Utility classes for multi-modular algorithms#
- class sage.arith.multi_modular.MultiModularBasis[source]#
Bases:
MultiModularBasis_base
Class used for storing a MultiModular bases of a fixed length.
- class sage.arith.multi_modular.MultiModularBasis_base[source]#
Bases:
object
This class stores a list of machine-sized prime numbers, and can do reduction and Chinese Remainder Theorem lifting modulo these primes.
Lifting implemented via Garner’s algorithm, which has the advantage that all reductions are word-sized. For each \(i\), precompute \(\prod_j=1^{i-1} m_j\) and \(\prod_j=1^{i-1} m_j^{-1} (mod m_i)\).
This class can be initialized in two ways, either with a list of prime moduli or an upper bound for the product of the prime moduli. The prime moduli are generated automatically in the second case.
EXAMPLES:
sage: from sage.arith.multi_modular import MultiModularBasis_base sage: mm = MultiModularBasis_base([3, 5, 7]); mm MultiModularBasis with moduli [3, 5, 7] sage: height = 52348798724 sage: mm = MultiModularBasis_base(height); mm MultiModularBasis with moduli [...] sage: mm.prod() >= 2*height True
>>> from sage.all import * >>> from sage.arith.multi_modular import MultiModularBasis_base >>> mm = MultiModularBasis_base([Integer(3), Integer(5), Integer(7)]); mm MultiModularBasis with moduli [3, 5, 7] >>> height = Integer(52348798724) >>> mm = MultiModularBasis_base(height); mm MultiModularBasis with moduli [...] >>> mm.prod() >= Integer(2)*height True
- crt(b)[source]#
Calculate lift mod \(\prod_{i=0}^{len(b)-1} m_i\).
In the case that offset > 0, z[j] remains unchanged mod \(\prod_{i=0}^{offset-1} m_i\)
INPUT:
b
– a list of length at most self.n
OUTPUT:
Integer z where \(z = b[i] mod m_i\) for 0 <= i < len(b)
EXAMPLES:
sage: from sage.arith.multi_modular import MultiModularBasis_base sage: mm = MultiModularBasis_base([10007, 10009, 10037, 10039, 17351]) sage: res = mm.crt([3,5,7,9]); res 8474803647063985 sage: res % 10007 3 sage: res % 10009 5 sage: res % 10037 7 sage: res % 10039 9
>>> from sage.all import * >>> from sage.arith.multi_modular import MultiModularBasis_base >>> mm = MultiModularBasis_base([Integer(10007), Integer(10009), Integer(10037), Integer(10039), Integer(17351)]) >>> res = mm.crt([Integer(3),Integer(5),Integer(7),Integer(9)]); res 8474803647063985 >>> res % Integer(10007) 3 >>> res % Integer(10009) 5 >>> res % Integer(10037) 7 >>> res % Integer(10039) 9
- extend_with_primes(plist, partial_products=None, check=True)[source]#
Extend the stored list of moduli with the given primes in
plist
.EXAMPLES:
sage: from sage.arith.multi_modular import MultiModularBasis_base sage: mm = MultiModularBasis_base([1009, 10007]); mm MultiModularBasis with moduli [1009, 10007] sage: mm.extend_with_primes([10037, 10039]) 4 sage: mm MultiModularBasis with moduli [1009, 10007, 10037, 10039]
>>> from sage.all import * >>> from sage.arith.multi_modular import MultiModularBasis_base >>> mm = MultiModularBasis_base([Integer(1009), Integer(10007)]); mm MultiModularBasis with moduli [1009, 10007] >>> mm.extend_with_primes([Integer(10037), Integer(10039)]) 4 >>> mm MultiModularBasis with moduli [1009, 10007, 10037, 10039]
- list()[source]#
Return a list with the prime moduli.
EXAMPLES:
sage: from sage.arith.multi_modular import MultiModularBasis_base sage: mm = MultiModularBasis_base([46307, 10007]) sage: mm.list() [46307, 10007]
>>> from sage.all import * >>> from sage.arith.multi_modular import MultiModularBasis_base >>> mm = MultiModularBasis_base([Integer(46307), Integer(10007)]) >>> mm.list() [46307, 10007]
- partial_product(n)[source]#
Return a list containing precomputed partial products.
EXAMPLES:
sage: from sage.arith.multi_modular import MultiModularBasis_base sage: mm = MultiModularBasis_base([46307, 10007]); mm MultiModularBasis with moduli [46307, 10007] sage: mm.partial_product(0) 46307 sage: mm.partial_product(1) 463394149
>>> from sage.all import * >>> from sage.arith.multi_modular import MultiModularBasis_base >>> mm = MultiModularBasis_base([Integer(46307), Integer(10007)]); mm MultiModularBasis with moduli [46307, 10007] >>> mm.partial_product(Integer(0)) 46307 >>> mm.partial_product(Integer(1)) 463394149
- precomputation_list()[source]#
Return a list of the precomputed coefficients \(\prod_j=1^{i-1} m_j^{-1} (mod m_i)\) where \(m_i\) are the prime moduli.
EXAMPLES:
sage: from sage.arith.multi_modular import MultiModularBasis_base sage: mm = MultiModularBasis_base([46307, 10007]); mm MultiModularBasis with moduli [46307, 10007] sage: mm.precomputation_list() [1, 4013]
>>> from sage.all import * >>> from sage.arith.multi_modular import MultiModularBasis_base >>> mm = MultiModularBasis_base([Integer(46307), Integer(10007)]); mm MultiModularBasis with moduli [46307, 10007] >>> mm.precomputation_list() [1, 4013]
- prod()[source]#
Return the product of the prime moduli.
EXAMPLES:
sage: from sage.arith.multi_modular import MultiModularBasis_base sage: mm = MultiModularBasis_base([46307]); mm MultiModularBasis with moduli [46307] sage: mm.prod() 46307 sage: mm = MultiModularBasis_base([46307, 10007]); mm MultiModularBasis with moduli [46307, 10007] sage: mm.prod() 463394149
>>> from sage.all import * >>> from sage.arith.multi_modular import MultiModularBasis_base >>> mm = MultiModularBasis_base([Integer(46307)]); mm MultiModularBasis with moduli [46307] >>> mm.prod() 46307 >>> mm = MultiModularBasis_base([Integer(46307), Integer(10007)]); mm MultiModularBasis with moduli [46307, 10007] >>> mm.prod() 463394149
- class sage.arith.multi_modular.MutableMultiModularBasis[source]#
Bases:
MultiModularBasis
Class used for performing multi-modular methods, with the possibility of removing bad primes.
- next_prime()[source]#
Pick a new random prime between the bounds given during the initialization of this object, update the precomputed data, and return the new prime modulus.
EXAMPLES:
sage: from sage.arith.multi_modular import MutableMultiModularBasis sage: mm = MutableMultiModularBasis([10007]) sage: p = mm.next_prime() sage: 1024 < p < 32768 True sage: p != 10007 True sage: mm.list() == [10007, p] True
>>> from sage.all import * >>> from sage.arith.multi_modular import MutableMultiModularBasis >>> mm = MutableMultiModularBasis([Integer(10007)]) >>> p = mm.next_prime() >>> Integer(1024) < p < Integer(32768) True >>> p != Integer(10007) True >>> mm.list() == [Integer(10007), p] True
- replace_prime(ix)[source]#
Replace the prime moduli at the given index with a different one, update the precomputed data accordingly, and return the new prime.
INPUT:
ix
– index into list of moduli
OUTPUT: the new prime modulus
EXAMPLES:
sage: from sage.arith.multi_modular import MutableMultiModularBasis sage: mm = MutableMultiModularBasis([10007, 10009, 10037, 10039]) sage: mm MultiModularBasis with moduli [10007, 10009, 10037, 10039] sage: prev_prod = mm.prod(); prev_prod 10092272478850909 sage: mm.precomputation_list() [1, 5004, 6536, 6060] sage: mm.partial_product(2) 1005306552331 sage: p = mm.replace_prime(1) sage: mm.list() == [10007, p, 10037, 10039] True sage: mm.prod()*10009 == prev_prod*p True sage: precomputed = mm.precomputation_list() sage: precomputed == [prod(Integers(mm[i])(1 / mm[j]) ....: for j in range(i)) ....: for i in range(4)] True sage: mm.partial_product(2) == prod(mm.list()[:3]) True
>>> from sage.all import * >>> from sage.arith.multi_modular import MutableMultiModularBasis >>> mm = MutableMultiModularBasis([Integer(10007), Integer(10009), Integer(10037), Integer(10039)]) >>> mm MultiModularBasis with moduli [10007, 10009, 10037, 10039] >>> prev_prod = mm.prod(); prev_prod 10092272478850909 >>> mm.precomputation_list() [1, 5004, 6536, 6060] >>> mm.partial_product(Integer(2)) 1005306552331 >>> p = mm.replace_prime(Integer(1)) >>> mm.list() == [Integer(10007), p, Integer(10037), Integer(10039)] True >>> mm.prod()*Integer(10009) == prev_prod*p True >>> precomputed = mm.precomputation_list() >>> precomputed == [prod(Integers(mm[i])(Integer(1) / mm[j]) ... for j in range(i)) ... for i in range(Integer(4))] True >>> mm.partial_product(Integer(2)) == prod(mm.list()[:Integer(3)]) True