Fast Arithmetic Functions¶
- sage.arith.functions.LCM_list(v)[source]¶
Return the LCM of an iterable
v
.Elements of
v
are converted to Sage objects if they aren’t already.This function is used, e.g., by
lcm()
.INPUT:
v
– an iterable
OUTPUT: integer
EXAMPLES:
sage: from sage.arith.functions import LCM_list sage: w = LCM_list([3,9,30]); w 90 sage: type(w) <class 'sage.rings.integer.Integer'>
>>> from sage.all import * >>> from sage.arith.functions import LCM_list >>> w = LCM_list([Integer(3),Integer(9),Integer(30)]); w 90 >>> type(w) <class 'sage.rings.integer.Integer'>
The inputs are converted to Sage integers:
sage: w = LCM_list([int(3), int(9), int(30)]); w 90 sage: type(w) <class 'sage.rings.integer.Integer'>
>>> from sage.all import * >>> w = LCM_list([int(Integer(3)), int(Integer(9)), int(Integer(30))]); w 90 >>> type(w) <class 'sage.rings.integer.Integer'>
- sage.arith.functions.lcm(a, b=None)[source]¶
The least common multiple of a and b, or if a is a list and b is omitted the least common multiple of all elements of a.
Note that LCM is an alias for lcm.
INPUT:
a
,b
– two elements of a ring with lcm ora
– list; tuple or iterable of elements of a ring with lcm
OUTPUT:
First, the given elements are coerced into a common parent. Then, their least common multiple in that parent is returned.
EXAMPLES:
sage: lcm(97, 100) 9700 sage: LCM(97, 100) 9700 sage: LCM(0, 2) 0 sage: LCM(-3, -5) 15 sage: LCM([1,2,3,4,5]) 60 sage: v = LCM(range(1, 10000)) # *very* fast! sage: len(str(v)) 4349
>>> from sage.all import * >>> lcm(Integer(97), Integer(100)) 9700 >>> LCM(Integer(97), Integer(100)) 9700 >>> LCM(Integer(0), Integer(2)) 0 >>> LCM(-Integer(3), -Integer(5)) 15 >>> LCM([Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)]) 60 >>> v = LCM(range(Integer(1), Integer(10000))) # *very* fast! >>> len(str(v)) 4349