: x86_64-unknown-linux-gnu-gcc-default64 Libs used: gmp, readline Loading the library and packages ... Packages: GAPDoc 1.5.1 Try '?help' for help. See also '?copyright' and '?authors' gap>
>>> from sage.all import * >>> gap_console() # not tested ********* GAP, Version 4.5.7 of 14-Dec-2012 (free software, GPL) * GAP * https://www.gap-system.org ********* Architecture: x86_64-unknown-linux-gnu-gcc-default64 Libs used: gmp, readline Loading the library and packages ... Packages: GAPDoc 1.5.1 Try '?help' for help. See also '?copyright' and '?authors' gap>
- sage.interfaces.gap.gap_reset_workspace(max_workspace_size=None, verbose=False)[source]#
Call this to completely reset the GAP workspace, which is used by default when Sage first starts GAP.
The first time you start GAP from Sage, it saves the startup state of GAP in a file
$HOME/.sage/gap/workspace-gap-HASH
, whereHASH
is a hash of the directory where Sage is installed. This is useful because the subsequent startup of GAP is at least ten times as fast. But if you update GAP or any of its packages, those changes won’t take effect until the workspace is reset.
- sage.interfaces.gap.gfq_gap_to_sage(x, F)[source]#
INPUT:
x
– GAP finite field elementF
– Sage finite field
OUTPUT: element of
F
EXAMPLES:
sage: x = gap('Z(13)') sage: F = GF(13, 'a') sage: F(x) 2 sage: F(gap('0*Z(13)')) 0 sage: F = GF(13^2, 'a') sage: x = gap('Z(13)') sage: F(x) 2 sage: x = gap('Z(13^2)^3') sage: F(x) 12*a + 11 sage: F.multiplicative_generator()^3 12*a + 11
>>> from sage.all import * >>> x = gap('Z(13)') >>> F = GF(Integer(13), 'a') >>> F(x) 2 >>> F(gap('0*Z(13)')) 0 >>> F = GF(Integer(13)**Integer(2), 'a') >>> x = gap('Z(13)') >>> F(x) 2 >>> x = gap('Z(13^2)^3') >>> F(x) 12*a + 11 >>> F.multiplicative_generator()**Integer(3) 12*a + 11
AUTHOR:
David Joyner and William Stein
- sage.interfaces.gap.intmod_gap_to_sage(x)[source]#
INPUT:
x – Gap integer mod ring element
EXAMPLES:
sage: a = gap(Mod(3, 18)); a ZmodnZObj( 3, 18 ) sage: b = sage.interfaces.gap.intmod_gap_to_sage(a); b 3 sage: b.parent() Ring of integers modulo 18 sage: a = gap(Mod(3, 17)); a Z(17) sage: b = sage.interfaces.gap.intmod_gap_to_sage(a); b 3 sage: b.parent() Finite Field of size 17 sage: a = gap(Mod(0, 17)); a 0*Z(17) sage: b = sage.interfaces.gap.intmod_gap_to_sage(a); b 0 sage: b.parent() Finite Field of size 17 sage: a = gap(Mod(3, 65537)); a ZmodpZObj( 3, 65537 ) sage: b = sage.interfaces.gap.intmod_gap_to_sage(a); b 3 sage: b.parent() Ring of integers modulo 65537
>>> from sage.all import * >>> a = gap(Mod(Integer(3), Integer(18))); a ZmodnZObj( 3, 18 ) >>> b = sage.interfaces.gap.intmod_gap_to_sage(a); b 3 >>> b.parent() Ring of integers modulo 18 >>> a = gap(Mod(Integer(3), Integer(17))); a Z(17) >>> b = sage.interfaces.gap.intmod_gap_to_sage(a); b 3 >>> b.parent() Finite Field of size 17 >>> a = gap(Mod(Integer(0), Integer(17))); a 0*Z(17) >>> b = sage.interfaces.gap.intmod_gap_to_sage(a); b 0 >>> b.parent() Finite Field of size 17 >>> a = gap(Mod(Integer(3), Integer(65537))); a ZmodpZObj( 3, 65537 ) >>> b = sage.interfaces.gap.intmod_gap_to_sage(a); b 3 >>> b.parent() Ring of integers modulo 65537
- sage.interfaces.gap.is_GapElement(x)[source]#
Return True if
x
is aGapElement
This function is deprecated; use
isinstance()
(ofsage.interfaces.abc.GapElement
) instead.EXAMPLES:
sage: from sage.interfaces.gap import is_GapElement sage: is_GapElement(gap(2)) doctest:...: DeprecationWarning: the function is_GapElement is deprecated; use isinstance(x, sage.interfaces.abc.GapElement) instead See https://github.com/sagemath/sage/issues/34823 for details. True sage: is_GapElement(2) False
>>> from sage.all import * >>> from sage.interfaces.gap import is_GapElement >>> is_GapElement(gap(Integer(2))) doctest:...: DeprecationWarning: the function is_GapElement is deprecated; use isinstance(x, sage.interfaces.abc.GapElement) instead See https://github.com/sagemath/sage/issues/34823 for details. True >>> is_GapElement(Integer(2)) False
- sage.interfaces.gap.reduce_load_GAP()[source]#
Returns the GAP interface object defined in sage.interfaces.gap.
EXAMPLES:
sage: from sage.interfaces.gap import reduce_load_GAP sage: reduce_load_GAP() Gap
>>> from sage.all import * >>> from sage.interfaces.gap import reduce_load_GAP >>> reduce_load_GAP() Gap