Sparse action of Hecke operators#
- class sage.modular.modsym.hecke_operator.HeckeOperator(parent, n)[source]#
Bases:
HeckeOperator
- apply_sparse(x)[source]#
Return the image of
x
underself
.If
x
is not inself.domain()
, raise aTypeError
.EXAMPLES:
sage: M = ModularSymbols(17,4,-1) sage: T = M.hecke_operator(4) sage: T.apply_sparse(M.0) -27*[X^2,(1,7)] - 167/2*[X^2,(1,9)] - 21/2*[X^2,(1,13)] + 53/2*[X^2,(1,15)] sage: [T.apply_sparse(x) == T.hecke_module_morphism()(x) for x in M.basis()] [True, True, True, True] sage: N = ModularSymbols(17,4,1) sage: T.apply_sparse(N.0) Traceback (most recent call last): ... TypeError: x (=[X^2,(0,1)]) must be in Modular Symbols space of dimension 4 for Gamma_0(17) of weight 4 with sign -1 over Rational Field
>>> from sage.all import * >>> M = ModularSymbols(Integer(17),Integer(4),-Integer(1)) >>> T = M.hecke_operator(Integer(4)) >>> T.apply_sparse(M.gen(0)) -27*[X^2,(1,7)] - 167/2*[X^2,(1,9)] - 21/2*[X^2,(1,13)] + 53/2*[X^2,(1,15)] >>> [T.apply_sparse(x) == T.hecke_module_morphism()(x) for x in M.basis()] [True, True, True, True] >>> N = ModularSymbols(Integer(17),Integer(4),Integer(1)) >>> T.apply_sparse(N.gen(0)) Traceback (most recent call last): ... TypeError: x (=[X^2,(0,1)]) must be in Modular Symbols space of dimension 4 for Gamma_0(17) of weight 4 with sign -1 over Rational Field