Space of boundary modular symbols#
Used mainly for computing the cuspidal subspace of modular symbols. The space of boundary symbols of sign 0 is isomorphic as a Hecke module to the dual of the space of Eisenstein series, but this does not give a useful method of computing Eisenstein series, since there is no easy way to extract the constant terms.
We represent boundary modular symbols as a sum of Manin symbols of the form \([P, u/v]\), where \(u/v\) is a cusp for our group \(G\). The group of boundary modular symbols naturally embeds into a vector space \(B_k(G)\) (see Stein, section 8.4, or Merel, section 1.4, where this space is called \(\CC[\Gamma \backslash \QQ]_k\), for a definition), which is a finite dimensional \(\QQ\) vector space, of dimension equal to the number of cusps for \(G\) (if \(k\) is even), or the number of regular cusps (if \(k\) is odd). The embedding takes \([P, u/v]\) to \(P(u,v)\cdot [(u,v)]\). We represent the basis vectors by pairs \([(u,v)]\) with u, v coprime. On \(B_k(G)\), we have the relations
for all \(\gamma \in G\) and
for all \(\lambda \in \QQ^\times\).
It’s possible for these relations to kill a class, i.e., for a pair \([(u,v)]\) to be 0. For example, when \(N=4\) and \(k=3\) then \((-1,-2)\) is equivalent mod \(\Gamma_1(4)\) to \((1,2)\) since \(2=-2 \bmod 4\) and \(1=-1 \bmod 2\). But since \(k\) is odd, \([(-1,-2)]\) is also equivalent to \(-[(1,2)]\). Thus this symbol is equivalent to its negative, hence 0 (notice that this wouldn’t be the case in characteristic 2). This happens for any irregular cusp when the weight is odd; there are no irregular cusps on \(\Gamma_1(N)\) except when \(N = 4\), but there can be more on \(\Gamma_H\) groups. See also prop 2.30 of Stein’s Ph.D. thesis.
In addition, in the case that our space is of sign \(\sigma = 1\) or \(-1\), we also have the relation \([(-u,v)] = \sigma \cdot [(u,v)]\). This relation can also combine with the above to kill a cusp class - for instance, take (u,v) = (1,3) for \(\Gamma_1(5)\). Then since the cusp \(\tfrac{1}{3}\) is \(\Gamma_1(5)\)-equivalent to the cusp \(-\tfrac{1}{3}\), we have that \([(1,3)] = [(-1,3)]\). Now, on the minus subspace, we also have that \([(-1,3)] = -[(1,3)]\), which means this class must vanish. Notice that this cannot be used to show that \([(1,0)]\) or \([(0,1)]\) is 0.
Note
Special care must be taken when working with the images of the cusps 0 and \(\infty\) in \(B_k(G)\). For all cusps except 0 and \(\infty\), multiplying the cusp by -1 corresponds to taking \([(u,v)]\) to \([(-u,v)]\) in \(B_k(G)\). This means that \([(u,v)]\) is equivalent to \([(-u,v)]\) whenever \(\tfrac{u}{v}\) is equivalent to \(-\tfrac{u}{v}\), except in the case of 0 and \(\infty\). We have the following conditions for \([(1,0)]\) and \([(0,1)]\):
\([(0,1)] = \sigma \cdot [(0,1)]\), so \([(0,1)]\) is 0 exactly when \(\sigma = -1\).
\([(1,0)] = \sigma \cdot [(-1,0)]\) and \([(1,0)] = (-1)^k [(-1,0)]\), so \([(1,0)] = 0\) whenever \(\sigma \ne (-1)^k\).
Note
For all the spaces of boundary symbols below, no work is done to determine the cusps for G at creation time. Instead, cusps are added as they are discovered in the course of computation. As a result, the rank of a space can change as a computation proceeds.
REFERENCES:
Merel, “Universal Fourier expansions of modular forms.” Springer LNM 1585 (1994), pg. 59-95.
Stein, “Modular Forms, a computational approach.” AMS (2007).
- class sage.modular.modsym.boundary.BoundarySpace(group=Modular Group SL(2, Z), weight=2, sign=0, base_ring=Rational Field, character=None)[source]#
Bases:
HeckeModule_generic
Space of boundary symbols for a congruence subgroup of SL_2(Z).
This class is an abstract base class, so only derived classes should be instantiated.
INPUT:
weight
– int, the weightgroup
– arithgroup.congroup_generic.CongruenceSubgroup, a congruence subgroup.sign
– int, either -1, 0, or 1base_ring
– rings.Ring (defaults to the rational numbers)
EXAMPLES:
sage: B = ModularSymbols(Gamma0(11),2).boundary_space() sage: isinstance(B, sage.modular.modsym.boundary.BoundarySpace) True sage: B == loads(dumps(B)) True
>>> from sage.all import * >>> B = ModularSymbols(Gamma0(Integer(11)),Integer(2)).boundary_space() >>> isinstance(B, sage.modular.modsym.boundary.BoundarySpace) True >>> B == loads(dumps(B)) True
- character()[source]#
Return the Dirichlet character associated to this space of boundary modular symbols.
EXAMPLES:
sage: ModularSymbols(DirichletGroup(7).0, 6).boundary_space().character() Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6
>>> from sage.all import * >>> ModularSymbols(DirichletGroup(Integer(7)).gen(0), Integer(6)).boundary_space().character() Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6
- free_module()[source]#
Return the underlying free module for
self
.EXAMPLES:
sage: B = ModularSymbols(Gamma1(7), 5, sign=-1).boundary_space() sage: B.free_module() Sparse vector space of dimension 0 over Rational Field sage: x = B(Cusp(0)) ; y = B(Cusp(1/7)) ; B.free_module() Sparse vector space of dimension 1 over Rational Field
>>> from sage.all import * >>> B = ModularSymbols(Gamma1(Integer(7)), Integer(5), sign=-Integer(1)).boundary_space() >>> B.free_module() Sparse vector space of dimension 0 over Rational Field >>> x = B(Cusp(Integer(0))) ; y = B(Cusp(Integer(1)/Integer(7))) ; B.free_module() Sparse vector space of dimension 1 over Rational Field
- gen(i=0)[source]#
Return the i-th generator of this space.
EXAMPLES:
sage: B = ModularSymbols(Gamma0(24), 4).boundary_space() sage: B.gen(0) Traceback (most recent call last): ... ValueError: only 0 generators known for Space of Boundary Modular Symbols for Congruence Subgroup Gamma0(24) of weight 4 over Rational Field sage: B(Cusp(1/3)) [1/3] sage: B.gen(0) [1/3]
>>> from sage.all import * >>> B = ModularSymbols(Gamma0(Integer(24)), Integer(4)).boundary_space() >>> B.gen(Integer(0)) Traceback (most recent call last): ... ValueError: only 0 generators known for Space of Boundary Modular Symbols for Congruence Subgroup Gamma0(24) of weight 4 over Rational Field >>> B(Cusp(Integer(1)/Integer(3))) [1/3] >>> B.gen(Integer(0)) [1/3]
- group()[source]#
Return the congruence subgroup associated to this space of boundary modular symbols.
EXAMPLES:
sage: ModularSymbols(GammaH(14,[9]), 2).boundary_space().group() Congruence Subgroup Gamma_H(14) with H generated by [9]
>>> from sage.all import * >>> ModularSymbols(GammaH(Integer(14),[Integer(9)]), Integer(2)).boundary_space().group() Congruence Subgroup Gamma_H(14) with H generated by [9]
- is_ambient()[source]#
Return
True
ifself
is a space of boundary symbols associated to an ambient space of modular symbols.EXAMPLES:
sage: M = ModularSymbols(Gamma1(6), 4) sage: M.is_ambient() True sage: M.boundary_space().is_ambient() True
>>> from sage.all import * >>> M = ModularSymbols(Gamma1(Integer(6)), Integer(4)) >>> M.is_ambient() True >>> M.boundary_space().is_ambient() True
- rank()[source]#
The rank of the space generated by boundary symbols that have been found so far in the course of computing the boundary map.
Warning
This number may change as more elements are coerced into this space!! (This is an implementation detail that will likely change.)
EXAMPLES:
sage: M = ModularSymbols(Gamma0(72), 2) ; B = M.boundary_space() sage: B.rank() 0 sage: _ = [ B(x) for x in M.basis() ] sage: B.rank() 16
>>> from sage.all import * >>> M = ModularSymbols(Gamma0(Integer(72)), Integer(2)) ; B = M.boundary_space() >>> B.rank() 0 >>> _ = [ B(x) for x in M.basis() ] >>> B.rank() 16
Test that Issue #7837 is fixed:
sage: ModularSymbols(Gamma1(4),7).boundary_map().codomain().dimension() 2 sage: ModularSymbols(Gamma1(4),7, sign=1).boundary_map().codomain().dimension() 1 sage: ModularSymbols(Gamma1(4),7, sign=-1).boundary_map().codomain().dimension() 1
>>> from sage.all import * >>> ModularSymbols(Gamma1(Integer(4)),Integer(7)).boundary_map().codomain().dimension() 2 >>> ModularSymbols(Gamma1(Integer(4)),Integer(7), sign=Integer(1)).boundary_map().codomain().dimension() 1 >>> ModularSymbols(Gamma1(Integer(4)),Integer(7), sign=-Integer(1)).boundary_map().codomain().dimension() 1
- class sage.modular.modsym.boundary.BoundarySpaceElement(parent, x)[source]#
Bases:
HeckeModuleElement
Create a boundary symbol.
INPUT:
parent
– BoundarySpace; a space of boundary modular symbolsx
– a dict with integer keys and values in the base field of parent.
EXAMPLES:
sage: B = ModularSymbols(Gamma0(32), sign=-1).boundary_space() sage: B(Cusp(1,8)) [1/8] sage: B.0 [1/8] sage: type(B.0) <class 'sage.modular.modsym.boundary.BoundarySpaceElement'>
>>> from sage.all import * >>> B = ModularSymbols(Gamma0(Integer(32)), sign=-Integer(1)).boundary_space() >>> B(Cusp(Integer(1),Integer(8))) [1/8] >>> B.gen(0) [1/8] >>> type(B.gen(0)) <class 'sage.modular.modsym.boundary.BoundarySpaceElement'>
- coordinate_vector()[source]#
Return self as a vector on the QQ-vector space with basis self.parent()._known_cusps().
EXAMPLES:
sage: B = ModularSymbols(18,4,sign=1).boundary_space() sage: x = B(Cusp(1/2)) ; x [1/2] sage: x.coordinate_vector() (1) sage: ((18/5)*x).coordinate_vector() (18/5) sage: B(Cusp(0)) [0] sage: x.coordinate_vector() (1) sage: x = B(Cusp(1/2)) ; x [1/2] sage: x.coordinate_vector() (1, 0)
>>> from sage.all import * >>> B = ModularSymbols(Integer(18),Integer(4),sign=Integer(1)).boundary_space() >>> x = B(Cusp(Integer(1)/Integer(2))) ; x [1/2] >>> x.coordinate_vector() (1) >>> ((Integer(18)/Integer(5))*x).coordinate_vector() (18/5) >>> B(Cusp(Integer(0))) [0] >>> x.coordinate_vector() (1) >>> x = B(Cusp(Integer(1)/Integer(2))) ; x [1/2] >>> x.coordinate_vector() (1, 0)
- class sage.modular.modsym.boundary.BoundarySpace_wtk_eps(eps, weight, sign=0)[source]#
Bases:
BoundarySpace
Space of boundary modular symbols with given weight, character, and sign.
INPUT:
eps
– dirichlet.DirichletCharacter, the “Nebentypus” character.weight
– int, the weight = 2sign
– int, either -1, 0, or 1
EXAMPLES:
sage: B = ModularSymbols(DirichletGroup(6).0, 4).boundary_space() ; B Boundary Modular Symbols space of level 6, weight 4, character [-1] and dimension 0 over Rational Field sage: type(B) <class 'sage.modular.modsym.boundary.BoundarySpace_wtk_eps_with_category'> sage: B == loads(dumps(B)) True
>>> from sage.all import * >>> B = ModularSymbols(DirichletGroup(Integer(6)).gen(0), Integer(4)).boundary_space() ; B Boundary Modular Symbols space of level 6, weight 4, character [-1] and dimension 0 over Rational Field >>> type(B) <class 'sage.modular.modsym.boundary.BoundarySpace_wtk_eps_with_category'> >>> B == loads(dumps(B)) True
- class sage.modular.modsym.boundary.BoundarySpace_wtk_g0(level, weight, sign, F)[source]#
Bases:
BoundarySpace
Initialize a space of boundary symbols of weight k for Gamma_0(N) over base field F.
INPUT:
level
– int, the levelweight
– integer weight = 2.sign
– int, either -1, 0, or 1F
– field
EXAMPLES:
sage: B = ModularSymbols(Gamma0(2), 5).boundary_space() sage: type(B) <class 'sage.modular.modsym.boundary.BoundarySpace_wtk_g0_with_category'> sage: B == loads(dumps(B)) True
>>> from sage.all import * >>> B = ModularSymbols(Gamma0(Integer(2)), Integer(5)).boundary_space() >>> type(B) <class 'sage.modular.modsym.boundary.BoundarySpace_wtk_g0_with_category'> >>> B == loads(dumps(B)) True
- class sage.modular.modsym.boundary.BoundarySpace_wtk_g1(level, weight, sign, F)[source]#
Bases:
BoundarySpace
Initialize a space of boundary modular symbols for Gamma1(N).
INPUT:
level
– int, the levelweight
– int, the weight = 2sign
– int, either -1, 0, or 1F
– base ring
EXAMPLES:
sage: from sage.modular.modsym.boundary import BoundarySpace_wtk_g1 sage: B = BoundarySpace_wtk_g1(17, 2, 0, QQ) ; B Boundary Modular Symbols space for Gamma_1(17) of weight 2 over Rational Field sage: B == loads(dumps(B)) True
>>> from sage.all import * >>> from sage.modular.modsym.boundary import BoundarySpace_wtk_g1 >>> B = BoundarySpace_wtk_g1(Integer(17), Integer(2), Integer(0), QQ) ; B Boundary Modular Symbols space for Gamma_1(17) of weight 2 over Rational Field >>> B == loads(dumps(B)) True
- class sage.modular.modsym.boundary.BoundarySpace_wtk_gamma_h(group, weight, sign, F)[source]#
Bases:
BoundarySpace
Initialize a space of boundary modular symbols for GammaH(N).
INPUT:
group
– congruence subgroup Gamma_H(N).weight
– int, the weight = 2sign
– int, either -1, 0, or 1F
– base ring
EXAMPLES:
sage: from sage.modular.modsym.boundary import BoundarySpace_wtk_gamma_h sage: B = BoundarySpace_wtk_gamma_h(GammaH(13,[3]), 2, 0, QQ) ; B Boundary Modular Symbols space for Congruence Subgroup Gamma_H(13) with H generated by [3] of weight 2 over Rational Field sage: B == loads(dumps(B)) True
>>> from sage.all import * >>> from sage.modular.modsym.boundary import BoundarySpace_wtk_gamma_h >>> B = BoundarySpace_wtk_gamma_h(GammaH(Integer(13),[Integer(3)]), Integer(2), Integer(0), QQ) ; B Boundary Modular Symbols space for Congruence Subgroup Gamma_H(13) with H generated by [3] of weight 2 over Rational Field >>> B == loads(dumps(B)) True
A test case from Issue #6072:
sage: ModularSymbols(GammaH(8,[5]), 3).boundary_map() Hecke module morphism boundary map defined by the matrix [-1 0 0 0] [ 0 -1 0 0] [ 0 0 -1 0] [ 0 0 0 -1] Domain: Modular Symbols space of dimension 4 for Congruence Subgroup ... Codomain: Boundary Modular Symbols space for Congruence Subgroup Gamma_H(8) ...
>>> from sage.all import * >>> ModularSymbols(GammaH(Integer(8),[Integer(5)]), Integer(3)).boundary_map() Hecke module morphism boundary map defined by the matrix [-1 0 0 0] [ 0 -1 0 0] [ 0 0 -1 0] [ 0 0 0 -1] Domain: Modular Symbols space of dimension 4 for Congruence Subgroup ... Codomain: Boundary Modular Symbols space for Congruence Subgroup Gamma_H(8) ...