Lists of Manin symbols over \(\QQ\), elements of \(\mathbb{P}^1(\ZZ/N\ZZ)\)#
- class sage.modular.modsym.p1list.P1List[source]#
Bases:
object
The class for \(\mathbb{P}^1(\ZZ/N\ZZ)\), the projective line modulo \(N\).
EXAMPLES:
sage: P = P1List(12); P The projective line over the integers modulo 12 sage: list(P) [(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (1, 11), (2, 1), (2, 3), (2, 5), (3, 1), (3, 2), (3, 4), (3, 7), (4, 1), (4, 3), (4, 5), (6, 1)]
>>> from sage.all import * >>> P = P1List(Integer(12)); P The projective line over the integers modulo 12 >>> list(P) [(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (1, 11), (2, 1), (2, 3), (2, 5), (3, 1), (3, 2), (3, 4), (3, 7), (4, 1), (4, 3), (4, 5), (6, 1)]
Saving and loading works.
sage: loads(dumps(P)) == P True
>>> from sage.all import * >>> loads(dumps(P)) == P True
- N()[source]#
Return the level or modulus of this P1List.
EXAMPLES:
sage: L = P1List(120) sage: L.N() 120
>>> from sage.all import * >>> L = P1List(Integer(120)) >>> L.N() 120
- apply_I(i)[source]#
Return the index of the result of applying the matrix \(I=[-1,0;0,1]\) to the \(i\)’th element of this P1List.
INPUT:
i
– integer (the index of the element to act on).
EXAMPLES:
sage: L = P1List(120) sage: L[10] (1, 9) sage: L.apply_I(10) 112 sage: L[112] (1, 111) sage: L.normalize(-1,9) (1, 111)
>>> from sage.all import * >>> L = P1List(Integer(120)) >>> L[Integer(10)] (1, 9) >>> L.apply_I(Integer(10)) 112 >>> L[Integer(112)] (1, 111) >>> L.normalize(-Integer(1),Integer(9)) (1, 111)
This operation is an involution:
sage: all(L.apply_I(L.apply_I(i)) == i for i in range(len(L))) True
>>> from sage.all import * >>> all(L.apply_I(L.apply_I(i)) == i for i in range(len(L))) True
- apply_S(i)[source]#
Return the index of the result of applying the matrix \(S=[0,-1;1,0]\) to the \(i\)’th element of this P1List.
INPUT:
i
– integer (the index of the element to act on).
EXAMPLES:
sage: L = P1List(120) sage: L[10] (1, 9) sage: L.apply_S(10) 159 sage: L[159] (3, 13) sage: L.normalize(-9,1) (3, 13)
>>> from sage.all import * >>> L = P1List(Integer(120)) >>> L[Integer(10)] (1, 9) >>> L.apply_S(Integer(10)) 159 >>> L[Integer(159)] (3, 13) >>> L.normalize(-Integer(9),Integer(1)) (3, 13)
This operation is an involution:
sage: all(L.apply_S(L.apply_S(i)) == i for i in range(len(L))) True
>>> from sage.all import * >>> all(L.apply_S(L.apply_S(i)) == i for i in range(len(L))) True
- apply_T(i)[source]#
Return the index of the result of applying the matrix \(T=[0,1;-1,-1]\) to the \(i\)’th element of this P1List.
INPUT:
i
– integer (the index of the element to act on).
EXAMPLES:
sage: L = P1List(120) sage: L[10] (1, 9) sage: L.apply_T(10) 157 sage: L[157] (3, 10) sage: L.normalize(9,-10) (3, 10)
>>> from sage.all import * >>> L = P1List(Integer(120)) >>> L[Integer(10)] (1, 9) >>> L.apply_T(Integer(10)) 157 >>> L[Integer(157)] (3, 10) >>> L.normalize(Integer(9),-Integer(10)) (3, 10)
This operation has order three:
sage: all(L.apply_T(L.apply_T(L.apply_T(i))) == i for i in range(len(L))) True
>>> from sage.all import * >>> all(L.apply_T(L.apply_T(L.apply_T(i))) == i for i in range(len(L))) True
- index(u, v)[source]#
Return the index of the class of \((u,v)\) in the fixed list of representatives of \(\mathbb{P}^1(\ZZ/N\ZZ)\).
INPUT:
u, v
– integers, with \(\gcd(u,v,N)=1\).
OUTPUT:
i
– the index of \(u\), \(v\), in the P1list.
EXAMPLES:
sage: L = P1List(120) sage: L[100] (1, 99) sage: L.index(1,99) 100 sage: all(L.index(L[i][0],L[i][1])==i for i in range(len(L))) True
>>> from sage.all import * >>> L = P1List(Integer(120)) >>> L[Integer(100)] (1, 99) >>> L.index(Integer(1),Integer(99)) 100 >>> all(L.index(L[i][Integer(0)],L[i][Integer(1)])==i for i in range(len(L))) True
- index_of_normalized_pair(u, v)[source]#
Return the index of the class of \((u,v)\) in the fixed list of representatives of \(\mathbb{P}^1(\ZZ/N\ZZ)\).
INPUT:
u
,v
– integers, with \(\gcd(u,v,N)=1\), normalized so they lie in the list.
OUTPUT:
i
– the index of \((u:v)\), in the P1list.
EXAMPLES:
sage: L = P1List(120) sage: L[100] (1, 99) sage: L.index_of_normalized_pair(1,99) 100 sage: all(L.index_of_normalized_pair(L[i][0],L[i][1])==i for i in range(len(L))) True
>>> from sage.all import * >>> L = P1List(Integer(120)) >>> L[Integer(100)] (1, 99) >>> L.index_of_normalized_pair(Integer(1),Integer(99)) 100 >>> all(L.index_of_normalized_pair(L[i][Integer(0)],L[i][Integer(1)])==i for i in range(len(L))) True
- lift_to_sl2z(i)[source]#
Lift the \(i\)’th element of this P1list to an element of \(SL(2,\ZZ)\).
If the \(i\)’th element is \((c,d)\), this function computes and returns a list \([a,b, c',d']\) that defines a 2x2 matrix with determinant 1 and integer entries, such that \(c=c'\) (mod \(N\)) and \(d=d'\) (mod \(N\)).
INPUT:
i
– integer (the index of the element to lift).
EXAMPLES:
sage: p = P1List(11) sage: p.list()[3] (1, 2) sage: p.lift_to_sl2z(3) [0, -1, 1, 2]
>>> from sage.all import * >>> p = P1List(Integer(11)) >>> p.list()[Integer(3)] (1, 2) >>> p.lift_to_sl2z(Integer(3)) [0, -1, 1, 2]
AUTHORS:
Justin Walker
- list()[source]#
Return the underlying list of this
P1List
object.EXAMPLES:
sage: L = P1List(8) sage: type(L) <... 'sage.modular.modsym.p1list.P1List'> sage: type(L.list()) <... 'list'>
>>> from sage.all import * >>> L = P1List(Integer(8)) >>> type(L) <... 'sage.modular.modsym.p1list.P1List'> >>> type(L.list()) <... 'list'>
- normalize(u, v)[source]#
Return a normalised element of \(\mathbb{P}^1(\ZZ/N\ZZ)\).
INPUT:
u, v
– integers, with \(\gcd(u,v,N)=1\).
OUTPUT:
a 2-tuple
(uu,vv)
where \((uu:vv)\) is a normalized representative of \((u:v)\).
NOTE: See also normalize_with_scalar() which also returns the normalizing scalar.
EXAMPLES:
sage: L = P1List(120) sage: (u,v) = (555555555,7777) sage: uu,vv = L.normalize(555555555,7777) sage: (uu,vv) (15, 13) sage: (uu*v-vv*u) % L.N() == 0 True
>>> from sage.all import * >>> L = P1List(Integer(120)) >>> (u,v) = (Integer(555555555),Integer(7777)) >>> uu,vv = L.normalize(Integer(555555555),Integer(7777)) >>> (uu,vv) (15, 13) >>> (uu*v-vv*u) % L.N() == Integer(0) True
- normalize_with_scalar(u, v)[source]#
Return a normalised element of \(\mathbb{P}^1(\ZZ/N\ZZ)\), together with the normalizing scalar.
INPUT:
u, v
– integers, with \(\gcd(u,v,N)=1\).
OUTPUT:
a 3-tuple
(uu,vv,ss)
where \((uu:vv)\) is a normalized representative of \((u:v)\), and \(ss\) is a scalar such that \((ss*uu, ss*vv) = (u,v)\) (mod \(N\)).
EXAMPLES:
sage: L = P1List(120) sage: (u,v) = (555555555,7777) sage: uu,vv,ss = L.normalize_with_scalar(555555555,7777) sage: (uu,vv) (15, 13) sage: ((ss*uu-u)%L.N(), (ss*vv-v)%L.N()) (0, 0) sage: (uu*v-vv*u) % L.N() == 0 True
>>> from sage.all import * >>> L = P1List(Integer(120)) >>> (u,v) = (Integer(555555555),Integer(7777)) >>> uu,vv,ss = L.normalize_with_scalar(Integer(555555555),Integer(7777)) >>> (uu,vv) (15, 13) >>> ((ss*uu-u)%L.N(), (ss*vv-v)%L.N()) (0, 0) >>> (uu*v-vv*u) % L.N() == Integer(0) True
- class sage.modular.modsym.p1list.export#
Bases:
object
- sage.modular.modsym.p1list.lift_to_sl2z(c, d, N)[source]#
Return a list of Python ints \([a,b,c',d']\) that are the entries of a 2x2 matrix with determinant 1 and lower two entries congruent to \(c,d\) modulo \(N\).
INPUT:
c,d,N
– Python ints or longs such that \(\gcd(c,d,N)=1\).
EXAMPLES:
sage: lift_to_sl2z(2,3,6) [1, 1, 2, 3] sage: lift_to_sl2z(2,3,6000000) [1, 1, 2, 3]
>>> from sage.all import * >>> lift_to_sl2z(Integer(2),Integer(3),Integer(6)) [1, 1, 2, 3] >>> lift_to_sl2z(Integer(2),Integer(3),Integer(6000000)) [1, 1, 2, 3]
You will get a
ValueError
exception if the input is invalid. Note that here gcd(15,6,24)=3:sage: lift_to_sl2z(15,6,24) Traceback (most recent call last): ... ValueError: input must have gcd 1
>>> from sage.all import * >>> lift_to_sl2z(Integer(15),Integer(6),Integer(24)) Traceback (most recent call last): ... ValueError: input must have gcd 1
This function is not implemented except for N at most 2**31:
sage: lift_to_sl2z(1,1,2^32) Traceback (most recent call last): ... NotImplementedError: N too large
>>> from sage.all import * >>> lift_to_sl2z(Integer(1),Integer(1),Integer(2)**Integer(32)) Traceback (most recent call last): ... NotImplementedError: N too large
- sage.modular.modsym.p1list.lift_to_sl2z_int(c, d, N)[source]#
Lift a pair \((c, d)\) to an element of \(SL(2, \ZZ)\).
\((c,d)\) is assumed to be an element of \(\mathbb{P}^1(\ZZ/N\ZZ)\). This function computes and returns a list \([a, b, c', d']\) that defines a 2x2 matrix, with determinant 1 and integer entries, such that \(c=c'\) (mod \(N\)) and \(d=d'\) (mod \(N\)).
INPUT:
c,d,N
– integers such that \(\gcd(c,d,N)=1\).
EXAMPLES:
sage: from sage.modular.modsym.p1list import lift_to_sl2z_int sage: lift_to_sl2z_int(2,6,11) [1, 8, 2, 17] sage: m = Matrix(Integers(),2,2,lift_to_sl2z_int(2,6,11)); m [ 1 8] [ 2 17]
>>> from sage.all import * >>> from sage.modular.modsym.p1list import lift_to_sl2z_int >>> lift_to_sl2z_int(Integer(2),Integer(6),Integer(11)) [1, 8, 2, 17] >>> m = Matrix(Integers(),Integer(2),Integer(2),lift_to_sl2z_int(Integer(2),Integer(6),Integer(11))); m [ 1 8] [ 2 17]
AUTHOR:
Justin Walker
- sage.modular.modsym.p1list.lift_to_sl2z_llong(c, d, N)[source]#
Lift a pair \((c, d)\) (modulo \(N\)) to an element of \(SL(2, \ZZ)\).
\((c,d)\) is assumed to be an element of \(\mathbb{P}^1(\ZZ/N\ZZ)\). This function computes and returns a list \([a, b, c', d']\) that defines a 2x2 matrix, with determinant 1 and integer entries, such that \(c=c'\) (mod \(N\)) and \(d=d'\) (mod \(N\)).
INPUT:
c,d,N
– integers such that \(\gcd(c,d,N)=1\).
EXAMPLES:
sage: from sage.modular.modsym.p1list import lift_to_sl2z_llong sage: lift_to_sl2z_llong(2,6,11) [1, 8, 2, 17] sage: m = Matrix(Integers(),2,2,lift_to_sl2z_llong(2,6,11)); m [ 1 8] [ 2 17]
>>> from sage.all import * >>> from sage.modular.modsym.p1list import lift_to_sl2z_llong >>> lift_to_sl2z_llong(Integer(2),Integer(6),Integer(11)) [1, 8, 2, 17] >>> m = Matrix(Integers(),Integer(2),Integer(2),lift_to_sl2z_llong(Integer(2),Integer(6),Integer(11))); m [ 1 8] [ 2 17]
AUTHOR:
Justin Walker
- sage.modular.modsym.p1list.p1_normalize(N, u, v)[source]#
Computes the canonical representative of \(\mathbb{P}^1(\ZZ/N\ZZ)\) equivalent to \((u,v)\) along with a transforming scalar.
INPUT:
N
– an integeru
– an integerv
– an integer
OUTPUT: If gcd(u,v,N) = 1, then returns
uu
– an integervv
– an integerss
– an integer such that \((ss*uu, ss*vv)\) is equivalent to \((u,v)\) mod \(N\);if \(\gcd(u,v,N) \not= 1\), returns 0, 0, 0.
EXAMPLES:
sage: from sage.modular.modsym.p1list import p1_normalize sage: p1_normalize(90,7,77) (1, 11, 7) sage: p1_normalize(90,7,78) (1, 24, 7) sage: (7*24-78*1) % 90 0 sage: (7*24) % 90 78
>>> from sage.all import * >>> from sage.modular.modsym.p1list import p1_normalize >>> p1_normalize(Integer(90),Integer(7),Integer(77)) (1, 11, 7) >>> p1_normalize(Integer(90),Integer(7),Integer(78)) (1, 24, 7) >>> (Integer(7)*Integer(24)-Integer(78)*Integer(1)) % Integer(90) 0 >>> (Integer(7)*Integer(24)) % Integer(90) 78
sage: from sage.modular.modsym.p1list import p1_normalize sage: p1_normalize(50001,12345,54322) (3, 4667, 4115) sage: (12345*4667-54321*3) % 50001 3 sage: 4115*3 % 50001 12345 sage: 4115*4667 % 50001 == 54322 % 50001 True
>>> from sage.all import * >>> from sage.modular.modsym.p1list import p1_normalize >>> p1_normalize(Integer(50001),Integer(12345),Integer(54322)) (3, 4667, 4115) >>> (Integer(12345)*Integer(4667)-Integer(54321)*Integer(3)) % Integer(50001) 3 >>> Integer(4115)*Integer(3) % Integer(50001) 12345 >>> Integer(4115)*Integer(4667) % Integer(50001) == Integer(54322) % Integer(50001) True
- sage.modular.modsym.p1list.p1_normalize_int(N, u, v)[source]#
Computes the canonical representative of \(\mathbb{P}^1(\ZZ/N\ZZ)\) equivalent to \((u,v)\) along with a transforming scalar.
INPUT:
N
– an integeru
– an integerv
– an integer
OUTPUT: If gcd(u,v,N) = 1, then returns
uu
– an integervv
– an integerss
– an integer such that \((ss*uu, ss*vv)\) is congruent to \((u,v)\) (mod \(N\));if \(\gcd(u,v,N) \not= 1\), returns 0, 0, 0.
EXAMPLES:
sage: from sage.modular.modsym.p1list import p1_normalize_int sage: p1_normalize_int(90,7,77) (1, 11, 7) sage: p1_normalize_int(90,7,78) (1, 24, 7) sage: (7*24-78*1) % 90 0 sage: (7*24) % 90 78
>>> from sage.all import * >>> from sage.modular.modsym.p1list import p1_normalize_int >>> p1_normalize_int(Integer(90),Integer(7),Integer(77)) (1, 11, 7) >>> p1_normalize_int(Integer(90),Integer(7),Integer(78)) (1, 24, 7) >>> (Integer(7)*Integer(24)-Integer(78)*Integer(1)) % Integer(90) 0 >>> (Integer(7)*Integer(24)) % Integer(90) 78
- sage.modular.modsym.p1list.p1_normalize_llong(N, u, v)[source]#
Computes the canonical representative of \(\mathbb{P}^1(\ZZ/N\ZZ)\) equivalent to \((u,v)\) along with a transforming scalar.
INPUT:
N
– an integeru
– an integerv
– an integer
OUTPUT: If gcd(u,v,N) = 1, then returns
uu
– an integervv
– an integerss
– an integer such that \((ss*uu, ss*vv)\) is equivalent to \((u,v)\) mod \(N\);if \(\gcd(u,v,N) \not= 1\), returns 0, 0, 0.
EXAMPLES:
sage: from sage.modular.modsym.p1list import p1_normalize_llong sage: p1_normalize_llong(90000,7,77) (1, 11, 7) sage: p1_normalize_llong(90000,7,78) (1, 77154, 7) sage: (7*77154-78*1) % 90000 0 sage: (7*77154) % 90000 78
>>> from sage.all import * >>> from sage.modular.modsym.p1list import p1_normalize_llong >>> p1_normalize_llong(Integer(90000),Integer(7),Integer(77)) (1, 11, 7) >>> p1_normalize_llong(Integer(90000),Integer(7),Integer(78)) (1, 77154, 7) >>> (Integer(7)*Integer(77154)-Integer(78)*Integer(1)) % Integer(90000) 0 >>> (Integer(7)*Integer(77154)) % Integer(90000) 78
- sage.modular.modsym.p1list.p1list(N)[source]#
Return the elements of the projective line modulo \(N\), \(\mathbb{P}^1(\ZZ/N\ZZ)\), as a plain list of 2-tuples.
INPUT:
N (integer) – a positive integer (less than 2^31).
OUTPUT:
A list of the elements of the projective line \(\mathbb{P}^1(\ZZ/N\ZZ)\), as plain 2-tuples.
EXAMPLES:
sage: from sage.modular.modsym.p1list import p1list sage: list(p1list(7)) [(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)] sage: N = 23456 sage: len(p1list(N)) == N*prod([1+1/p for p,e in N.factor()]) True
>>> from sage.all import * >>> from sage.modular.modsym.p1list import p1list >>> list(p1list(Integer(7))) [(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)] >>> N = Integer(23456) >>> len(p1list(N)) == N*prod([Integer(1)+Integer(1)/p for p,e in N.factor()]) True
- sage.modular.modsym.p1list.p1list_int(N)[source]#
Return a list of the normalized elements of \(\mathbb{P}^1(\ZZ/N\ZZ)\).
INPUT:
N
– integer (the level or modulus).
EXAMPLES:
sage: from sage.modular.modsym.p1list import p1list_int sage: p1list_int(6) [(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 5), (3, 1), (3, 2)]
>>> from sage.all import * >>> from sage.modular.modsym.p1list import p1list_int >>> p1list_int(Integer(6)) [(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 5), (3, 1), (3, 2)]
sage: p1list_int(120) [(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), ... (30, 7), (40, 1), (40, 3), (40, 11), (60, 1)]
>>> from sage.all import * >>> p1list_int(Integer(120)) [(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), ... (30, 7), (40, 1), (40, 3), (40, 11), (60, 1)]
- sage.modular.modsym.p1list.p1list_llong(N)[source]#
Return a list of the normalized elements of \(\mathbb{P}^1(\ZZ/N\ZZ)\), as a plain list of 2-tuples.
INPUT:
N
– integer (the level or modulus).
EXAMPLES:
sage: from sage.modular.modsym.p1list import p1list_llong sage: N = 50000 sage: L = p1list_llong(50000) sage: len(L) == N*prod([1+1/p for p,e in N.factor()]) True sage: L[0] (0, 1) sage: L[len(L)-1] (25000, 1)
>>> from sage.all import * >>> from sage.modular.modsym.p1list import p1list_llong >>> N = Integer(50000) >>> L = p1list_llong(Integer(50000)) >>> len(L) == N*prod([Integer(1)+Integer(1)/p for p,e in N.factor()]) True >>> L[Integer(0)] (0, 1) >>> L[len(L)-Integer(1)] (25000, 1)