# $$p$$-adic $$L$$-series attached to overconvergent eigensymbols#

An overconvergent eigensymbol gives rise to a $$p$$-adic $$L$$-series, which is essentially defined as the evaluation of the eigensymbol at the path $$0 \rightarrow \infty$$. The resulting distribution on $$\ZZ_p$$ can be restricted to $$\ZZ_p^\times$$, thus giving the measure attached to the sought $$p$$-adic $$L$$-series.

All this is carefully explained in [PS2011].

Return the list of coefficients in the power series expansion (up to precision $$M$$) of $$\binom{\log_p(z)/\log_p(\gamma)}{n}$$

INPUT:

• p – prime

• gamma – topological generator, e.g. $$1+p$$

• n – nonnegative integer

• M – precision

OUTPUT:

The list of coefficients in the power series expansion of $$\binom{\log_p(z)/\log_p(\gamma)}{n}$$

EXAMPLES:

sage: from sage.modular.pollack_stevens.padic_lseries import log_gamma_binomial
sage: log_gamma_binomial(5,1+5,2,4)
[0, -3/205, 651/84050, -223/42025]
sage: log_gamma_binomial(5,1+5,3,4)
[0, 2/205, -223/42025, 95228/25845375]


Bases: SageObject

The $$p$$-adic $$L$$-series associated to an overconvergent eigensymbol.

INPUT:

• symb – an overconvergent eigensymbol

• gamma – topological generator of $$1 + p\ZZ_p$$ (default: $$1+p$$ or 5 if $$p=2$$)

• quadratic_twist – conductor of quadratic twist $$\chi$$ (default: 1)

• precision – if None (default) is specified, the correct precision bound is computed and the answer is returned modulo that accuracy

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: p = 5
sage: prec = 4
sage: L = E.padic_lseries(p, implementation="pollackstevens", precision=prec) # long time
sage: L                # long time
1 + 4*5 + 2*5^2 + O(5^3)
sage: L.series(3)    # long time
O(5^4) + (1 + 4*5 + 2*5^2 + O(5^3))*T + (3 + O(5^2))*T^2 + O(T^3)

sage: from sage.modular.pollack_stevens.padic_lseries import pAdicLseries
sage: E = EllipticCurve('20a')
sage: phi = E.pollack_stevens_modular_symbol()
sage: Phi = phi.p_stabilize_and_lift(3, 4) # long time
sage: L = pAdicLseries(Phi)                # long time
sage: L.series(4)                          # long time
2*3 + O(3^4) + (3 + O(3^2))*T + (2 + O(3))*T^2 + O(3^0)*T^3 + O(T^4)


An example of a $$p$$-adic $$L$$-series associated to a modular abelian surface. This is not tested as it takes too long.:

sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space
sage: A = ModularSymbols(103,2,1).cuspidal_submodule().new_subspace().decomposition()
sage: p = 19
sage: prec = 4
sage: phi = ps_modsym_from_simple_modsym_space(A)
sage: ap = phi.Tq_eigenvalue(p,prec)
sage: c1,c2 = phi.completions(p,prec)
sage: phi1,psi1 = c1
sage: phi2,psi2 = c2
sage: phi1p = phi1.p_stabilize_and_lift(p,ap = psi1(ap), M = prec) # not tested - too long
sage: L1 = pAdicLseries(phi1p)                                     # not tested - too long
sage: phi2p = phi2.p_stabilize_and_lift(p,ap = psi2(ap), M = prec) # not tested - too long
sage: L2  = pAdicLseries(phi2p)                                    # not tested - too long
sage: L1*L2                                                  # not tested - too long
13 + 9*19 + 18*19^2 + O(19^3)

interpolation_factor(ap, chip=1, psi=None)#

Return the interpolation factor associated to self. This is the $$p$$-adic multiplier that which appears in the interpolation formula of the $$p$$-adic $$L$$-function. It has the form $$(1-\alpha_p^{-1})^2$$, where $$\alpha_p$$ is the unit root of $$X^2 - \psi(a_p) \chi(p) X + p$$.

INPUT:

• ap – the eigenvalue of the Up operator

• chip – the value of the nebentype at p (default: 1)

• psi – a twisting character (default: None)

OUTPUT: a $$p$$-adic number

EXAMPLES:

sage: E = EllipticCurve('19a2')
sage: L = E.padic_lseries(3,implementation="pollackstevens",precision=6)  # long time
sage: ap = E.ap(3)               # long time
sage: L.interpolation_factor(ap) # long time
3^2 + 3^3 + 2*3^5 + 2*3^6 + O(3^7)


Comparing against a different implementation:

sage: L = E.padic_lseries(3)
sage: (1-1/L.alpha(prec=4))^2
3^2 + 3^3 + O(3^5)

prime()#

Return the prime $$p$$ as in $$p$$-adic $$L$$-series.

EXAMPLES:

sage: E = EllipticCurve('19a')
sage: L = E.padic_lseries(19, implementation="pollackstevens",precision=6) # long time
sage: L.prime()                   # long time
19


Return the discriminant of the quadratic twist.

EXAMPLES:

sage: from sage.modular.pollack_stevens.padic_lseries import pAdicLseries
sage: E = EllipticCurve('37a')
sage: phi = E.pollack_stevens_modular_symbol()
sage: Phi = phi.lift(37,4)
-3

series(prec=5)#

Return the prec-th approximation to the $$p$$-adic $$L$$-series associated to self, as a power series in $$T$$ (corresponding to $$\gamma-1$$ with $$\gamma$$ the chosen generator of $$1+p\ZZ_p$$).

INPUT:

• prec – (default 5) is the precision of the power series

EXAMPLES:

sage: E = EllipticCurve('14a2')
sage: p = 3
sage: prec = 6
sage: L = E.padic_lseries(p,implementation="pollackstevens",precision=prec) # long time
sage: L.series(4)          # long time
2*3 + 3^4 + 3^5 + O(3^6) + (2*3 + 3^2 + O(3^4))*T + (2*3 + O(3^2))*T^2 + (3 + O(3^2))*T^3 + O(T^4)

sage: E = EllipticCurve("15a3")
sage: L = E.padic_lseries(5,implementation="pollackstevens",precision=15)  # long time
sage: L.series(3)            # long time
O(5^15) + (2 + 4*5^2 + 3*5^3 + 5^5 + 2*5^6 + 3*5^7 + 3*5^8 + 2*5^9 + 2*5^10 + 3*5^11 + 5^12 + O(5^13))*T + (4*5 + 4*5^3 + 3*5^4 + 4*5^5 + 3*5^6 + 2*5^7 + 5^8 + 4*5^9 + 3*5^10 + O(5^11))*T^2 + O(T^3)

sage: E = EllipticCurve("79a1")
sage: L = E.padic_lseries(2,implementation="pollackstevens",precision=10) # not tested
sage: L.series(4)  # not tested
O(2^9) + (2^3 + O(2^4))*T + O(2^0)*T^2 + (O(2^-3))*T^3 + O(T^4)

symbol()#

Return the overconvergent modular symbol.

EXAMPLES:

sage: from sage.modular.pollack_stevens.padic_lseries import pAdicLseries
sage: E = EllipticCurve('21a4')
sage: phi = E.pollack_stevens_modular_symbol()
sage: Phi = phi.p_stabilize_and_lift(2,5)   # long time
sage: L = pAdicLseries(Phi)                 # long time
sage: L.symbol()                              # long time
Modular symbol of level 42 with values in Space of 2-adic
distributions with k=0 action and precision cap 15
sage: L.symbol() is Phi                       # long time
True