Miscellaneous arithmetic functions

AUTHORS:

  • Kevin Stueve (2010-01-17): in is_prime(n), delegated calculation to n.is_prime()

sage.arith.misc.CRT(a, b, m=None, n=None)[source]

Return a solution to a Chinese Remainder Theorem problem.

INPUT:

  • a, b – two residues (elements of some ring for which extended gcd is available), or two lists, one of residues and one of moduli

  • m, n – (default: None) two moduli, or None

OUTPUT:

If m, n are not None, returns a solution \(x\) to the simultaneous congruences \(x\equiv a \bmod m\) and \(x\equiv b \bmod n\), if one exists. By the Chinese Remainder Theorem, a solution to the simultaneous congruences exists if and only if \(a\equiv b\pmod{\gcd(m,n)}\). The solution \(x\) is only well-defined modulo \(\text{lcm}(m,n)\).

If a and b are lists, returns a simultaneous solution to the congruences \(x\equiv a_i\pmod{b_i}\), if one exists.

See also

EXAMPLES:

Using crt by giving it pairs of residues and moduli:

sage: crt(2, 1, 3, 5)
11
sage: crt(13, 20, 100, 301)
28013
sage: crt([2, 1], [3, 5])
11
sage: crt([13, 20], [100, 301])
28013
>>> from sage.all import *
>>> crt(Integer(2), Integer(1), Integer(3), Integer(5))
11
>>> crt(Integer(13), Integer(20), Integer(100), Integer(301))
28013
>>> crt([Integer(2), Integer(1)], [Integer(3), Integer(5)])
11
>>> crt([Integer(13), Integer(20)], [Integer(100), Integer(301)])
28013

You can also use upper case:

sage: c = CRT(2,3, 3, 5); c
8
sage: c % 3 == 2
True
sage: c % 5 == 3
True
>>> from sage.all import *
>>> c = CRT(Integer(2),Integer(3), Integer(3), Integer(5)); c
8
>>> c % Integer(3) == Integer(2)
True
>>> c % Integer(5) == Integer(3)
True

Note that this also works for polynomial rings:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 7)
sage: R.<y> = K[]
sage: f = y^2 + 3
sage: g = y^3 - 5
sage: CRT(1, 3, f, g)
-3/26*y^4 + 5/26*y^3 + 15/26*y + 53/26
sage: CRT(1, a, f, g)
(-3/52*a + 3/52)*y^4 + (5/52*a - 5/52)*y^3 + (15/52*a - 15/52)*y + 27/52*a + 25/52
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> x = polygen(ZZ, 'x')
>>> K = NumberField(x**Integer(3) - Integer(7), names=('a',)); (a,) = K._first_ngens(1)
>>> R = K['y']; (y,) = R._first_ngens(1)
>>> f = y**Integer(2) + Integer(3)
>>> g = y**Integer(3) - Integer(5)
>>> CRT(Integer(1), Integer(3), f, g)
-3/26*y^4 + 5/26*y^3 + 15/26*y + 53/26
>>> CRT(Integer(1), a, f, g)
(-3/52*a + 3/52)*y^4 + (5/52*a - 5/52)*y^3 + (15/52*a - 15/52)*y + 27/52*a + 25/52

You can also do this for any number of moduli:

sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(x^3 - 7)
sage: R.<x> = K[]
sage: CRT([], [])
0
sage: CRT([a], [x])
a
sage: f = x^2 + 3
sage: g = x^3 - 5
sage: h = x^5 + x^2 - 9
sage: k = CRT([1, a, 3], [f, g, h]); k
(127/26988*a - 5807/386828)*x^9 + (45/8996*a - 33677/1160484)*x^8
 + (2/173*a - 6/173)*x^7 + (133/6747*a - 5373/96707)*x^6
 + (-6/2249*a + 18584/290121)*x^5 + (-277/8996*a + 38847/386828)*x^4
 + (-135/4498*a + 42673/193414)*x^3 + (-1005/8996*a + 470245/1160484)*x^2
 + (-1215/8996*a + 141165/386828)*x + 621/8996*a + 836445/386828
sage: k.mod(f)
1
sage: k.mod(g)
a
sage: k.mod(h)
3
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = NumberField(x**Integer(3) - Integer(7), names=('a',)); (a,) = K._first_ngens(1)
>>> R = K['x']; (x,) = R._first_ngens(1)
>>> CRT([], [])
0
>>> CRT([a], [x])
a
>>> f = x**Integer(2) + Integer(3)
>>> g = x**Integer(3) - Integer(5)
>>> h = x**Integer(5) + x**Integer(2) - Integer(9)
>>> k = CRT([Integer(1), a, Integer(3)], [f, g, h]); k
(127/26988*a - 5807/386828)*x^9 + (45/8996*a - 33677/1160484)*x^8
 + (2/173*a - 6/173)*x^7 + (133/6747*a - 5373/96707)*x^6
 + (-6/2249*a + 18584/290121)*x^5 + (-277/8996*a + 38847/386828)*x^4
 + (-135/4498*a + 42673/193414)*x^3 + (-1005/8996*a + 470245/1160484)*x^2
 + (-1215/8996*a + 141165/386828)*x + 621/8996*a + 836445/386828
>>> k.mod(f)
1
>>> k.mod(g)
a
>>> k.mod(h)
3

If the moduli are not coprime, a solution may not exist:

sage: crt(4, 8, 8, 12)
20
sage: crt(4, 6, 8, 12)
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(8,12) does not divide 4-6

sage: x = polygen(QQ)
sage: crt(2, 3, x - 1, x + 1)
-1/2*x + 5/2
sage: crt(2, x, x^2 - 1, x^2 + 1)
-1/2*x^3 + x^2 + 1/2*x + 1
sage: crt(2, x, x^2 - 1, x^3 - 1)
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(x^2 - 1,x^3 - 1) does not divide 2-x

sage: crt(int(2), int(3), int(7), int(11))
58
>>> from sage.all import *
>>> crt(Integer(4), Integer(8), Integer(8), Integer(12))
20
>>> crt(Integer(4), Integer(6), Integer(8), Integer(12))
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(8,12) does not divide 4-6

>>> x = polygen(QQ)
>>> crt(Integer(2), Integer(3), x - Integer(1), x + Integer(1))
-1/2*x + 5/2
>>> crt(Integer(2), x, x**Integer(2) - Integer(1), x**Integer(2) + Integer(1))
-1/2*x^3 + x^2 + 1/2*x + 1
>>> crt(Integer(2), x, x**Integer(2) - Integer(1), x**Integer(3) - Integer(1))
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(x^2 - 1,x^3 - 1) does not divide 2-x

>>> crt(int(Integer(2)), int(Integer(3)), int(Integer(7)), int(Integer(11)))
58

crt also work with numpy and gmpy2 numbers:

sage: import numpy                                                              # needs numpy
sage: crt(numpy.int8(2), numpy.int8(3), numpy.int8(7), numpy.int8(11))          # needs numpy
58
sage: from gmpy2 import mpz
sage: crt(mpz(2), mpz(3), mpz(7), mpz(11))
58
sage: crt(mpz(2), 3, mpz(7), numpy.int8(11))                                    # needs numpy
58
>>> from sage.all import *
>>> import numpy                                                              # needs numpy
>>> crt(numpy.int8(Integer(2)), numpy.int8(Integer(3)), numpy.int8(Integer(7)), numpy.int8(Integer(11)))          # needs numpy
58
>>> from gmpy2 import mpz
>>> crt(mpz(Integer(2)), mpz(Integer(3)), mpz(Integer(7)), mpz(Integer(11)))
58
>>> crt(mpz(Integer(2)), Integer(3), mpz(Integer(7)), numpy.int8(Integer(11)))                                    # needs numpy
58
sage.arith.misc.CRT_basis(moduli)[source]

Return a CRT basis for the given moduli.

INPUT:

  • moduli – list of pairwise coprime moduli \(m\) which admit an extended Euclidean algorithm

OUTPUT:

  • a list of elements \(a_i\) of the same length as \(m\) such that \(a_i\) is congruent to 1 modulo \(m_i\) and to 0 modulo \(m_j\) for \(j\not=i\).

EXAMPLES:

sage: a1 = ZZ(mod(42,5))
sage: a2 = ZZ(mod(42,13))
sage: c1,c2 = CRT_basis([5,13])
sage: mod(a1*c1+a2*c2,5*13)
42
>>> from sage.all import *
>>> a1 = ZZ(mod(Integer(42),Integer(5)))
>>> a2 = ZZ(mod(Integer(42),Integer(13)))
>>> c1,c2 = CRT_basis([Integer(5),Integer(13)])
>>> mod(a1*c1+a2*c2,Integer(5)*Integer(13))
42

A polynomial example:

sage: x=polygen(QQ)
sage: mods = [x,x^2+1,2*x-3]
sage: b = CRT_basis(mods)
sage: b
[-2/3*x^3 + x^2 - 2/3*x + 1, 6/13*x^3 - x^2 + 6/13*x, 8/39*x^3 + 8/39*x]
sage: [[bi % mj for mj in mods] for bi in b]
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
>>> from sage.all import *
>>> x=polygen(QQ)
>>> mods = [x,x**Integer(2)+Integer(1),Integer(2)*x-Integer(3)]
>>> b = CRT_basis(mods)
>>> b
[-2/3*x^3 + x^2 - 2/3*x + 1, 6/13*x^3 - x^2 + 6/13*x, 8/39*x^3 + 8/39*x]
>>> [[bi % mj for mj in mods] for bi in b]
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
sage.arith.misc.CRT_list(values, moduli)[source]

Given a list values of elements and a list of corresponding moduli, find a single element that reduces to each element of values modulo the corresponding moduli.

See also

EXAMPLES:

sage: CRT_list([2,3,2], [3,5,7])
23
sage: x = polygen(QQ)
sage: c = CRT_list([3], [x]); c
3
sage: c.parent()
Univariate Polynomial Ring in x over Rational Field
>>> from sage.all import *
>>> CRT_list([Integer(2),Integer(3),Integer(2)], [Integer(3),Integer(5),Integer(7)])
23
>>> x = polygen(QQ)
>>> c = CRT_list([Integer(3)], [x]); c
3
>>> c.parent()
Univariate Polynomial Ring in x over Rational Field

It also works if the moduli are not coprime:

sage: CRT_list([32,2,2],[60,90,150])
452
>>> from sage.all import *
>>> CRT_list([Integer(32),Integer(2),Integer(2)],[Integer(60),Integer(90),Integer(150)])
452

But with non coprime moduli there is not always a solution:

sage: CRT_list([32,2,1],[60,90,150])
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(180,150) does not divide 92-1
>>> from sage.all import *
>>> CRT_list([Integer(32),Integer(2),Integer(1)],[Integer(60),Integer(90),Integer(150)])
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(180,150) does not divide 92-1

The arguments must be lists:

sage: CRT_list([1,2,3],"not a list")
Traceback (most recent call last):
...
ValueError: arguments to CRT_list should be lists
sage: CRT_list("not a list",[2,3])
Traceback (most recent call last):
...
ValueError: arguments to CRT_list should be lists
>>> from sage.all import *
>>> CRT_list([Integer(1),Integer(2),Integer(3)],"not a list")
Traceback (most recent call last):
...
ValueError: arguments to CRT_list should be lists
>>> CRT_list("not a list",[Integer(2),Integer(3)])
Traceback (most recent call last):
...
ValueError: arguments to CRT_list should be lists

The list of moduli must have the same length as the list of elements:

sage: CRT_list([1,2,3],[2,3,5])
23
sage: CRT_list([1,2,3],[2,3])
Traceback (most recent call last):
...
ValueError: arguments to CRT_list should be lists of the same length
sage: CRT_list([1,2,3],[2,3,5,7])
Traceback (most recent call last):
...
ValueError: arguments to CRT_list should be lists of the same length
>>> from sage.all import *
>>> CRT_list([Integer(1),Integer(2),Integer(3)],[Integer(2),Integer(3),Integer(5)])
23
>>> CRT_list([Integer(1),Integer(2),Integer(3)],[Integer(2),Integer(3)])
Traceback (most recent call last):
...
ValueError: arguments to CRT_list should be lists of the same length
>>> CRT_list([Integer(1),Integer(2),Integer(3)],[Integer(2),Integer(3),Integer(5),Integer(7)])
Traceback (most recent call last):
...
ValueError: arguments to CRT_list should be lists of the same length
sage.arith.misc.CRT_vectors(X, moduli)[source]

Vector form of the Chinese Remainder Theorem: given a list of integer vectors \(v_i\) and a list of coprime moduli \(m_i\), find a vector \(w\) such that \(w = v_i \pmod m_i\) for all \(i\). This is more efficient than applying CRT() to each entry.

INPUT:

  • X – list or tuple, consisting of lists/tuples/vectors/etc of integers of the same length

  • moduli – list of len(X) moduli

OUTPUT: list; application of CRT componentwise

EXAMPLES:

sage: CRT_vectors([[3,5,7],[3,5,11]], [2,3])
[3, 5, 5]

sage: CRT_vectors([vector(ZZ, [2,3,1]), Sequence([1,7,8], ZZ)], [8,9])          # needs sage.modules
[10, 43, 17]
>>> from sage.all import *
>>> CRT_vectors([[Integer(3),Integer(5),Integer(7)],[Integer(3),Integer(5),Integer(11)]], [Integer(2),Integer(3)])
[3, 5, 5]

>>> CRT_vectors([vector(ZZ, [Integer(2),Integer(3),Integer(1)]), Sequence([Integer(1),Integer(7),Integer(8)], ZZ)], [Integer(8),Integer(9)])          # needs sage.modules
[10, 43, 17]
class sage.arith.misc.Euler_Phi[source]

Bases: object

Return the value of the Euler phi function on the integer \(n\). We defined this to be the number of positive integers <= n that are relatively prime to \(n\). Thus if \(n \leq 0\) then euler_phi(n) is defined and equals 0.

INPUT:

  • n – integer

EXAMPLES:

sage: euler_phi(1)
1
sage: euler_phi(2)
1
sage: euler_phi(3)                                                              # needs sage.libs.pari
2
sage: euler_phi(12)                                                             # needs sage.libs.pari
4
sage: euler_phi(37)                                                             # needs sage.libs.pari
36
>>> from sage.all import *
>>> euler_phi(Integer(1))
1
>>> euler_phi(Integer(2))
1
>>> euler_phi(Integer(3))                                                              # needs sage.libs.pari
2
>>> euler_phi(Integer(12))                                                             # needs sage.libs.pari
4
>>> euler_phi(Integer(37))                                                             # needs sage.libs.pari
36

Notice that euler_phi is defined to be 0 on negative numbers and 0:

sage: euler_phi(-1)
0
sage: euler_phi(0)
0
sage: type(euler_phi(0))
<class 'sage.rings.integer.Integer'>
>>> from sage.all import *
>>> euler_phi(-Integer(1))
0
>>> euler_phi(Integer(0))
0
>>> type(euler_phi(Integer(0)))
<class 'sage.rings.integer.Integer'>

We verify directly that the phi function is correct for 21:

sage: euler_phi(21)                                                             # needs sage.libs.pari
12
sage: [i for i in range(21) if gcd(21,i) == 1]
[1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20]
>>> from sage.all import *
>>> euler_phi(Integer(21))                                                             # needs sage.libs.pari
12
>>> [i for i in range(Integer(21)) if gcd(Integer(21),i) == Integer(1)]
[1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20]

The length of the list of integers ‘i’ in range(n) such that the gcd(i,n) == 1 equals euler_phi(n):

sage: len([i for i in range(21) if gcd(21,i) == 1]) == euler_phi(21)            # needs sage.libs.pari
True
>>> from sage.all import *
>>> len([i for i in range(Integer(21)) if gcd(Integer(21),i) == Integer(1)]) == euler_phi(Integer(21))            # needs sage.libs.pari
True

The phi function also has a special plotting method:

sage: P = plot(euler_phi, -3, 71)                                               # needs sage.libs.pari sage.plot
>>> from sage.all import *
>>> P = plot(euler_phi, -Integer(3), Integer(71))                                               # needs sage.libs.pari sage.plot

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: euler_phi(int8(37))                                                       # needs numpy sage.libs.pari
36
sage: from gmpy2 import mpz
sage: euler_phi(mpz(37))                                                        # needs sage.libs.pari
36
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> euler_phi(int8(Integer(37)))                                                       # needs numpy sage.libs.pari
36
>>> from gmpy2 import mpz
>>> euler_phi(mpz(Integer(37)))                                                        # needs sage.libs.pari
36

AUTHORS:

  • William Stein

  • Alex Clemesha (2006-01-10): some examples

plot(xmin=1, xmax=50, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)[source]

Plot the Euler phi function.

INPUT:

  • xmin – (default: 1)

  • xmax – (default: 50)

  • pointsize – (default: 30)

  • rgbcolor – (default: (0,0,1))

  • join – boolean (default: True); whether to join the points

  • **kwds – passed on

EXAMPLES:

sage: from sage.arith.misc import Euler_Phi
sage: p = Euler_Phi().plot()                                                # needs sage.libs.pari sage.plot
sage: p.ymax()                                                              # needs sage.libs.pari sage.plot
46.0
>>> from sage.all import *
>>> from sage.arith.misc import Euler_Phi
>>> p = Euler_Phi().plot()                                                # needs sage.libs.pari sage.plot
>>> p.ymax()                                                              # needs sage.libs.pari sage.plot
46.0
sage.arith.misc.GCD(a, b=None, **kwargs)[source]

Return the greatest common divisor of a and b.

If a is a list and b is omitted, return instead the greatest common divisor of all elements of a.

INPUT:

  • a, b – two elements of a ring with gcd or

  • a – list or tuple of elements of a ring with gcd

Additional keyword arguments are passed to the respectively called methods.

OUTPUT:

The given elements are first coerced into a common parent. Then, their greatest common divisor in that common parent is returned.

EXAMPLES:

sage: GCD(97,100)
1
sage: GCD(97*10^15, 19^20*97^2)
97
sage: GCD(2/3, 4/5)
2/15
sage: GCD([2,4,6,8])
2
sage: GCD(srange(0,10000,10))  # fast  !!
10
>>> from sage.all import *
>>> GCD(Integer(97),Integer(100))
1
>>> GCD(Integer(97)*Integer(10)**Integer(15), Integer(19)**Integer(20)*Integer(97)**Integer(2))
97
>>> GCD(Integer(2)/Integer(3), Integer(4)/Integer(5))
2/15
>>> GCD([Integer(2),Integer(4),Integer(6),Integer(8)])
2
>>> GCD(srange(Integer(0),Integer(10000),Integer(10)))  # fast  !!
10

Note that to take the gcd of \(n\) elements for \(n \not= 2\) you must put the elements into a list by enclosing them in [..]. Before Issue #4988 the following wrongly returned 3 since the third parameter was just ignored:

sage: gcd(3, 6, 2)
Traceback (most recent call last):
...
TypeError: ...gcd() takes ...
sage: gcd([3, 6, 2])
1
>>> from sage.all import *
>>> gcd(Integer(3), Integer(6), Integer(2))
Traceback (most recent call last):
...
TypeError: ...gcd() takes ...
>>> gcd([Integer(3), Integer(6), Integer(2)])
1

Similarly, giving just one element (which is not a list) gives an error:

sage: gcd(3)
Traceback (most recent call last):
...
TypeError: 'sage.rings.integer.Integer' object is not iterable
>>> from sage.all import *
>>> gcd(Integer(3))
Traceback (most recent call last):
...
TypeError: 'sage.rings.integer.Integer' object is not iterable

By convention, the gcd of the empty list is (the integer) 0:

sage: gcd([])
0
sage: type(gcd([]))
<class 'sage.rings.integer.Integer'>
>>> from sage.all import *
>>> gcd([])
0
>>> type(gcd([]))
<class 'sage.rings.integer.Integer'>
class sage.arith.misc.Moebius[source]

Bases: object

Return the value of the Möbius function of abs(n), where n is an integer.

DEFINITION: \(\mu(n)\) is 0 if \(n\) is not square free, and otherwise equals \((-1)^r\), where \(n\) has \(r\) distinct prime factors.

For simplicity, if \(n=0\) we define \(\mu(n) = 0\).

IMPLEMENTATION: Factors or - for integers - uses the PARI C library.

INPUT:

  • n – anything that can be factored

OUTPUT: 0, 1, or -1

EXAMPLES:

sage: # needs sage.libs.pari
sage: moebius(-5)
-1
sage: moebius(9)
0
sage: moebius(12)
0
sage: moebius(-35)
1
sage: moebius(-1)
1
sage: moebius(7)
-1
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> moebius(-Integer(5))
-1
>>> moebius(Integer(9))
0
>>> moebius(Integer(12))
0
>>> moebius(-Integer(35))
1
>>> moebius(-Integer(1))
1
>>> moebius(Integer(7))
-1

sage: moebius(0)   # potentially nonstandard!
0
>>> from sage.all import *
>>> moebius(Integer(0))   # potentially nonstandard!
0

The moebius function even makes sense for non-integer inputs.

sage: x = GF(7)['x'].0
sage: moebius(x + 2)                                                            # needs sage.libs.pari
-1
>>> from sage.all import *
>>> x = GF(Integer(7))['x'].gen(0)
>>> moebius(x + Integer(2))                                                            # needs sage.libs.pari
-1

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: moebius(int8(-5))                                                         # needs numpy sage.libs.pari
-1
sage: from gmpy2 import mpz
sage: moebius(mpz(-5))                                                          # needs sage.libs.pari
-1
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> moebius(int8(-Integer(5)))                                                         # needs numpy sage.libs.pari
-1
>>> from gmpy2 import mpz
>>> moebius(mpz(-Integer(5)))                                                          # needs sage.libs.pari
-1
plot(xmin=0, xmax=50, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)[source]

Plot the Möbius function.

INPUT:

  • xmin – (default: 0)

  • xmax – (default: 50)

  • pointsize – (default: 30)

  • rgbcolor – (default: (0,0,1))

  • join – (default: True) whether to join the points

    (very helpful in seeing their order)

  • **kwds – passed on

EXAMPLES:

sage: from sage.arith.misc import Moebius
sage: p = Moebius().plot()                                                  # needs sage.libs.pari sage.plot
sage: p.ymax()                                                              # needs sage.libs.pari sage.plot
1.0
>>> from sage.all import *
>>> from sage.arith.misc import Moebius
>>> p = Moebius().plot()                                                  # needs sage.libs.pari sage.plot
>>> p.ymax()                                                              # needs sage.libs.pari sage.plot
1.0
range(start, stop=None, step=None)[source]

Return the Möbius function evaluated at the given range of values, i.e., the image of the list range(start, stop, step) under the Möbius function.

This is much faster than directly computing all these values with a list comprehension.

EXAMPLES:

sage: # needs sage.libs.pari
sage: v = moebius.range(-10, 10); v
[1, 0, 0, -1, 1, -1, 0, -1, -1, 1, 0, 1, -1, -1, 0, -1, 1, -1, 0, 0]
sage: v == [moebius(n) for n in range(-10, 10)]
True
sage: v = moebius.range(-1000, 2000, 4)
sage: v == [moebius(n) for n in range(-1000, 2000, 4)]
True
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> v = moebius.range(-Integer(10), Integer(10)); v
[1, 0, 0, -1, 1, -1, 0, -1, -1, 1, 0, 1, -1, -1, 0, -1, 1, -1, 0, 0]
>>> v == [moebius(n) for n in range(-Integer(10), Integer(10))]
True
>>> v = moebius.range(-Integer(1000), Integer(2000), Integer(4))
>>> v == [moebius(n) for n in range(-Integer(1000), Integer(2000), Integer(4))]
True
class sage.arith.misc.Sigma[source]

Bases: object

Return the sum of the \(k\)-th powers of the divisors of \(n\).

INPUT:

  • n – integer

  • k – integer (default: 1)

OUTPUT: integer

EXAMPLES:

sage: sigma(5)
6
sage: sigma(5,2)
26
>>> from sage.all import *
>>> sigma(Integer(5))
6
>>> sigma(Integer(5),Integer(2))
26

The sigma function also has a special plotting method.

sage: P = plot(sigma, 1, 100)                                                   # needs sage.plot
>>> from sage.all import *
>>> P = plot(sigma, Integer(1), Integer(100))                                                   # needs sage.plot

This method also works with \(k\)-th powers.

sage: P = plot(sigma, 1, 100, k=2)                                              # needs sage.plot
>>> from sage.all import *
>>> P = plot(sigma, Integer(1), Integer(100), k=Integer(2))                                              # needs sage.plot

AUTHORS:

  • William Stein: original implementation

  • Craig Citro (2007-06-01): rewrote for huge speedup

plot(xmin=1, xmax=50, k=1, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)[source]

Plot the sigma (sum of \(k\)-th powers of divisors) function.

INPUT:

  • xmin – (default: 1)

  • xmax – (default: 50)

  • k – (default: 1)

  • pointsize – (default: 30)

  • rgbcolor – (default: (0,0,1))

  • join – (default: True) whether to join the points

  • **kwds – passed on

EXAMPLES:

sage: from sage.arith.misc import Sigma
sage: p = Sigma().plot()                                                    # needs sage.libs.pari sage.plot
sage: p.ymax()                                                              # needs sage.libs.pari sage.plot
124.0
>>> from sage.all import *
>>> from sage.arith.misc import Sigma
>>> p = Sigma().plot()                                                    # needs sage.libs.pari sage.plot
>>> p.ymax()                                                              # needs sage.libs.pari sage.plot
124.0
sage.arith.misc.XGCD(a, b=None)[source]

Return the greatest common divisor and the Bézout coefficients of the input arguments.

When both a and b are given, then return a triple (g,s,t) such that \(g = s\cdot a+t\cdot b = \gcd(a,b)\). When only a is given, then return a tuple r of length len(a) + 1 such that \(r_0 = \sum_{i = 0}^{len(a) - 1} r_{i + 1}a_i = gcd(a_0, \dots, a_{len(a) - 1})\)

Note

One exception is if the elements are not in a principal ideal domain (see Wikipedia article Principal_ideal_domain), e.g., they are both polynomials over the integers. Then this function can’t in general return (g,s,t) or r as above, since they need not exist. Instead, over the integers, when a and b are given, we first multiply \(g\) by a divisor of the resultant of \(a/g\) and \(b/g\), up to sign.

INPUT:

One of the following:

  • a, b – integers or more generally, element of a ring for which the xgcd make sense (e.g. a field or univariate polynomials).

  • a – a list or tuple of at least two integers or more generally, elements of a ring which the xgcd make sense.

OUTPUT:

One of the following:

  • g, s, t – when two inputs a, b are given. They satisfy \(g = s\cdot a + t\cdot b\).

  • r – a tuple, when only a is given (and b = None). Its first entry r[0] is the gcd of the inputs, and has length one longer than the length of a. Its entries satisfy \(r_0 = \sum_{i = 0}^{len(a) - 1} r_{i + 1}a_i\).

Note

There is no guarantee that the returned cofactors (s and t) are minimal.

EXAMPLES:

sage: xgcd(56, 44)
(4, 4, -5)
sage: 4*56 + (-5)*44
4
sage: xgcd([56, 44])
(4, 4, -5)
sage: r = xgcd([30, 105, 70, 42]); r
(1, -255, 85, -17, -2)
sage: (-255)*30 + 85*105 + (-17)*70 + (-2)*42
1
sage: xgcd([])
(0,)
sage: xgcd([42])
(42, 1)

sage: g, a, b = xgcd(5/1, 7/1); g, a, b
(1, 3, -2)
sage: a*(5/1) + b*(7/1) == g
True

sage: x = polygen(QQ)
sage: xgcd(x^3 - 1, x^2 - 1)
(x - 1, 1, -x)
sage: g, a, b, c = xgcd([x^4 - x, x^6 - 1, x^4 - 1]); g, a, b, c
(x - 1, x^3, -x, 1)
sage: a*(x^4 - x) + b*(x^6 - 1) + c*(x^4 - 1) == g
True

sage: K.<g> = NumberField(x^2 - 3)                                              # needs sage.rings.number_field
sage: g.xgcd(g + 2)                                                             # needs sage.rings.number_field
(1, 1/3*g, 0)

sage: # needs sage.rings.number_field
sage: R.<a,b> = K[]
sage: S.<y> = R.fraction_field()[]
sage: xgcd(y^2, a*y + b)
(1, a^2/b^2, ((-a)/b^2)*y + 1/b)
sage: xgcd((b+g)*y^2, (a+g)*y + b)
(1, (a^2 + (2*g)*a + 3)/(b^3 + g*b^2), ((-a + (-g))/b^2)*y + 1/b)
>>> from sage.all import *
>>> xgcd(Integer(56), Integer(44))
(4, 4, -5)
>>> Integer(4)*Integer(56) + (-Integer(5))*Integer(44)
4
>>> xgcd([Integer(56), Integer(44)])
(4, 4, -5)
>>> r = xgcd([Integer(30), Integer(105), Integer(70), Integer(42)]); r
(1, -255, 85, -17, -2)
>>> (-Integer(255))*Integer(30) + Integer(85)*Integer(105) + (-Integer(17))*Integer(70) + (-Integer(2))*Integer(42)
1
>>> xgcd([])
(0,)
>>> xgcd([Integer(42)])
(42, 1)

>>> g, a, b = xgcd(Integer(5)/Integer(1), Integer(7)/Integer(1)); g, a, b
(1, 3, -2)
>>> a*(Integer(5)/Integer(1)) + b*(Integer(7)/Integer(1)) == g
True

>>> x = polygen(QQ)
>>> xgcd(x**Integer(3) - Integer(1), x**Integer(2) - Integer(1))
(x - 1, 1, -x)
>>> g, a, b, c = xgcd([x**Integer(4) - x, x**Integer(6) - Integer(1), x**Integer(4) - Integer(1)]); g, a, b, c
(x - 1, x^3, -x, 1)
>>> a*(x**Integer(4) - x) + b*(x**Integer(6) - Integer(1)) + c*(x**Integer(4) - Integer(1)) == g
True

>>> K = NumberField(x**Integer(2) - Integer(3), names=('g',)); (g,) = K._first_ngens(1)# needs sage.rings.number_field
>>> g.xgcd(g + Integer(2))                                                             # needs sage.rings.number_field
(1, 1/3*g, 0)

>>> # needs sage.rings.number_field
>>> R = K['a, b']; (a, b,) = R._first_ngens(2)
>>> S = R.fraction_field()['y']; (y,) = S._first_ngens(1)
>>> xgcd(y**Integer(2), a*y + b)
(1, a^2/b^2, ((-a)/b^2)*y + 1/b)
>>> xgcd((b+g)*y**Integer(2), (a+g)*y + b)
(1, (a^2 + (2*g)*a + 3)/(b^3 + g*b^2), ((-a + (-g))/b^2)*y + 1/b)

Here is an example of a xgcd for two polynomials over the integers, where the linear combination is not the gcd but the gcd multiplied by the resultant:

sage: R.<x> = ZZ[]
sage: gcd(2*x*(x-1), x^2)
x
sage: xgcd(2*x*(x-1), x^2)
(2*x, -1, 2)
sage: (2*(x-1)).resultant(x)                                                    # needs sage.libs.pari
2
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> gcd(Integer(2)*x*(x-Integer(1)), x**Integer(2))
x
>>> xgcd(Integer(2)*x*(x-Integer(1)), x**Integer(2))
(2*x, -1, 2)
>>> (Integer(2)*(x-Integer(1))).resultant(x)                                                    # needs sage.libs.pari
2

Tests with numpy and gmpy2 types:

sage: from numpy import int8                                                    # needs numpy
sage: xgcd(4, int8(8))                                                          # needs numpy
(4, 1, 0)
sage: xgcd(int8(4), int8(8))                                                    # needs numpy
(4, 1, 0)
sage: xgcd([int8(4), int8(8), int(10)])                                         # needs numpy
(2, -2, 0, 1)
sage: from gmpy2 import mpz
sage: xgcd(mpz(4), mpz(8))
(4, 1, 0)
sage: xgcd(4, mpz(8))
(4, 1, 0)
sage: xgcd([4, mpz(8), mpz(10)])
(2, -2, 0, 1)
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> xgcd(Integer(4), int8(Integer(8)))                                                          # needs numpy
(4, 1, 0)
>>> xgcd(int8(Integer(4)), int8(Integer(8)))                                                    # needs numpy
(4, 1, 0)
>>> xgcd([int8(Integer(4)), int8(Integer(8)), int(Integer(10))])                                         # needs numpy
(2, -2, 0, 1)
>>> from gmpy2 import mpz
>>> xgcd(mpz(Integer(4)), mpz(Integer(8)))
(4, 1, 0)
>>> xgcd(Integer(4), mpz(Integer(8)))
(4, 1, 0)
>>> xgcd([Integer(4), mpz(Integer(8)), mpz(Integer(10))])
(2, -2, 0, 1)
sage.arith.misc.algdep(z, degree, known_bits=None, use_bits=None, known_digits=None, use_digits=None, height_bound=None, proof=False)[source]

Return an irreducible polynomial of degree at most \(degree\) which is approximately satisfied by the number \(z\).

You can specify the number of known bits or digits of \(z\) with known_bits=k or known_digits=k. PARI is then told to compute the result using \(0.8k\) of these bits/digits. Or, you can specify the precision to use directly with use_bits=k or use_digits=k. If none of these are specified, then the precision is taken from the input value.

A height bound may be specified to indicate the maximum coefficient size of the returned polynomial; if a sufficiently small polynomial is not found, then None will be returned. If proof=True then the result is returned only if it can be proved correct (i.e. the only possible minimal polynomial satisfying the height bound, or no such polynomial exists). Otherwise a ValueError is raised indicating that higher precision is required.

ALGORITHM: Uses LLL for real/complex inputs, PARI C-library algdep command otherwise.

Note that algebraic_dependency is a synonym for algdep.

INPUT:

  • z – real, complex, or \(p\)-adic number

  • degree – integer

  • height_bound – integer (default: None); specifying the maximum coefficient size for the returned polynomial

  • proof – boolean (default: False); requires height_bound to be set

EXAMPLES:

sage: algdep(1.888888888888888, 1)                                              # needs sage.libs.pari
9*x - 17
sage: algdep(0.12121212121212, 1)                                               # needs sage.libs.pari
33*x - 4
sage: algdep(sqrt(2), 2)                                                        # needs sage.libs.pari sage.symbolic
x^2 - 2
>>> from sage.all import *
>>> algdep(RealNumber('1.888888888888888'), Integer(1))                                              # needs sage.libs.pari
9*x - 17
>>> algdep(RealNumber('0.12121212121212'), Integer(1))                                               # needs sage.libs.pari
33*x - 4
>>> algdep(sqrt(Integer(2)), Integer(2))                                                        # needs sage.libs.pari sage.symbolic
x^2 - 2

This example involves a complex number:

sage: z = (1/2) * (1 + RDF(sqrt(3)) * CC.0); z                                  # needs sage.symbolic
0.500000000000000 + 0.866025403784439*I
sage: algdep(z, 6)                                                              # needs sage.symbolic
x^2 - x + 1
>>> from sage.all import *
>>> z = (Integer(1)/Integer(2)) * (Integer(1) + RDF(sqrt(Integer(3))) * CC.gen(0)); z                                  # needs sage.symbolic
0.500000000000000 + 0.866025403784439*I
>>> algdep(z, Integer(6))                                                              # needs sage.symbolic
x^2 - x + 1

This example involves a \(p\)-adic number:

sage: K = Qp(3, print_mode='series')                                            # needs sage.rings.padics
sage: a = K(7/19); a                                                            # needs sage.rings.padics
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
sage: algdep(a, 1)                                                              # needs sage.rings.padics
19*x - 7
>>> from sage.all import *
>>> K = Qp(Integer(3), print_mode='series')                                            # needs sage.rings.padics
>>> a = K(Integer(7)/Integer(19)); a                                                            # needs sage.rings.padics
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
>>> algdep(a, Integer(1))                                                              # needs sage.rings.padics
19*x - 7

These examples show the importance of proper precision control. We compute a 200-bit approximation to \(sqrt(2)\) which is wrong in the 33’rd bit:

sage: # needs sage.libs.pari sage.rings.real_mpfr
sage: z = sqrt(RealField(200)(2)) + (1/2)^33
sage: p = algdep(z, 4); p
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
sage: factor(p)
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
sage: algdep(z, 4, known_bits=32)
x^2 - 2
sage: algdep(z, 4, known_digits=10)
x^2 - 2
sage: algdep(z, 4, use_bits=25)
x^2 - 2
sage: algdep(z, 4, use_digits=8)
x^2 - 2
>>> from sage.all import *
>>> # needs sage.libs.pari sage.rings.real_mpfr
>>> z = sqrt(RealField(Integer(200))(Integer(2))) + (Integer(1)/Integer(2))**Integer(33)
>>> p = algdep(z, Integer(4)); p
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
>>> factor(p)
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
>>> algdep(z, Integer(4), known_bits=Integer(32))
x^2 - 2
>>> algdep(z, Integer(4), known_digits=Integer(10))
x^2 - 2
>>> algdep(z, Integer(4), use_bits=Integer(25))
x^2 - 2
>>> algdep(z, Integer(4), use_digits=Integer(8))
x^2 - 2

Using the height_bound and proof parameters, we can see that \(pi\) is not the root of an integer polynomial of degree at most 5 and coefficients bounded above by 10:

sage: algdep(pi.n(), 5, height_bound=10, proof=True) is None                    # needs sage.libs.pari sage.symbolic
True
>>> from sage.all import *
>>> algdep(pi.n(), Integer(5), height_bound=Integer(10), proof=True) is None                    # needs sage.libs.pari sage.symbolic
True

For stronger results, we need more precision:

sage: # needs sage.libs.pari sage.symbolic
sage: algdep(pi.n(), 5, height_bound=100, proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 5, height_bound=100, proof=True) is None
True
sage: algdep(pi.n(), 10, height_bound=10, proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 10, height_bound=10, proof=True) is None
True
>>> from sage.all import *
>>> # needs sage.libs.pari sage.symbolic
>>> algdep(pi.n(), Integer(5), height_bound=Integer(100), proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
>>> algdep(pi.n(Integer(200)), Integer(5), height_bound=Integer(100), proof=True) is None
True
>>> algdep(pi.n(), Integer(10), height_bound=Integer(10), proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
>>> algdep(pi.n(Integer(200)), Integer(10), height_bound=Integer(10), proof=True) is None
True

We can also use proof=True to get positive results:

sage: # needs sage.libs.pari sage.symbolic
sage: a = sqrt(2) + sqrt(3) + sqrt(5)
sage: algdep(a.n(), 8, height_bound=1000, proof=True)
Traceback (most recent call last):
...
ValueError: insufficient precision for uniqueness proof
sage: f = algdep(a.n(1000), 8, height_bound=1000, proof=True); f
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
sage: f(a).expand()
0
>>> from sage.all import *
>>> # needs sage.libs.pari sage.symbolic
>>> a = sqrt(Integer(2)) + sqrt(Integer(3)) + sqrt(Integer(5))
>>> algdep(a.n(), Integer(8), height_bound=Integer(1000), proof=True)
Traceback (most recent call last):
...
ValueError: insufficient precision for uniqueness proof
>>> f = algdep(a.n(Integer(1000)), Integer(8), height_bound=Integer(1000), proof=True); f
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
>>> f(a).expand()
0
sage.arith.misc.algebraic_dependency(z, degree, known_bits=None, use_bits=None, known_digits=None, use_digits=None, height_bound=None, proof=False)[source]

Return an irreducible polynomial of degree at most \(degree\) which is approximately satisfied by the number \(z\).

You can specify the number of known bits or digits of \(z\) with known_bits=k or known_digits=k. PARI is then told to compute the result using \(0.8k\) of these bits/digits. Or, you can specify the precision to use directly with use_bits=k or use_digits=k. If none of these are specified, then the precision is taken from the input value.

A height bound may be specified to indicate the maximum coefficient size of the returned polynomial; if a sufficiently small polynomial is not found, then None will be returned. If proof=True then the result is returned only if it can be proved correct (i.e. the only possible minimal polynomial satisfying the height bound, or no such polynomial exists). Otherwise a ValueError is raised indicating that higher precision is required.

ALGORITHM: Uses LLL for real/complex inputs, PARI C-library algdep command otherwise.

Note that algebraic_dependency is a synonym for algdep.

INPUT:

  • z – real, complex, or \(p\)-adic number

  • degree – integer

  • height_bound – integer (default: None); specifying the maximum coefficient size for the returned polynomial

  • proof – boolean (default: False); requires height_bound to be set

EXAMPLES:

sage: algdep(1.888888888888888, 1)                                              # needs sage.libs.pari
9*x - 17
sage: algdep(0.12121212121212, 1)                                               # needs sage.libs.pari
33*x - 4
sage: algdep(sqrt(2), 2)                                                        # needs sage.libs.pari sage.symbolic
x^2 - 2
>>> from sage.all import *
>>> algdep(RealNumber('1.888888888888888'), Integer(1))                                              # needs sage.libs.pari
9*x - 17
>>> algdep(RealNumber('0.12121212121212'), Integer(1))                                               # needs sage.libs.pari
33*x - 4
>>> algdep(sqrt(Integer(2)), Integer(2))                                                        # needs sage.libs.pari sage.symbolic
x^2 - 2

This example involves a complex number:

sage: z = (1/2) * (1 + RDF(sqrt(3)) * CC.0); z                                  # needs sage.symbolic
0.500000000000000 + 0.866025403784439*I
sage: algdep(z, 6)                                                              # needs sage.symbolic
x^2 - x + 1
>>> from sage.all import *
>>> z = (Integer(1)/Integer(2)) * (Integer(1) + RDF(sqrt(Integer(3))) * CC.gen(0)); z                                  # needs sage.symbolic
0.500000000000000 + 0.866025403784439*I
>>> algdep(z, Integer(6))                                                              # needs sage.symbolic
x^2 - x + 1

This example involves a \(p\)-adic number:

sage: K = Qp(3, print_mode='series')                                            # needs sage.rings.padics
sage: a = K(7/19); a                                                            # needs sage.rings.padics
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
sage: algdep(a, 1)                                                              # needs sage.rings.padics
19*x - 7
>>> from sage.all import *
>>> K = Qp(Integer(3), print_mode='series')                                            # needs sage.rings.padics
>>> a = K(Integer(7)/Integer(19)); a                                                            # needs sage.rings.padics
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
>>> algdep(a, Integer(1))                                                              # needs sage.rings.padics
19*x - 7

These examples show the importance of proper precision control. We compute a 200-bit approximation to \(sqrt(2)\) which is wrong in the 33’rd bit:

sage: # needs sage.libs.pari sage.rings.real_mpfr
sage: z = sqrt(RealField(200)(2)) + (1/2)^33
sage: p = algdep(z, 4); p
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
sage: factor(p)
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
sage: algdep(z, 4, known_bits=32)
x^2 - 2
sage: algdep(z, 4, known_digits=10)
x^2 - 2
sage: algdep(z, 4, use_bits=25)
x^2 - 2
sage: algdep(z, 4, use_digits=8)
x^2 - 2
>>> from sage.all import *
>>> # needs sage.libs.pari sage.rings.real_mpfr
>>> z = sqrt(RealField(Integer(200))(Integer(2))) + (Integer(1)/Integer(2))**Integer(33)
>>> p = algdep(z, Integer(4)); p
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
>>> factor(p)
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
>>> algdep(z, Integer(4), known_bits=Integer(32))
x^2 - 2
>>> algdep(z, Integer(4), known_digits=Integer(10))
x^2 - 2
>>> algdep(z, Integer(4), use_bits=Integer(25))
x^2 - 2
>>> algdep(z, Integer(4), use_digits=Integer(8))
x^2 - 2

Using the height_bound and proof parameters, we can see that \(pi\) is not the root of an integer polynomial of degree at most 5 and coefficients bounded above by 10:

sage: algdep(pi.n(), 5, height_bound=10, proof=True) is None                    # needs sage.libs.pari sage.symbolic
True
>>> from sage.all import *
>>> algdep(pi.n(), Integer(5), height_bound=Integer(10), proof=True) is None                    # needs sage.libs.pari sage.symbolic
True

For stronger results, we need more precision:

sage: # needs sage.libs.pari sage.symbolic
sage: algdep(pi.n(), 5, height_bound=100, proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 5, height_bound=100, proof=True) is None
True
sage: algdep(pi.n(), 10, height_bound=10, proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 10, height_bound=10, proof=True) is None
True
>>> from sage.all import *
>>> # needs sage.libs.pari sage.symbolic
>>> algdep(pi.n(), Integer(5), height_bound=Integer(100), proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
>>> algdep(pi.n(Integer(200)), Integer(5), height_bound=Integer(100), proof=True) is None
True
>>> algdep(pi.n(), Integer(10), height_bound=Integer(10), proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
>>> algdep(pi.n(Integer(200)), Integer(10), height_bound=Integer(10), proof=True) is None
True

We can also use proof=True to get positive results:

sage: # needs sage.libs.pari sage.symbolic
sage: a = sqrt(2) + sqrt(3) + sqrt(5)
sage: algdep(a.n(), 8, height_bound=1000, proof=True)
Traceback (most recent call last):
...
ValueError: insufficient precision for uniqueness proof
sage: f = algdep(a.n(1000), 8, height_bound=1000, proof=True); f
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
sage: f(a).expand()
0
>>> from sage.all import *
>>> # needs sage.libs.pari sage.symbolic
>>> a = sqrt(Integer(2)) + sqrt(Integer(3)) + sqrt(Integer(5))
>>> algdep(a.n(), Integer(8), height_bound=Integer(1000), proof=True)
Traceback (most recent call last):
...
ValueError: insufficient precision for uniqueness proof
>>> f = algdep(a.n(Integer(1000)), Integer(8), height_bound=Integer(1000), proof=True); f
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
>>> f(a).expand()
0
sage.arith.misc.bernoulli(n, algorithm='default', num_threads=1)[source]

Return the \(n\)-th Bernoulli number, as a rational number.

INPUT:

  • n – integer

  • algorithm:

    • 'default' – use ‘flint’ for n <= 20000, then ‘arb’ for n <= 300000 and ‘bernmm’ for larger values (this is just a heuristic, and not guaranteed to be optimal on all hardware)

    • 'arb' – use the bernoulli_fmpq_ui function (formerly part of Arb) of the FLINT library

    • 'flint' – use the arith_bernoulli_number function of the FLINT library

    • 'pari' – use the PARI C library

    • 'gap' – use GAP

    • 'gp' – use PARI/GP interpreter

    • 'magma' – use MAGMA (optional)

    • 'bernmm' – use bernmm package (a multimodular algorithm)

  • num_threads – positive integer, number of threads to use (only used for bernmm algorithm)

EXAMPLES:

sage: bernoulli(12)                                                             # needs sage.libs.flint
-691/2730
sage: bernoulli(50)                                                             # needs sage.libs.flint
495057205241079648212477525/66
>>> from sage.all import *
>>> bernoulli(Integer(12))                                                             # needs sage.libs.flint
-691/2730
>>> bernoulli(Integer(50))                                                             # needs sage.libs.flint
495057205241079648212477525/66

We demonstrate each of the alternative algorithms:

sage: bernoulli(12, algorithm='arb')                                            # needs sage.libs.flint
-691/2730
sage: bernoulli(12, algorithm='flint')                                          # needs sage.libs.flint
-691/2730
sage: bernoulli(12, algorithm='gap')                                            # needs sage.libs.gap
-691/2730
sage: bernoulli(12, algorithm='gp')                                             # needs sage.libs.pari
-691/2730
sage: bernoulli(12, algorithm='magma')           # optional - magma
-691/2730
sage: bernoulli(12, algorithm='pari')                                           # needs sage.libs.pari
-691/2730
sage: bernoulli(12, algorithm='bernmm')                                         # needs sage.libs.ntl
-691/2730
sage: bernoulli(12, algorithm='bernmm', num_threads=4)                          # needs sage.libs.ntl
-691/2730
>>> from sage.all import *
>>> bernoulli(Integer(12), algorithm='arb')                                            # needs sage.libs.flint
-691/2730
>>> bernoulli(Integer(12), algorithm='flint')                                          # needs sage.libs.flint
-691/2730
>>> bernoulli(Integer(12), algorithm='gap')                                            # needs sage.libs.gap
-691/2730
>>> bernoulli(Integer(12), algorithm='gp')                                             # needs sage.libs.pari
-691/2730
>>> bernoulli(Integer(12), algorithm='magma')           # optional - magma
-691/2730
>>> bernoulli(Integer(12), algorithm='pari')                                           # needs sage.libs.pari
-691/2730
>>> bernoulli(Integer(12), algorithm='bernmm')                                         # needs sage.libs.ntl
-691/2730
>>> bernoulli(Integer(12), algorithm='bernmm', num_threads=Integer(4))                          # needs sage.libs.ntl
-691/2730

AUTHOR:

  • David Joyner and William Stein

sage.arith.misc.binomial(x, m, **kwds)[source]

Return the binomial coefficient.

\[\binom{x}{m} = x (x-1) \cdots (x-m+1) / m!\]

which is defined for \(m \in \ZZ\) and any \(x\). We extend this definition to include cases when \(x-m\) is an integer but \(m\) is not by

\[\binom{x}{m} = \binom{x}{x-m}\]

If \(m < 0\), return \(0\).

INPUT:

  • x, m – numbers or symbolic expressions; either m or x-m must be an integer

OUTPUT: number or symbolic expression (if input is symbolic)

EXAMPLES:

sage: from sage.arith.misc import binomial
sage: binomial(5, 2)
10
sage: binomial(2, 0)
1
sage: binomial(1/2, 0)                                                          # needs sage.libs.pari
1
sage: binomial(3, -1)
0
sage: binomial(20, 10)
184756
sage: binomial(-2, 5)
-6
sage: binomial(-5, -2)
0
sage: binomial(RealField()('2.5'), 2)                                           # needs sage.rings.real_mpfr
1.87500000000000
sage: binomial(Zp(5)(99),50)
3 + 4*5^3 + 2*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 5^9 + 2*5^10 + 3*5^11 +
4*5^12 + 4*5^13 + 2*5^14 + 3*5^15 + 3*5^16 + 4*5^17 + 4*5^18 + 2*5^19 + O(5^20)
sage: binomial(Qp(3)(2/3),2)
2*3^-2 + 2*3^-1 + 2 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 +
2*3^8 + 2*3^9 + 2*3^10 + 2*3^11 + 2*3^12 + 2*3^13 + 2*3^14 + 2*3^15 + 2*3^16 + 2*3^17 + O(3^18)
sage: n = var('n'); binomial(n, 2)                                              # needs sage.symbolic
1/2*(n - 1)*n
sage: n = var('n'); binomial(n, n)                                              # needs sage.symbolic
1
sage: n = var('n'); binomial(n, n - 1)                                          # needs sage.symbolic
n
sage: binomial(2^100, 2^100)
1

sage: x = polygen(ZZ)
sage: binomial(x, 3)
1/6*x^3 - 1/2*x^2 + 1/3*x
sage: binomial(x, x - 3)
1/6*x^3 - 1/2*x^2 + 1/3*x
>>> from sage.all import *
>>> from sage.arith.misc import binomial
>>> binomial(Integer(5), Integer(2))
10
>>> binomial(Integer(2), Integer(0))
1
>>> binomial(Integer(1)/Integer(2), Integer(0))                                                          # needs sage.libs.pari
1
>>> binomial(Integer(3), -Integer(1))
0
>>> binomial(Integer(20), Integer(10))
184756
>>> binomial(-Integer(2), Integer(5))
-6
>>> binomial(-Integer(5), -Integer(2))
0
>>> binomial(RealField()('2.5'), Integer(2))                                           # needs sage.rings.real_mpfr
1.87500000000000
>>> binomial(Zp(Integer(5))(Integer(99)),Integer(50))
3 + 4*5^3 + 2*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 5^9 + 2*5^10 + 3*5^11 +
4*5^12 + 4*5^13 + 2*5^14 + 3*5^15 + 3*5^16 + 4*5^17 + 4*5^18 + 2*5^19 + O(5^20)
>>> binomial(Qp(Integer(3))(Integer(2)/Integer(3)),Integer(2))
2*3^-2 + 2*3^-1 + 2 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 +
2*3^8 + 2*3^9 + 2*3^10 + 2*3^11 + 2*3^12 + 2*3^13 + 2*3^14 + 2*3^15 + 2*3^16 + 2*3^17 + O(3^18)
>>> n = var('n'); binomial(n, Integer(2))                                              # needs sage.symbolic
1/2*(n - 1)*n
>>> n = var('n'); binomial(n, n)                                              # needs sage.symbolic
1
>>> n = var('n'); binomial(n, n - Integer(1))                                          # needs sage.symbolic
n
>>> binomial(Integer(2)**Integer(100), Integer(2)**Integer(100))
1

>>> x = polygen(ZZ)
>>> binomial(x, Integer(3))
1/6*x^3 - 1/2*x^2 + 1/3*x
>>> binomial(x, x - Integer(3))
1/6*x^3 - 1/2*x^2 + 1/3*x

If \(x \in \ZZ\), there is an optional ‘algorithm’ parameter, which can be ‘gmp’ (faster for small values; alias: ‘mpir’) or ‘pari’ (faster for large values):

sage: a = binomial(100, 45, algorithm='gmp')
sage: b = binomial(100, 45, algorithm='pari')                                   # needs sage.libs.pari
sage: a == b                                                                    # needs sage.libs.pari
True
>>> from sage.all import *
>>> a = binomial(Integer(100), Integer(45), algorithm='gmp')
>>> b = binomial(Integer(100), Integer(45), algorithm='pari')                                   # needs sage.libs.pari
>>> a == b                                                                    # needs sage.libs.pari
True
sage.arith.misc.binomial_coefficients(n)[source]

Return a dictionary containing pairs \(\{(k_1,k_2) : C_{k,n}\}\) where \(C_{k_n}\) are binomial coefficients and \(n = k_1 + k_2\).

INPUT:

  • n – integer

OUTPUT: dictionary

EXAMPLES:

sage: sorted(binomial_coefficients(3).items())
[((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]
>>> from sage.all import *
>>> sorted(binomial_coefficients(Integer(3)).items())
[((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]

Notice the coefficients above are the same as below:

sage: R.<x,y> = QQ[]
sage: (x+y)^3
x^3 + 3*x^2*y + 3*x*y^2 + y^3
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> (x+y)**Integer(3)
x^3 + 3*x^2*y + 3*x*y^2 + y^3

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: sorted(binomial_coefficients(int8(3)).items())                            # needs numpy
[((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]
sage: from gmpy2 import mpz
sage: sorted(binomial_coefficients(mpz(3)).items())
[((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> sorted(binomial_coefficients(int8(Integer(3))).items())                            # needs numpy
[((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]
>>> from gmpy2 import mpz
>>> sorted(binomial_coefficients(mpz(Integer(3))).items())
[((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]

AUTHORS:

  • Fredrik Johansson

sage.arith.misc.carmichael_lambda(n)[source]

Return the Carmichael function of a positive integer n.

The Carmichael function of \(n\), denoted \(\lambda(n)\), is the smallest positive integer \(k\) such that \(a^k \equiv 1 \pmod{n}\) for all \(a \in \ZZ/n\ZZ\) satisfying \(\gcd(a, n) = 1\). Thus, \(\lambda(n) = k\) is the exponent of the multiplicative group \((\ZZ/n\ZZ)^{\ast}\).

INPUT:

  • n – positive integer

OUTPUT: the Carmichael function of n

ALGORITHM:

If \(n = 2, 4\) then \(\lambda(n) = \varphi(n)\). Let \(p \geq 3\) be an odd prime and let \(k\) be a positive integer. Then \(\lambda(p^k) = p^{k - 1}(p - 1) = \varphi(p^k)\). If \(k \geq 3\), then \(\lambda(2^k) = 2^{k - 2}\). Now consider the case where \(n > 3\) is composite and let \(n = p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t}\) be the prime factorization of \(n\). Then

\[\lambda(n) = \lambda(p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t}) = \text{lcm}(\lambda(p_1^{k_1}), \lambda(p_2^{k_2}), \dots, \lambda(p_t^{k_t}))\]

EXAMPLES:

The Carmichael function of all positive integers up to and including 10:

sage: from sage.arith.misc import carmichael_lambda
sage: list(map(carmichael_lambda, [1..10]))
[1, 1, 2, 2, 4, 2, 6, 2, 6, 4]
>>> from sage.all import *
>>> from sage.arith.misc import carmichael_lambda
>>> list(map(carmichael_lambda, (ellipsis_range(Integer(1),Ellipsis,Integer(10)))))
[1, 1, 2, 2, 4, 2, 6, 2, 6, 4]

The Carmichael function of the first ten primes:

sage: list(map(carmichael_lambda, primes_first_n(10)))                          # needs sage.libs.pari
[1, 2, 4, 6, 10, 12, 16, 18, 22, 28]
>>> from sage.all import *
>>> list(map(carmichael_lambda, primes_first_n(Integer(10))))                          # needs sage.libs.pari
[1, 2, 4, 6, 10, 12, 16, 18, 22, 28]

Cases where the Carmichael function is equivalent to the Euler phi function:

sage: carmichael_lambda(2) == euler_phi(2)
True
sage: carmichael_lambda(4) == euler_phi(4)                                      # needs sage.libs.pari
True
sage: p = random_prime(1000, lbound=3, proof=True)                              # needs sage.libs.pari
sage: k = randint(1, 1000)
sage: carmichael_lambda(p^k) == euler_phi(p^k)                                  # needs sage.libs.pari
True
>>> from sage.all import *
>>> carmichael_lambda(Integer(2)) == euler_phi(Integer(2))
True
>>> carmichael_lambda(Integer(4)) == euler_phi(Integer(4))                                      # needs sage.libs.pari
True
>>> p = random_prime(Integer(1000), lbound=Integer(3), proof=True)                              # needs sage.libs.pari
>>> k = randint(Integer(1), Integer(1000))
>>> carmichael_lambda(p**k) == euler_phi(p**k)                                  # needs sage.libs.pari
True

A case where \(\lambda(n) \neq \varphi(n)\):

sage: k = randint(3, 1000)
sage: carmichael_lambda(2^k) == 2^(k - 2)                                       # needs sage.libs.pari
True
sage: carmichael_lambda(2^k) == 2^(k - 2) == euler_phi(2^k)                     # needs sage.libs.pari
False
>>> from sage.all import *
>>> k = randint(Integer(3), Integer(1000))
>>> carmichael_lambda(Integer(2)**k) == Integer(2)**(k - Integer(2))                                       # needs sage.libs.pari
True
>>> carmichael_lambda(Integer(2)**k) == Integer(2)**(k - Integer(2)) == euler_phi(Integer(2)**k)                     # needs sage.libs.pari
False

Verifying the current implementation of the Carmichael function using another implementation. The other implementation that we use for verification is an exhaustive search for the exponent of the multiplicative group \((\ZZ/n\ZZ)^{\ast}\).

sage: from sage.arith.misc import carmichael_lambda
sage: n = randint(1, 500)
sage: c = carmichael_lambda(n)
sage: def coprime(n):
....:     return [i for i in range(n) if gcd(i, n) == 1]
sage: def znpower(n, k):
....:     L = coprime(n)
....:     return list(map(power_mod, L, [k]*len(L), [n]*len(L)))
sage: def my_carmichael(n):
....:     if n == 1:
....:         return 1
....:     for k in range(1, n):
....:         L = znpower(n, k)
....:         ones = [1] * len(L)
....:         T = [L[i] == ones[i] for i in range(len(L))]
....:         if all(T):
....:             return k
sage: c == my_carmichael(n)
True
>>> from sage.all import *
>>> from sage.arith.misc import carmichael_lambda
>>> n = randint(Integer(1), Integer(500))
>>> c = carmichael_lambda(n)
>>> def coprime(n):
...     return [i for i in range(n) if gcd(i, n) == Integer(1)]
>>> def znpower(n, k):
...     L = coprime(n)
...     return list(map(power_mod, L, [k]*len(L), [n]*len(L)))
>>> def my_carmichael(n):
...     if n == Integer(1):
...         return Integer(1)
...     for k in range(Integer(1), n):
...         L = znpower(n, k)
...         ones = [Integer(1)] * len(L)
...         T = [L[i] == ones[i] for i in range(len(L))]
...         if all(T):
...             return k
>>> c == my_carmichael(n)
True

Carmichael’s theorem states that \(a^{\lambda(n)} \equiv 1 \pmod{n}\) for all elements \(a\) of the multiplicative group \((\ZZ/n\ZZ)^{\ast}\). Here, we verify Carmichael’s theorem.

sage: from sage.arith.misc import carmichael_lambda
sage: n = randint(2, 1000)
sage: c = carmichael_lambda(n)
sage: ZnZ = IntegerModRing(n)
sage: M = ZnZ.list_of_elements_of_multiplicative_group()
sage: ones = [1] * len(M)
sage: P = [power_mod(a, c, n) for a in M]
sage: P == ones
True
>>> from sage.all import *
>>> from sage.arith.misc import carmichael_lambda
>>> n = randint(Integer(2), Integer(1000))
>>> c = carmichael_lambda(n)
>>> ZnZ = IntegerModRing(n)
>>> M = ZnZ.list_of_elements_of_multiplicative_group()
>>> ones = [Integer(1)] * len(M)
>>> P = [power_mod(a, c, n) for a in M]
>>> P == ones
True

REFERENCES:

sage.arith.misc.continuant(v, n=None)[source]

Function returns the continuant of the sequence \(v\) (list or tuple).

Definition: see Graham, Knuth and Patashnik, Concrete Mathematics, section 6.7: Continuants. The continuant is defined by

  • \(K_0() = 1\)

  • \(K_1(x_1) = x_1\)

  • \(K_n(x_1, \cdots, x_n) = K_{n-1}(x_n, \cdots x_{n-1})x_n + K_{n-2}(x_1, \cdots, x_{n-2})\)

If n = None or n > len(v) the default n = len(v) is used.

INPUT:

  • v – list or tuple of elements of a ring

  • n – (optional) integer

OUTPUT: element of ring (integer, polynomial, etcetera).

EXAMPLES:

sage: continuant([1,2,3])
10
sage: p = continuant([2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10])
sage: q = continuant([1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10])
sage: p/q
517656/190435
sage: F = continued_fraction([2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10])
sage: F.convergent(14)
517656/190435
sage: x = PolynomialRing(RationalField(), 'x', 5).gens()
sage: continuant(x)
x0*x1*x2*x3*x4 + x0*x1*x2 + x0*x1*x4 + x0*x3*x4 + x2*x3*x4 + x0 + x2 + x4
sage: continuant(x, 3)
x0*x1*x2 + x0 + x2
sage: continuant(x, 2)
x0*x1 + 1
>>> from sage.all import *
>>> continuant([Integer(1),Integer(2),Integer(3)])
10
>>> p = continuant([Integer(2), Integer(1), Integer(2), Integer(1), Integer(1), Integer(4), Integer(1), Integer(1), Integer(6), Integer(1), Integer(1), Integer(8), Integer(1), Integer(1), Integer(10)])
>>> q = continuant([Integer(1), Integer(2), Integer(1), Integer(1), Integer(4), Integer(1), Integer(1), Integer(6), Integer(1), Integer(1), Integer(8), Integer(1), Integer(1), Integer(10)])
>>> p/q
517656/190435
>>> F = continued_fraction([Integer(2), Integer(1), Integer(2), Integer(1), Integer(1), Integer(4), Integer(1), Integer(1), Integer(6), Integer(1), Integer(1), Integer(8), Integer(1), Integer(1), Integer(10)])
>>> F.convergent(Integer(14))
517656/190435
>>> x = PolynomialRing(RationalField(), 'x', Integer(5)).gens()
>>> continuant(x)
x0*x1*x2*x3*x4 + x0*x1*x2 + x0*x1*x4 + x0*x3*x4 + x2*x3*x4 + x0 + x2 + x4
>>> continuant(x, Integer(3))
x0*x1*x2 + x0 + x2
>>> continuant(x, Integer(2))
x0*x1 + 1

We verify the identity

\[K_n(z,z,\cdots,z) = \sum_{k=0}^n \binom{n-k}{k} z^{n-2k}\]

for \(n = 6\) using polynomial arithmetic:

sage: z = QQ['z'].0
sage: continuant((z,z,z,z,z,z,z,z,z,z,z,z,z,z,z), 6)
z^6 + 5*z^4 + 6*z^2 + 1

sage: continuant(9)
Traceback (most recent call last):
...
TypeError: object of type 'sage.rings.integer.Integer' has no len()
>>> from sage.all import *
>>> z = QQ['z'].gen(0)
>>> continuant((z,z,z,z,z,z,z,z,z,z,z,z,z,z,z), Integer(6))
z^6 + 5*z^4 + 6*z^2 + 1

>>> continuant(Integer(9))
Traceback (most recent call last):
...
TypeError: object of type 'sage.rings.integer.Integer' has no len()

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: continuant([int8(1), int8(2), int8(3)])                                   # needs numpy
10
sage: from gmpy2 import mpz
sage: continuant([mpz(1), mpz(2), mpz(3)])
mpz(10)
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> continuant([int8(Integer(1)), int8(Integer(2)), int8(Integer(3))])                                   # needs numpy
10
>>> from gmpy2 import mpz
>>> continuant([mpz(Integer(1)), mpz(Integer(2)), mpz(Integer(3))])
mpz(10)

AUTHORS:

  • Jaap Spies (2007-02-06)

sage.arith.misc.coprime_part(x, base)[source]

Given an element x of a Euclidean domain and a factor base base, return the largest divisor of x that is not divisible by any element of base.

ALGORITHM: Divide \(x\) by the smooth_part().

EXAMPLES:

sage: from sage.arith.misc import coprime_part, smooth_part
sage: from sage.rings.generic import ProductTree
sage: coprime_part(10^77+1, primes(10000))
2159827213801295896328509719222460043196544298056155507343412527
sage: tree = ProductTree(primes(10000))
sage: coprime_part(10^55+1, tree)
6426667196963538873896485804232411
sage: coprime_part(10^55+1, tree).factor()
20163494891 * 318727841165674579776721
sage: prod(smooth_part(10^55+1, tree)) * coprime_part(10^55+1, tree)
10000000000000000000000000000000000000000000000000000001
>>> from sage.all import *
>>> from sage.arith.misc import coprime_part, smooth_part
>>> from sage.rings.generic import ProductTree
>>> coprime_part(Integer(10)**Integer(77)+Integer(1), primes(Integer(10000)))
2159827213801295896328509719222460043196544298056155507343412527
>>> tree = ProductTree(primes(Integer(10000)))
>>> coprime_part(Integer(10)**Integer(55)+Integer(1), tree)
6426667196963538873896485804232411
>>> coprime_part(Integer(10)**Integer(55)+Integer(1), tree).factor()
20163494891 * 318727841165674579776721
>>> prod(smooth_part(Integer(10)**Integer(55)+Integer(1), tree)) * coprime_part(Integer(10)**Integer(55)+Integer(1), tree)
10000000000000000000000000000000000000000000000000000001
sage.arith.misc.crt(a, b, m=None, n=None)[source]

Return a solution to a Chinese Remainder Theorem problem.

INPUT:

  • a, b – two residues (elements of some ring for which extended gcd is available), or two lists, one of residues and one of moduli

  • m, n – (default: None) two moduli, or None

OUTPUT:

If m, n are not None, returns a solution \(x\) to the simultaneous congruences \(x\equiv a \bmod m\) and \(x\equiv b \bmod n\), if one exists. By the Chinese Remainder Theorem, a solution to the simultaneous congruences exists if and only if \(a\equiv b\pmod{\gcd(m,n)}\). The solution \(x\) is only well-defined modulo \(\text{lcm}(m,n)\).

If a and b are lists, returns a simultaneous solution to the congruences \(x\equiv a_i\pmod{b_i}\), if one exists.

See also

EXAMPLES:

Using crt by giving it pairs of residues and moduli:

sage: crt(2, 1, 3, 5)
11
sage: crt(13, 20, 100, 301)
28013
sage: crt([2, 1], [3, 5])
11
sage: crt([13, 20], [100, 301])
28013
>>> from sage.all import *
>>> crt(Integer(2), Integer(1), Integer(3), Integer(5))
11
>>> crt(Integer(13), Integer(20), Integer(100), Integer(301))
28013
>>> crt([Integer(2), Integer(1)], [Integer(3), Integer(5)])
11
>>> crt([Integer(13), Integer(20)], [Integer(100), Integer(301)])
28013

You can also use upper case:

sage: c = CRT(2,3, 3, 5); c
8
sage: c % 3 == 2
True
sage: c % 5 == 3
True
>>> from sage.all import *
>>> c = CRT(Integer(2),Integer(3), Integer(3), Integer(5)); c
8
>>> c % Integer(3) == Integer(2)
True
>>> c % Integer(5) == Integer(3)
True

Note that this also works for polynomial rings:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 7)
sage: R.<y> = K[]
sage: f = y^2 + 3
sage: g = y^3 - 5
sage: CRT(1, 3, f, g)
-3/26*y^4 + 5/26*y^3 + 15/26*y + 53/26
sage: CRT(1, a, f, g)
(-3/52*a + 3/52)*y^4 + (5/52*a - 5/52)*y^3 + (15/52*a - 15/52)*y + 27/52*a + 25/52
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> x = polygen(ZZ, 'x')
>>> K = NumberField(x**Integer(3) - Integer(7), names=('a',)); (a,) = K._first_ngens(1)
>>> R = K['y']; (y,) = R._first_ngens(1)
>>> f = y**Integer(2) + Integer(3)
>>> g = y**Integer(3) - Integer(5)
>>> CRT(Integer(1), Integer(3), f, g)
-3/26*y^4 + 5/26*y^3 + 15/26*y + 53/26
>>> CRT(Integer(1), a, f, g)
(-3/52*a + 3/52)*y^4 + (5/52*a - 5/52)*y^3 + (15/52*a - 15/52)*y + 27/52*a + 25/52

You can also do this for any number of moduli:

sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(x^3 - 7)
sage: R.<x> = K[]
sage: CRT([], [])
0
sage: CRT([a], [x])
a
sage: f = x^2 + 3
sage: g = x^3 - 5
sage: h = x^5 + x^2 - 9
sage: k = CRT([1, a, 3], [f, g, h]); k
(127/26988*a - 5807/386828)*x^9 + (45/8996*a - 33677/1160484)*x^8
 + (2/173*a - 6/173)*x^7 + (133/6747*a - 5373/96707)*x^6
 + (-6/2249*a + 18584/290121)*x^5 + (-277/8996*a + 38847/386828)*x^4
 + (-135/4498*a + 42673/193414)*x^3 + (-1005/8996*a + 470245/1160484)*x^2
 + (-1215/8996*a + 141165/386828)*x + 621/8996*a + 836445/386828
sage: k.mod(f)
1
sage: k.mod(g)
a
sage: k.mod(h)
3
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = NumberField(x**Integer(3) - Integer(7), names=('a',)); (a,) = K._first_ngens(1)
>>> R = K['x']; (x,) = R._first_ngens(1)
>>> CRT([], [])
0
>>> CRT([a], [x])
a
>>> f = x**Integer(2) + Integer(3)
>>> g = x**Integer(3) - Integer(5)
>>> h = x**Integer(5) + x**Integer(2) - Integer(9)
>>> k = CRT([Integer(1), a, Integer(3)], [f, g, h]); k
(127/26988*a - 5807/386828)*x^9 + (45/8996*a - 33677/1160484)*x^8
 + (2/173*a - 6/173)*x^7 + (133/6747*a - 5373/96707)*x^6
 + (-6/2249*a + 18584/290121)*x^5 + (-277/8996*a + 38847/386828)*x^4
 + (-135/4498*a + 42673/193414)*x^3 + (-1005/8996*a + 470245/1160484)*x^2
 + (-1215/8996*a + 141165/386828)*x + 621/8996*a + 836445/386828
>>> k.mod(f)
1
>>> k.mod(g)
a
>>> k.mod(h)
3

If the moduli are not coprime, a solution may not exist:

sage: crt(4, 8, 8, 12)
20
sage: crt(4, 6, 8, 12)
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(8,12) does not divide 4-6

sage: x = polygen(QQ)
sage: crt(2, 3, x - 1, x + 1)
-1/2*x + 5/2
sage: crt(2, x, x^2 - 1, x^2 + 1)
-1/2*x^3 + x^2 + 1/2*x + 1
sage: crt(2, x, x^2 - 1, x^3 - 1)
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(x^2 - 1,x^3 - 1) does not divide 2-x

sage: crt(int(2), int(3), int(7), int(11))
58
>>> from sage.all import *
>>> crt(Integer(4), Integer(8), Integer(8), Integer(12))
20
>>> crt(Integer(4), Integer(6), Integer(8), Integer(12))
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(8,12) does not divide 4-6

>>> x = polygen(QQ)
>>> crt(Integer(2), Integer(3), x - Integer(1), x + Integer(1))
-1/2*x + 5/2
>>> crt(Integer(2), x, x**Integer(2) - Integer(1), x**Integer(2) + Integer(1))
-1/2*x^3 + x^2 + 1/2*x + 1
>>> crt(Integer(2), x, x**Integer(2) - Integer(1), x**Integer(3) - Integer(1))
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(x^2 - 1,x^3 - 1) does not divide 2-x

>>> crt(int(Integer(2)), int(Integer(3)), int(Integer(7)), int(Integer(11)))
58

crt also work with numpy and gmpy2 numbers:

sage: import numpy                                                              # needs numpy
sage: crt(numpy.int8(2), numpy.int8(3), numpy.int8(7), numpy.int8(11))          # needs numpy
58
sage: from gmpy2 import mpz
sage: crt(mpz(2), mpz(3), mpz(7), mpz(11))
58
sage: crt(mpz(2), 3, mpz(7), numpy.int8(11))                                    # needs numpy
58
>>> from sage.all import *
>>> import numpy                                                              # needs numpy
>>> crt(numpy.int8(Integer(2)), numpy.int8(Integer(3)), numpy.int8(Integer(7)), numpy.int8(Integer(11)))          # needs numpy
58
>>> from gmpy2 import mpz
>>> crt(mpz(Integer(2)), mpz(Integer(3)), mpz(Integer(7)), mpz(Integer(11)))
58
>>> crt(mpz(Integer(2)), Integer(3), mpz(Integer(7)), numpy.int8(Integer(11)))                                    # needs numpy
58
sage.arith.misc.dedekind_psi(N)[source]

Return the value of the Dedekind psi function at N.

INPUT:

  • N – positive integer

OUTPUT: integer

The Dedekind psi function is the multiplicative function defined by

\[\psi(n) = n \prod_{p|n, p prime} (1 + 1/p).\]

See Wikipedia article Dedekind_psi_function and OEIS sequence A001615.

EXAMPLES:

sage: from sage.arith.misc import dedekind_psi
sage: [dedekind_psi(d) for d in range(1, 12)]
[1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12]
>>> from sage.all import *
>>> from sage.arith.misc import dedekind_psi
>>> [dedekind_psi(d) for d in range(Integer(1), Integer(12))]
[1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12]
sage.arith.misc.dedekind_sum(p, q, algorithm='default')[source]

Return the Dedekind sum \(s(p,q)\) defined for integers \(p\), \(q\) as

\[s(p,q) = \sum_{i=0}^{q-1} \left(\!\left(\frac{i}{q}\right)\!\right) \left(\!\left(\frac{pi}{q}\right)\!\right)\]

where

\[\begin{split}((x))=\begin{cases} x-\lfloor x \rfloor - \frac{1}{2} &\mbox{if } x \in \QQ \setminus \ZZ \\ 0 & \mbox{if } x \in \ZZ. \end{cases}\end{split}\]

Warning

Caution is required as the Dedekind sum sometimes depends on the algorithm or is left undefined when \(p\) and \(q\) are not coprime.

INPUT:

  • p, q – integers

  • algorithm – must be one of the following

    • 'default' – (default) use FLINT

    • 'flint' – use FLINT

    • 'pari' – use PARI (gives different results if \(p\) and \(q\)

      are not coprime)

OUTPUT: a rational number

EXAMPLES:

Several small values:

sage: for q in range(10): print([dedekind_sum(p,q) for p in range(q+1)])        # needs sage.libs.flint
[0]
[0, 0]
[0, 0, 0]
[0, 1/18, -1/18, 0]
[0, 1/8, 0, -1/8, 0]
[0, 1/5, 0, 0, -1/5, 0]
[0, 5/18, 1/18, 0, -1/18, -5/18, 0]
[0, 5/14, 1/14, -1/14, 1/14, -1/14, -5/14, 0]
[0, 7/16, 1/8, 1/16, 0, -1/16, -1/8, -7/16, 0]
[0, 14/27, 4/27, 1/18, -4/27, 4/27, -1/18, -4/27, -14/27, 0]
>>> from sage.all import *
>>> for q in range(Integer(10)): print([dedekind_sum(p,q) for p in range(q+Integer(1))])        # needs sage.libs.flint
[0]
[0, 0]
[0, 0, 0]
[0, 1/18, -1/18, 0]
[0, 1/8, 0, -1/8, 0]
[0, 1/5, 0, 0, -1/5, 0]
[0, 5/18, 1/18, 0, -1/18, -5/18, 0]
[0, 5/14, 1/14, -1/14, 1/14, -1/14, -5/14, 0]
[0, 7/16, 1/8, 1/16, 0, -1/16, -1/8, -7/16, 0]
[0, 14/27, 4/27, 1/18, -4/27, 4/27, -1/18, -4/27, -14/27, 0]

Check relations for restricted arguments:

sage: q = 23; dedekind_sum(1, q); (q-1)*(q-2)/(12*q)                            # needs sage.libs.flint
77/46
77/46
sage: p, q = 100, 723    # must be coprime
sage: dedekind_sum(p, q) + dedekind_sum(q, p)                                   # needs sage.libs.flint
31583/86760
sage: -1/4 + (p/q + q/p + 1/(p*q))/12
31583/86760
>>> from sage.all import *
>>> q = Integer(23); dedekind_sum(Integer(1), q); (q-Integer(1))*(q-Integer(2))/(Integer(12)*q)                            # needs sage.libs.flint
77/46
77/46
>>> p, q = Integer(100), Integer(723)    # must be coprime
>>> dedekind_sum(p, q) + dedekind_sum(q, p)                                   # needs sage.libs.flint
31583/86760
>>> -Integer(1)/Integer(4) + (p/q + q/p + Integer(1)/(p*q))/Integer(12)
31583/86760

We check that evaluation works with large input:

sage: dedekind_sum(3^54 - 1, 2^93 + 1)                                          # needs sage.libs.flint
459340694971839990630374299870/29710560942849126597578981379
sage: dedekind_sum(3^54 - 1, 2^93 + 1, algorithm='pari')                        # needs sage.libs.pari
459340694971839990630374299870/29710560942849126597578981379
>>> from sage.all import *
>>> dedekind_sum(Integer(3)**Integer(54) - Integer(1), Integer(2)**Integer(93) + Integer(1))                                          # needs sage.libs.flint
459340694971839990630374299870/29710560942849126597578981379
>>> dedekind_sum(Integer(3)**Integer(54) - Integer(1), Integer(2)**Integer(93) + Integer(1), algorithm='pari')                        # needs sage.libs.pari
459340694971839990630374299870/29710560942849126597578981379

We check consistency of the results:

sage: dedekind_sum(5, 7, algorithm='default')                                   # needs sage.libs.flint
-1/14
sage: dedekind_sum(5, 7, algorithm='flint')                                     # needs sage.libs.flint
-1/14
sage: dedekind_sum(5, 7, algorithm='pari')                                      # needs sage.libs.pari
-1/14
sage: dedekind_sum(6, 8, algorithm='default')                                   # needs sage.libs.flint
-1/8
sage: dedekind_sum(6, 8, algorithm='flint')                                     # needs sage.libs.flint
-1/8
sage: dedekind_sum(6, 8, algorithm='pari')                                      # needs sage.libs.pari
-1/8
>>> from sage.all import *
>>> dedekind_sum(Integer(5), Integer(7), algorithm='default')                                   # needs sage.libs.flint
-1/14
>>> dedekind_sum(Integer(5), Integer(7), algorithm='flint')                                     # needs sage.libs.flint
-1/14
>>> dedekind_sum(Integer(5), Integer(7), algorithm='pari')                                      # needs sage.libs.pari
-1/14
>>> dedekind_sum(Integer(6), Integer(8), algorithm='default')                                   # needs sage.libs.flint
-1/8
>>> dedekind_sum(Integer(6), Integer(8), algorithm='flint')                                     # needs sage.libs.flint
-1/8
>>> dedekind_sum(Integer(6), Integer(8), algorithm='pari')                                      # needs sage.libs.pari
-1/8

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: dedekind_sum(int8(5), int8(7), algorithm='default')                       # needs numpy sage.libs.flint
-1/14
sage: from gmpy2 import mpz
sage: dedekind_sum(mpz(5), mpz(7), algorithm='default')                         # needs sage.libs.flint
-1/14
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> dedekind_sum(int8(Integer(5)), int8(Integer(7)), algorithm='default')                       # needs numpy sage.libs.flint
-1/14
>>> from gmpy2 import mpz
>>> dedekind_sum(mpz(Integer(5)), mpz(Integer(7)), algorithm='default')                         # needs sage.libs.flint
-1/14

REFERENCES:

sage.arith.misc.differences(lis, n=1)[source]

Return the \(n\) successive differences of the elements in lis.

EXAMPLES:

sage: differences(prime_range(50))                                              # needs sage.libs.pari
[1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4]
sage: differences([i^2 for i in range(1,11)])
[3, 5, 7, 9, 11, 13, 15, 17, 19]
sage: differences([i^3 + 3*i for i in range(1,21)])
[10, 22, 40, 64, 94, 130, 172, 220, 274, 334, 400, 472, 550, 634, 724, 820, 922, 1030, 1144]
sage: differences([i^3 - i^2 for i in range(1,21)], 2)
[10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112]
sage: differences([p - i^2 for i, p in enumerate(prime_range(50))], 3)          # needs sage.libs.pari
[-1, 2, -4, 4, -4, 4, 0, -6, 8, -6, 0, 4]
>>> from sage.all import *
>>> differences(prime_range(Integer(50)))                                              # needs sage.libs.pari
[1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4]
>>> differences([i**Integer(2) for i in range(Integer(1),Integer(11))])
[3, 5, 7, 9, 11, 13, 15, 17, 19]
>>> differences([i**Integer(3) + Integer(3)*i for i in range(Integer(1),Integer(21))])
[10, 22, 40, 64, 94, 130, 172, 220, 274, 334, 400, 472, 550, 634, 724, 820, 922, 1030, 1144]
>>> differences([i**Integer(3) - i**Integer(2) for i in range(Integer(1),Integer(21))], Integer(2))
[10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112]
>>> differences([p - i**Integer(2) for i, p in enumerate(prime_range(Integer(50)))], Integer(3))          # needs sage.libs.pari
[-1, 2, -4, 4, -4, 4, 0, -6, 8, -6, 0, 4]

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: differences([int8(1), int8(4), int8(6), int8(19)])                        # needs numpy
[3, 2, 13]
sage: from gmpy2 import mpz
sage: differences([mpz(1), mpz(4), mpz(6), mpz(19)])
[mpz(3), mpz(2), mpz(13)]
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> differences([int8(Integer(1)), int8(Integer(4)), int8(Integer(6)), int8(Integer(19))])                        # needs numpy
[3, 2, 13]
>>> from gmpy2 import mpz
>>> differences([mpz(Integer(1)), mpz(Integer(4)), mpz(Integer(6)), mpz(Integer(19))])
[mpz(3), mpz(2), mpz(13)]

AUTHORS:

  • Timothy Clemans (2008-03-09)

sage.arith.misc.divisors(n)[source]

Return the list of all divisors (up to units) of this element of a unique factorization domain.

For an integer, the list of all positive integer divisors of this integer, sorted in increasing order, is returned.

INPUT:

  • n – the element

EXAMPLES:

Divisors of integers:

sage: divisors(-3)
[1, 3]
sage: divisors(6)
[1, 2, 3, 6]
sage: divisors(28)
[1, 2, 4, 7, 14, 28]
sage: divisors(2^5)
[1, 2, 4, 8, 16, 32]
sage: divisors(100)
[1, 2, 4, 5, 10, 20, 25, 50, 100]
sage: divisors(1)
[1]
sage: divisors(0)
Traceback (most recent call last):
...
ValueError: n must be nonzero
sage: divisors(2^3 * 3^2 * 17)
[1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68, 72,
102, 136, 153, 204, 306, 408, 612, 1224]
>>> from sage.all import *
>>> divisors(-Integer(3))
[1, 3]
>>> divisors(Integer(6))
[1, 2, 3, 6]
>>> divisors(Integer(28))
[1, 2, 4, 7, 14, 28]
>>> divisors(Integer(2)**Integer(5))
[1, 2, 4, 8, 16, 32]
>>> divisors(Integer(100))
[1, 2, 4, 5, 10, 20, 25, 50, 100]
>>> divisors(Integer(1))
[1]
>>> divisors(Integer(0))
Traceback (most recent call last):
...
ValueError: n must be nonzero
>>> divisors(Integer(2)**Integer(3) * Integer(3)**Integer(2) * Integer(17))
[1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68, 72,
102, 136, 153, 204, 306, 408, 612, 1224]

This function works whenever one has unique factorization:

sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(7)
sage: divisors(K.ideal(7))
[Fractional ideal (1), Fractional ideal (a), Fractional ideal (7)]
sage: divisors(K.ideal(3))
[Fractional ideal (1), Fractional ideal (3),
 Fractional ideal (a - 2), Fractional ideal (a + 2)]
sage: divisors(K.ideal(35))
[Fractional ideal (1), Fractional ideal (5), Fractional ideal (a),
 Fractional ideal (7), Fractional ideal (5*a), Fractional ideal (35)]
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = QuadraticField(Integer(7), names=('a',)); (a,) = K._first_ngens(1)
>>> divisors(K.ideal(Integer(7)))
[Fractional ideal (1), Fractional ideal (a), Fractional ideal (7)]
>>> divisors(K.ideal(Integer(3)))
[Fractional ideal (1), Fractional ideal (3),
 Fractional ideal (a - 2), Fractional ideal (a + 2)]
>>> divisors(K.ideal(Integer(35)))
[Fractional ideal (1), Fractional ideal (5), Fractional ideal (a),
 Fractional ideal (7), Fractional ideal (5*a), Fractional ideal (35)]
sage.arith.misc.eratosthenes(n)[source]

Return a list of the primes \(\leq n\).

This is extremely slow and is for educational purposes only.

INPUT:

  • n – positive integer

OUTPUT: list of primes less than or equal to \(n\)

EXAMPLES:

sage: eratosthenes(3)
[2, 3]
sage: eratosthenes(50)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
sage: len(eratosthenes(100))
25
sage: eratosthenes(213) == prime_range(213)                                     # needs sage.libs.pari
True
>>> from sage.all import *
>>> eratosthenes(Integer(3))
[2, 3]
>>> eratosthenes(Integer(50))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
>>> len(eratosthenes(Integer(100)))
25
>>> eratosthenes(Integer(213)) == prime_range(Integer(213))                                     # needs sage.libs.pari
True
sage.arith.misc.factor(n, proof=None, int_=False, algorithm='pari', verbose=0, **kwds)[source]

Return the factorization of n. The result depends on the type of n.

If n is an integer, returns the factorization as an object of type Factorization.

If n is not an integer, n.factor(proof=proof, **kwds) gets called. See n.factor?? for more documentation in this case.

Warning

This means that applying factor() to an integer result of a symbolic computation will not factor the integer, because it is considered as an element of a larger symbolic ring.

EXAMPLES:

sage: f(n) = n^2                                                             # needs sage.symbolic
sage: is_prime(f(3))                                                         # needs sage.symbolic
False
sage: factor(f(3))                                                           # needs sage.symbolic
9
>>> from sage.all import *
>>> __tmp__=var("n"); f = symbolic_expression(n**Integer(2)                                                             ).function(n)# needs sage.symbolic
>>> is_prime(f(Integer(3)))                                                         # needs sage.symbolic
False
>>> factor(f(Integer(3)))                                                           # needs sage.symbolic
9

INPUT:

  • n – nonzero integer

  • proof – boolean or None (default: None)

  • int_ – boolean (default: False); whether to return answers as Python integers

  • algorithm – string

    • 'pari' – (default) use the PARI C library

    • 'kash' – use KASH computer algebra system (requires that kash be installed)

    • 'magma' – use Magma (requires magma be installed)

  • verbose – integer (default: 0); PARI’s debug variable is set to this. E.g., set to 4 or 8 to see lots of output during factorization.

OUTPUT: factorization of \(n\)

The qsieve and ecm commands give access to highly optimized implementations of algorithms for doing certain integer factorization problems. These implementations are not used by the generic factor() command, which currently just calls PARI (note that PARI also implements sieve and ecm algorithms, but they are not as optimized). Thus you might consider using them instead for certain numbers.

The factorization returned is an element of the class Factorization; use Factorization?? to see more details, and examples below for usage. A Factorization contains both the unit factor (\(+1\) or \(-1\)) and a sorted list of (prime, exponent) pairs.

The factorization displays in pretty-print format but it is easy to obtain access to the (prime, exponent) pairs and the unit, to recover the number from its factorization, and even to multiply two factorizations. See examples below.

EXAMPLES:

sage: factor(500)
2^2 * 5^3
sage: factor(-20)
-1 * 2^2 * 5
sage: f=factor(-20)
sage: list(f)
[(2, 2), (5, 1)]
sage: f.unit()
-1
sage: f.value()
-20
sage: factor(-next_prime(10^2) * next_prime(10^7))                              # needs sage.libs.pari
-1 * 101 * 10000019
>>> from sage.all import *
>>> factor(Integer(500))
2^2 * 5^3
>>> factor(-Integer(20))
-1 * 2^2 * 5
>>> f=factor(-Integer(20))
>>> list(f)
[(2, 2), (5, 1)]
>>> f.unit()
-1
>>> f.value()
-20
>>> factor(-next_prime(Integer(10)**Integer(2)) * next_prime(Integer(10)**Integer(7)))                              # needs sage.libs.pari
-1 * 101 * 10000019

sage: factor(293292629867846432923017396246429, algorithm='flint')              # needs sage.libs.flint
3 * 4852301647696687 * 20148007492971089
>>> from sage.all import *
>>> factor(Integer(293292629867846432923017396246429), algorithm='flint')              # needs sage.libs.flint
3 * 4852301647696687 * 20148007492971089

sage: factor(-500, algorithm='kash')
-1 * 2^2 * 5^3
>>> from sage.all import *
>>> factor(-Integer(500), algorithm='kash')
-1 * 2^2 * 5^3

sage: factor(-500, algorithm='magma')     # optional - magma
-1 * 2^2 * 5^3
>>> from sage.all import *
>>> factor(-Integer(500), algorithm='magma')     # optional - magma
-1 * 2^2 * 5^3

sage: factor(0)
Traceback (most recent call last):
...
ArithmeticError: factorization of 0 is not defined
sage: factor(1)
1
sage: factor(-1)
-1
sage: factor(2^(2^7) + 1)                                                       # needs sage.libs.pari
59649589127497217 * 5704689200685129054721
>>> from sage.all import *
>>> factor(Integer(0))
Traceback (most recent call last):
...
ArithmeticError: factorization of 0 is not defined
>>> factor(Integer(1))
1
>>> factor(-Integer(1))
-1
>>> factor(Integer(2)**(Integer(2)**Integer(7)) + Integer(1))                                                       # needs sage.libs.pari
59649589127497217 * 5704689200685129054721

Sage calls PARI’s pari:factor, which has proof=False by default. Sage has a global proof flag, set to True by default (see sage.structure.proof.proof, or use proof.[tab]). To override the default, call this function with proof=False.

sage: factor(3^89 - 1, proof=False)                                             # needs sage.libs.pari
2 * 179 * 1611479891519807 * 5042939439565996049162197
>>> from sage.all import *
>>> factor(Integer(3)**Integer(89) - Integer(1), proof=False)                                             # needs sage.libs.pari
2 * 179 * 1611479891519807 * 5042939439565996049162197

sage: factor(2^197 + 1)                 # long time (2s)                        # needs sage.libs.pari
3 * 197002597249 * 1348959352853811313 * 251951573867253012259144010843
>>> from sage.all import *
>>> factor(Integer(2)**Integer(197) + Integer(1))                 # long time (2s)                        # needs sage.libs.pari
3 * 197002597249 * 1348959352853811313 * 251951573867253012259144010843

Any object which has a factor method can be factored like this:

sage: K.<i> = QuadraticField(-1)                                                # needs sage.rings.number_field
sage: factor(122 - 454*i)                                                       # needs sage.rings.number_field
(-i) * (-i - 2)^3 * (i + 1)^3 * (-2*i + 3) * (i + 4)
>>> from sage.all import *
>>> K = QuadraticField(-Integer(1), names=('i',)); (i,) = K._first_ngens(1)# needs sage.rings.number_field
>>> factor(Integer(122) - Integer(454)*i)                                                       # needs sage.rings.number_field
(-i) * (-i - 2)^3 * (i + 1)^3 * (-2*i + 3) * (i + 4)

To access the data in a factorization:

sage: # needs sage.libs.pari
sage: f = factor(420); f
2^2 * 3 * 5 * 7
sage: [x for x in f]
[(2, 2), (3, 1), (5, 1), (7, 1)]
sage: [p for p,e in f]
[2, 3, 5, 7]
sage: [e for p,e in f]
[2, 1, 1, 1]
sage: [p^e for p,e in f]
[4, 3, 5, 7]
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> f = factor(Integer(420)); f
2^2 * 3 * 5 * 7
>>> [x for x in f]
[(2, 2), (3, 1), (5, 1), (7, 1)]
>>> [p for p,e in f]
[2, 3, 5, 7]
>>> [e for p,e in f]
[2, 1, 1, 1]
>>> [p**e for p,e in f]
[4, 3, 5, 7]

We can factor Python, numpy and gmpy2 numbers:

sage: factor(math.pi)
3.141592653589793
sage: import numpy                                                              # needs numpy
sage: factor(numpy.int8(30))                                                    # needs numpy sage.libs.pari
2 * 3 * 5
sage: import gmpy2
sage: factor(gmpy2.mpz(30))
2 * 3 * 5
>>> from sage.all import *
>>> factor(math.pi)
3.141592653589793
>>> import numpy                                                              # needs numpy
>>> factor(numpy.int8(Integer(30)))                                                    # needs numpy sage.libs.pari
2 * 3 * 5
>>> import gmpy2
>>> factor(gmpy2.mpz(Integer(30)))
2 * 3 * 5
sage.arith.misc.factorial(n, algorithm='gmp')[source]

Compute the factorial of \(n\), which is the product \(1\cdot 2\cdot 3 \cdots (n-1)\cdot n\).

INPUT:

  • n – integer

  • algorithm – string (default: 'gmp'):

    • 'gmp' – use the GMP C-library factorial function

    • 'pari' – use PARI’s factorial function

OUTPUT: integer

EXAMPLES:

sage: from sage.arith.misc import factorial
sage: factorial(0)
1
sage: factorial(4)
24
sage: factorial(10)
3628800
sage: factorial(1) == factorial(0)
True
sage: factorial(6) == 6*5*4*3*2
True
sage: factorial(1) == factorial(0)
True
sage: factorial(71) == 71* factorial(70)
True
sage: factorial(-32)
Traceback (most recent call last):
...
ValueError: factorial -- must be nonnegative
>>> from sage.all import *
>>> from sage.arith.misc import factorial
>>> factorial(Integer(0))
1
>>> factorial(Integer(4))
24
>>> factorial(Integer(10))
3628800
>>> factorial(Integer(1)) == factorial(Integer(0))
True
>>> factorial(Integer(6)) == Integer(6)*Integer(5)*Integer(4)*Integer(3)*Integer(2)
True
>>> factorial(Integer(1)) == factorial(Integer(0))
True
>>> factorial(Integer(71)) == Integer(71)* factorial(Integer(70))
True
>>> factorial(-Integer(32))
Traceback (most recent call last):
...
ValueError: factorial -- must be nonnegative

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: factorial(int8(4))                                                        # needs numpy
24
sage: from gmpy2 import mpz
sage: factorial(mpz(4))
24
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> factorial(int8(Integer(4)))                                                        # needs numpy
24
>>> from gmpy2 import mpz
>>> factorial(mpz(Integer(4)))
24

PERFORMANCE: This discussion is valid as of April 2006. All timings below are on a Pentium Core Duo 2Ghz MacBook Pro running Linux with a 2.6.16.1 kernel.

  • It takes less than a minute to compute the factorial of \(10^7\) using the GMP algorithm, and the factorial of \(10^6\) takes less than 4 seconds.

  • The GMP algorithm is faster and more memory efficient than the PARI algorithm. E.g., PARI computes \(10^7\) factorial in 100 seconds on the core duo 2Ghz.

  • For comparison, computation in Magma \(\leq\) 2.12-10 of \(n!\) is best done using *[1..n]. It takes 113 seconds to compute the factorial of \(10^7\) and 6 seconds to compute the factorial of \(10^6\). Mathematica V5.2 compute the factorial of \(10^7\) in 136 seconds and the factorial of \(10^6\) in 7 seconds. (Mathematica is notably very efficient at memory usage when doing factorial calculations.)

sage.arith.misc.falling_factorial(x, a)[source]

Return the falling factorial \((x)_a\).

The notation in the literature is a mess: often \((x)_a\), but there are many other notations: GKP: Concrete Mathematics uses \(x^{\underline{a}}\).

Definition: for integer \(a \ge 0\) we have \(x(x-1) \cdots (x-a+1)\). In all other cases we use the GAMMA-function: \(\frac {\Gamma(x+1)} {\Gamma(x-a+1)}\).

INPUT:

  • x – element of a ring

  • a – nonnegative integer or

  • x, a – any numbers

OUTPUT: the falling factorial

EXAMPLES:

sage: falling_factorial(10, 3)
720
sage: falling_factorial(10, 10)
3628800
sage: factorial(10)
3628800

sage: # needs sage.symbolic
sage: falling_factorial(10, RR('3.0'))
720.000000000000
sage: falling_factorial(10, RR('3.3'))
1310.11633396601
sage: a = falling_factorial(1 + I, I); a
gamma(I + 2)
sage: CC(a)
0.652965496420167 + 0.343065839816545*I
sage: falling_factorial(1 + I, 4)
4*I + 2
sage: falling_factorial(I, 4)
-10

sage: M = MatrixSpace(ZZ, 4, 4)                                                 # needs sage.modules
sage: A = M([1,0,1,0, 1,0,1,0, 1,0,10,10, 1,0,1,1])                             # needs sage.modules
sage: falling_factorial(A, 2)  # A(A - I)                                       # needs sage.modules
[  1   0  10  10]
[  1   0  10  10]
[ 20   0 101 100]
[  2   0  11  10]

sage: x = ZZ['x'].0
sage: falling_factorial(x, 4)
x^4 - 6*x^3 + 11*x^2 - 6*x
>>> from sage.all import *
>>> falling_factorial(Integer(10), Integer(3))
720
>>> falling_factorial(Integer(10), Integer(10))
3628800
>>> factorial(Integer(10))
3628800

>>> # needs sage.symbolic
>>> falling_factorial(Integer(10), RR('3.0'))
720.000000000000
>>> falling_factorial(Integer(10), RR('3.3'))
1310.11633396601
>>> a = falling_factorial(Integer(1) + I, I); a
gamma(I + 2)
>>> CC(a)
0.652965496420167 + 0.343065839816545*I
>>> falling_factorial(Integer(1) + I, Integer(4))
4*I + 2
>>> falling_factorial(I, Integer(4))
-10

>>> M = MatrixSpace(ZZ, Integer(4), Integer(4))                                                 # needs sage.modules
>>> A = M([Integer(1),Integer(0),Integer(1),Integer(0), Integer(1),Integer(0),Integer(1),Integer(0), Integer(1),Integer(0),Integer(10),Integer(10), Integer(1),Integer(0),Integer(1),Integer(1)])                             # needs sage.modules
>>> falling_factorial(A, Integer(2))  # A(A - I)                                       # needs sage.modules
[  1   0  10  10]
[  1   0  10  10]
[ 20   0 101 100]
[  2   0  11  10]

>>> x = ZZ['x'].gen(0)
>>> falling_factorial(x, Integer(4))
x^4 - 6*x^3 + 11*x^2 - 6*x

AUTHORS:

  • Jaap Spies (2006-03-05)

sage.arith.misc.four_squares(n)[source]

Write the integer \(n\) as a sum of four integer squares.

INPUT:

  • n – integer

OUTPUT: a tuple \((a,b,c,d)\) of nonnegative integers such that \(n = a^2 + b^2 + c^2 + d^2\) with \(a <= b <= c <= d\).

EXAMPLES:

sage: four_squares(3)
(0, 1, 1, 1)
sage: four_squares(13)
(0, 0, 2, 3)
sage: four_squares(130)
(0, 0, 3, 11)
sage: four_squares(1101011011004)
(90, 102, 1220, 1049290)
sage: four_squares(10^100 - 1)                                                  # needs sage.libs.pari
(155024616290, 2612183768627, 14142135623730950488016887,
 99999999999999999999999999999999999999999999999999)
sage: for i in range(2^129, 2^129 + 10000):     # long time                     # needs sage.libs.pari
....:     S = four_squares(i)
....:     assert sum(x^2 for x in S) == i
>>> from sage.all import *
>>> four_squares(Integer(3))
(0, 1, 1, 1)
>>> four_squares(Integer(13))
(0, 0, 2, 3)
>>> four_squares(Integer(130))
(0, 0, 3, 11)
>>> four_squares(Integer(1101011011004))
(90, 102, 1220, 1049290)
>>> four_squares(Integer(10)**Integer(100) - Integer(1))                                                  # needs sage.libs.pari
(155024616290, 2612183768627, 14142135623730950488016887,
 99999999999999999999999999999999999999999999999999)
>>> for i in range(Integer(2)**Integer(129), Integer(2)**Integer(129) + Integer(10000)):     # long time                     # needs sage.libs.pari
...     S = four_squares(i)
...     assert sum(x**Integer(2) for x in S) == i
sage.arith.misc.fundamental_discriminant(D)[source]

Return the discriminant of the quadratic extension \(K=Q(\sqrt{D})\), i.e. an integer d congruent to either 0 or 1, mod 4, and such that, at most, the only square dividing it is 4.

INPUT:

  • D – integer

OUTPUT: integer; the fundamental discriminant

EXAMPLES:

sage: fundamental_discriminant(102)
408
sage: fundamental_discriminant(720)
5
sage: fundamental_discriminant(2)
8
>>> from sage.all import *
>>> fundamental_discriminant(Integer(102))
408
>>> fundamental_discriminant(Integer(720))
5
>>> fundamental_discriminant(Integer(2))
8

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: fundamental_discriminant(int8(102))                                       # needs numpy
408
sage: from gmpy2 import mpz
sage: fundamental_discriminant(mpz(102))
408
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> fundamental_discriminant(int8(Integer(102)))                                       # needs numpy
408
>>> from gmpy2 import mpz
>>> fundamental_discriminant(mpz(Integer(102)))
408
sage.arith.misc.gauss_sum(char_value, finite_field)[source]

Return the Gauss sums for a general finite field.

INPUT:

  • char_value – choice of multiplicative character, given by its value on the finite_field.multiplicative_generator()

  • finite_field – a finite field

OUTPUT:

an element of the parent ring of char_value, that can be any field containing enough roots of unity, for example the UniversalCyclotomicField, QQbar or ComplexField

For a finite field \(F\) of characteristic \(p\), the Gauss sum associated to a multiplicative character \(\chi\) (with values in a ring \(K\)) is defined as

\[\sum_{x \in F^{\times}} \chi(x) \zeta_p^{\operatorname{Tr} x},\]

where \(\zeta_p \in K\) is a primitive root of unity of order \(p\) and Tr is the trace map from \(F\) to its prime field \(\GF{p}\).

For more info on Gauss sums, see Wikipedia article Gauss_sum.

Todo

Implement general Gauss sums for an arbitrary pair (multiplicative_character, additive_character)

EXAMPLES:

sage: # needs sage.libs.pari sage.rings.number_field
sage: from sage.arith.misc import gauss_sum
sage: F = GF(5); q = 5
sage: zq = UniversalCyclotomicField().zeta(q - 1)
sage: L = [gauss_sum(zq**i, F) for i in range(5)]; L
[-1,
 E(20)^4 + E(20)^13 - E(20)^16 - E(20)^17,
 E(5) - E(5)^2 - E(5)^3 + E(5)^4,
 E(20)^4 - E(20)^13 - E(20)^16 + E(20)^17,
 -1]
sage: [g*g.conjugate() for g in L]
[1, 5, 5, 5, 1]

sage: # needs sage.libs.pari sage.rings.number_field
sage: F = GF(11**2); q = 11**2
sage: zq = UniversalCyclotomicField().zeta(q - 1)
sage: g = gauss_sum(zq**4, F)
sage: g*g.conjugate()
121
>>> from sage.all import *
>>> # needs sage.libs.pari sage.rings.number_field
>>> from sage.arith.misc import gauss_sum
>>> F = GF(Integer(5)); q = Integer(5)
>>> zq = UniversalCyclotomicField().zeta(q - Integer(1))
>>> L = [gauss_sum(zq**i, F) for i in range(Integer(5))]; L
[-1,
 E(20)^4 + E(20)^13 - E(20)^16 - E(20)^17,
 E(5) - E(5)^2 - E(5)^3 + E(5)^4,
 E(20)^4 - E(20)^13 - E(20)^16 + E(20)^17,
 -1]
>>> [g*g.conjugate() for g in L]
[1, 5, 5, 5, 1]

>>> # needs sage.libs.pari sage.rings.number_field
>>> F = GF(Integer(11)**Integer(2)); q = Integer(11)**Integer(2)
>>> zq = UniversalCyclotomicField().zeta(q - Integer(1))
>>> g = gauss_sum(zq**Integer(4), F)
>>> g*g.conjugate()
121
sage.arith.misc.gcd(a, b=None, **kwargs)[source]

Return the greatest common divisor of a and b.

If a is a list and b is omitted, return instead the greatest common divisor of all elements of a.

INPUT:

  • a, b – two elements of a ring with gcd or

  • a – list or tuple of elements of a ring with gcd

Additional keyword arguments are passed to the respectively called methods.

OUTPUT:

The given elements are first coerced into a common parent. Then, their greatest common divisor in that common parent is returned.

EXAMPLES:

sage: GCD(97,100)
1
sage: GCD(97*10^15, 19^20*97^2)
97
sage: GCD(2/3, 4/5)
2/15
sage: GCD([2,4,6,8])
2
sage: GCD(srange(0,10000,10))  # fast  !!
10
>>> from sage.all import *
>>> GCD(Integer(97),Integer(100))
1
>>> GCD(Integer(97)*Integer(10)**Integer(15), Integer(19)**Integer(20)*Integer(97)**Integer(2))
97
>>> GCD(Integer(2)/Integer(3), Integer(4)/Integer(5))
2/15
>>> GCD([Integer(2),Integer(4),Integer(6),Integer(8)])
2
>>> GCD(srange(Integer(0),Integer(10000),Integer(10)))  # fast  !!
10

Note that to take the gcd of \(n\) elements for \(n \not= 2\) you must put the elements into a list by enclosing them in [..]. Before Issue #4988 the following wrongly returned 3 since the third parameter was just ignored:

sage: gcd(3, 6, 2)
Traceback (most recent call last):
...
TypeError: ...gcd() takes ...
sage: gcd([3, 6, 2])
1
>>> from sage.all import *
>>> gcd(Integer(3), Integer(6), Integer(2))
Traceback (most recent call last):
...
TypeError: ...gcd() takes ...
>>> gcd([Integer(3), Integer(6), Integer(2)])
1

Similarly, giving just one element (which is not a list) gives an error:

sage: gcd(3)
Traceback (most recent call last):
...
TypeError: 'sage.rings.integer.Integer' object is not iterable
>>> from sage.all import *
>>> gcd(Integer(3))
Traceback (most recent call last):
...
TypeError: 'sage.rings.integer.Integer' object is not iterable

By convention, the gcd of the empty list is (the integer) 0:

sage: gcd([])
0
sage: type(gcd([]))
<class 'sage.rings.integer.Integer'>
>>> from sage.all import *
>>> gcd([])
0
>>> type(gcd([]))
<class 'sage.rings.integer.Integer'>
sage.arith.misc.get_gcd(order)[source]

Return the fastest gcd function for integers of size no larger than order.

EXAMPLES:

sage: sage.arith.misc.get_gcd(4000)
<built-in method gcd_int of sage.rings.fast_arith.arith_int object at ...>
sage: sage.arith.misc.get_gcd(400000)
<built-in method gcd_longlong of sage.rings.fast_arith.arith_llong object at ...>
sage: sage.arith.misc.get_gcd(4000000000)
<function gcd at ...>
>>> from sage.all import *
>>> sage.arith.misc.get_gcd(Integer(4000))
<built-in method gcd_int of sage.rings.fast_arith.arith_int object at ...>
>>> sage.arith.misc.get_gcd(Integer(400000))
<built-in method gcd_longlong of sage.rings.fast_arith.arith_llong object at ...>
>>> sage.arith.misc.get_gcd(Integer(4000000000))
<function gcd at ...>
sage.arith.misc.get_inverse_mod(order)[source]

Return the fastest inverse_mod function for integers of size no larger than order.

EXAMPLES:

sage: sage.arith.misc.get_inverse_mod(6000)
<built-in method inverse_mod_int of sage.rings.fast_arith.arith_int object at ...>
sage: sage.arith.misc.get_inverse_mod(600000)
<built-in method inverse_mod_longlong of sage.rings.fast_arith.arith_llong object at ...>
sage: sage.arith.misc.get_inverse_mod(6000000000)
<function inverse_mod at ...>
>>> from sage.all import *
>>> sage.arith.misc.get_inverse_mod(Integer(6000))
<built-in method inverse_mod_int of sage.rings.fast_arith.arith_int object at ...>
>>> sage.arith.misc.get_inverse_mod(Integer(600000))
<built-in method inverse_mod_longlong of sage.rings.fast_arith.arith_llong object at ...>
>>> sage.arith.misc.get_inverse_mod(Integer(6000000000))
<function inverse_mod at ...>
sage.arith.misc.hilbert_conductor(a, b)[source]

Return the product of all (finite) primes where the Hilbert symbol is -1.

This is the (reduced) discriminant of the quaternion algebra \((a,b)\) over \(\QQ\).

INPUT:

  • a, b – integers

OUTPUT: squarefree positive integer

EXAMPLES:

sage: # needs sage.libs.pari
sage: hilbert_conductor(-1, -1)
2
sage: hilbert_conductor(-1, -11)
11
sage: hilbert_conductor(-2, -5)
5
sage: hilbert_conductor(-3, -17)
17
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> hilbert_conductor(-Integer(1), -Integer(1))
2
>>> hilbert_conductor(-Integer(1), -Integer(11))
11
>>> hilbert_conductor(-Integer(2), -Integer(5))
5
>>> hilbert_conductor(-Integer(3), -Integer(17))
17

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: hilbert_conductor(int8(-3), int8(-17))                                    # needs numpy sage.libs.pari
17
sage: from gmpy2 import mpz
sage: hilbert_conductor(mpz(-3), mpz(-17))                                      # needs sage.libs.pari
17
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> hilbert_conductor(int8(-Integer(3)), int8(-Integer(17)))                                    # needs numpy sage.libs.pari
17
>>> from gmpy2 import mpz
>>> hilbert_conductor(mpz(-Integer(3)), mpz(-Integer(17)))                                      # needs sage.libs.pari
17

AUTHOR:

  • Gonzalo Tornaria (2009-03-02)

sage.arith.misc.hilbert_conductor_inverse(d)[source]

Finds a pair of integers \((a,b)\) such that hilbert_conductor(a,b) == d.

The quaternion algebra \((a,b)\) over \(\QQ\) will then have (reduced) discriminant \(d\).

INPUT:

  • d – square-free positive integer

OUTPUT: pair of integers

EXAMPLES:

sage: # needs sage.libs.pari
sage: hilbert_conductor_inverse(2)
(-1, -1)
sage: hilbert_conductor_inverse(3)
(-1, -3)
sage: hilbert_conductor_inverse(6)
(-1, 3)
sage: hilbert_conductor_inverse(30)
(-3, -10)
sage: hilbert_conductor_inverse(4)
Traceback (most recent call last):
...
ValueError: d needs to be squarefree
sage: hilbert_conductor_inverse(-1)
Traceback (most recent call last):
...
ValueError: d needs to be positive
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> hilbert_conductor_inverse(Integer(2))
(-1, -1)
>>> hilbert_conductor_inverse(Integer(3))
(-1, -3)
>>> hilbert_conductor_inverse(Integer(6))
(-1, 3)
>>> hilbert_conductor_inverse(Integer(30))
(-3, -10)
>>> hilbert_conductor_inverse(Integer(4))
Traceback (most recent call last):
...
ValueError: d needs to be squarefree
>>> hilbert_conductor_inverse(-Integer(1))
Traceback (most recent call last):
...
ValueError: d needs to be positive

AUTHOR:

  • Gonzalo Tornaria (2009-03-02)

sage.arith.misc.hilbert_symbol(a, b, p, algorithm='pari')[source]

Return 1 if \(ax^2 + by^2\) \(p\)-adically represents a nonzero square, otherwise returns \(-1\). If either a or b is 0, returns 0.

INPUT:

  • a, b – integers

  • p – integer; either prime or -1 (which represents the archimedean place)

  • algorithm – string

    • 'pari' – (default) use the PARI C library

    • 'direct' – use a Python implementation

    • 'all' – use both PARI and direct and check that

      the results agree, then return the common answer

OUTPUT: integer (0, -1, or 1)

EXAMPLES:

sage: # needs sage.libs.pari
sage: hilbert_symbol(-1, -1, -1, algorithm='all')
-1
sage: hilbert_symbol(2, 3, 5, algorithm='all')
1
sage: hilbert_symbol(4, 3, 5, algorithm='all')
1
sage: hilbert_symbol(0, 3, 5, algorithm='all')
0
sage: hilbert_symbol(-1, -1, 2, algorithm='all')
-1
sage: hilbert_symbol(1, -1, 2, algorithm='all')
1
sage: hilbert_symbol(3, -1, 2, algorithm='all')
-1

sage: hilbert_symbol(QQ(-1)/QQ(4), -1, 2) == -1                                 # needs sage.libs.pari
True
sage: hilbert_symbol(QQ(-1)/QQ(4), -1, 3) == 1                                  # needs sage.libs.pari
True
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> hilbert_symbol(-Integer(1), -Integer(1), -Integer(1), algorithm='all')
-1
>>> hilbert_symbol(Integer(2), Integer(3), Integer(5), algorithm='all')
1
>>> hilbert_symbol(Integer(4), Integer(3), Integer(5), algorithm='all')
1
>>> hilbert_symbol(Integer(0), Integer(3), Integer(5), algorithm='all')
0
>>> hilbert_symbol(-Integer(1), -Integer(1), Integer(2), algorithm='all')
-1
>>> hilbert_symbol(Integer(1), -Integer(1), Integer(2), algorithm='all')
1
>>> hilbert_symbol(Integer(3), -Integer(1), Integer(2), algorithm='all')
-1

>>> hilbert_symbol(QQ(-Integer(1))/QQ(Integer(4)), -Integer(1), Integer(2)) == -Integer(1)                                 # needs sage.libs.pari
True
>>> hilbert_symbol(QQ(-Integer(1))/QQ(Integer(4)), -Integer(1), Integer(3)) == Integer(1)                                  # needs sage.libs.pari
True

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: hilbert_symbol(int8(2), int8(3), int8(5), algorithm='all')                # needs numpy sage.libs.pari
1
sage: from gmpy2 import mpz
sage: hilbert_symbol(mpz(2), mpz(3), mpz(5), algorithm='all')                   # needs sage.libs.pari
1
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> hilbert_symbol(int8(Integer(2)), int8(Integer(3)), int8(Integer(5)), algorithm='all')                # needs numpy sage.libs.pari
1
>>> from gmpy2 import mpz
>>> hilbert_symbol(mpz(Integer(2)), mpz(Integer(3)), mpz(Integer(5)), algorithm='all')                   # needs sage.libs.pari
1

AUTHORS:

  • William Stein and David Kohel (2006-01-05)

sage.arith.misc.integer_ceil(x)[source]

Return the ceiling of x.

EXAMPLES:

sage: integer_ceil(5.4)
6
sage: integer_ceil(x)                                                           # needs sage.symbolic
Traceback (most recent call last):
...
NotImplementedError: computation of ceil of x not implemented
>>> from sage.all import *
>>> integer_ceil(RealNumber('5.4'))
6
>>> integer_ceil(x)                                                           # needs sage.symbolic
Traceback (most recent call last):
...
NotImplementedError: computation of ceil of x not implemented

Tests with numpy and gmpy2 numbers:

sage: from numpy import float32                                                 # needs numpy
sage: integer_ceil(float32(5.4))                                                # needs numpy
6
sage: from gmpy2 import mpfr
sage: integer_ceil(mpfr(5.4))
6
>>> from sage.all import *
>>> from numpy import float32                                                 # needs numpy
>>> integer_ceil(float32(RealNumber('5.4')))                                                # needs numpy
6
>>> from gmpy2 import mpfr
>>> integer_ceil(mpfr(RealNumber('5.4')))
6
sage.arith.misc.integer_floor(x)[source]

Return the largest integer \(\leq x\).

INPUT:

  • x – an object that has a floor method or is coercible to integer

OUTPUT: integer

EXAMPLES:

sage: integer_floor(5.4)
5
sage: integer_floor(float(5.4))
5
sage: integer_floor(-5/2)
-3
sage: integer_floor(RDF(-5/2))
-3

sage: integer_floor(x)                                                          # needs sage.symbolic
Traceback (most recent call last):
...
NotImplementedError: computation of floor of x not implemented
>>> from sage.all import *
>>> integer_floor(RealNumber('5.4'))
5
>>> integer_floor(float(RealNumber('5.4')))
5
>>> integer_floor(-Integer(5)/Integer(2))
-3
>>> integer_floor(RDF(-Integer(5)/Integer(2)))
-3

>>> integer_floor(x)                                                          # needs sage.symbolic
Traceback (most recent call last):
...
NotImplementedError: computation of floor of x not implemented

Tests with numpy and gmpy2 numbers:

sage: from numpy import float32                                                 # needs numpy
sage: integer_floor(float32(5.4))                                               # needs numpy
5
sage: from gmpy2 import mpfr
sage: integer_floor(mpfr(5.4))
5
>>> from sage.all import *
>>> from numpy import float32                                                 # needs numpy
>>> integer_floor(float32(RealNumber('5.4')))                                               # needs numpy
5
>>> from gmpy2 import mpfr
>>> integer_floor(mpfr(RealNumber('5.4')))
5
sage.arith.misc.integer_trunc(i)[source]

Truncate to the integer closer to zero.

EXAMPLES:

sage: from sage.arith.misc import integer_trunc as trunc
sage: trunc(-3/2), trunc(-1), trunc(-1/2), trunc(0), trunc(1/2), trunc(1), trunc(3/2)
(-1, -1, 0, 0, 0, 1, 1)
sage: isinstance(trunc(3/2), Integer)
True
>>> from sage.all import *
>>> from sage.arith.misc import integer_trunc as trunc
>>> trunc(-Integer(3)/Integer(2)), trunc(-Integer(1)), trunc(-Integer(1)/Integer(2)), trunc(Integer(0)), trunc(Integer(1)/Integer(2)), trunc(Integer(1)), trunc(Integer(3)/Integer(2))
(-1, -1, 0, 0, 0, 1, 1)
>>> isinstance(trunc(Integer(3)/Integer(2)), Integer)
True
sage.arith.misc.inverse_mod(a, m)[source]

The inverse of the ring element a modulo m.

If no special inverse_mod is defined for the elements, it tries to coerce them into integers and perform the inversion there

sage: inverse_mod(7, 1)
0
sage: inverse_mod(5, 14)
3
sage: inverse_mod(3, -5)
2
>>> from sage.all import *
>>> inverse_mod(Integer(7), Integer(1))
0
>>> inverse_mod(Integer(5), Integer(14))
3
>>> inverse_mod(Integer(3), -Integer(5))
2

Tests with numpy and mpz numbers:

sage: from numpy import int8                                                    # needs numpy
sage: inverse_mod(int8(5), int8(14))                                            # needs numpy
3
sage: from gmpy2 import mpz
sage: inverse_mod(mpz(5), mpz(14))
3
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> inverse_mod(int8(Integer(5)), int8(Integer(14)))                                            # needs numpy
3
>>> from gmpy2 import mpz
>>> inverse_mod(mpz(Integer(5)), mpz(Integer(14)))
3
sage.arith.misc.is_power_of_two(n)[source]

Return whether \(n\) is a power of 2.

INPUT:

  • n – integer

OUTPUT: boolean

EXAMPLES:

sage: is_power_of_two(1024)
True
sage: is_power_of_two(1)
True
sage: is_power_of_two(24)
False
sage: is_power_of_two(0)
False
sage: is_power_of_two(-4)
False
>>> from sage.all import *
>>> is_power_of_two(Integer(1024))
True
>>> is_power_of_two(Integer(1))
True
>>> is_power_of_two(Integer(24))
False
>>> is_power_of_two(Integer(0))
False
>>> is_power_of_two(-Integer(4))
False

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: is_power_of_two(int8(16))                                                 # needs numpy
True
sage: is_power_of_two(int8(24))                                                 # needs numpy
False
sage: from gmpy2 import mpz
sage: is_power_of_two(mpz(16))
True
sage: is_power_of_two(mpz(24))
False
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> is_power_of_two(int8(Integer(16)))                                                 # needs numpy
True
>>> is_power_of_two(int8(Integer(24)))                                                 # needs numpy
False
>>> from gmpy2 import mpz
>>> is_power_of_two(mpz(Integer(16)))
True
>>> is_power_of_two(mpz(Integer(24)))
False
sage.arith.misc.is_prime(n)[source]

Determine whether \(n\) is a prime element of its parent ring.

INPUT:

  • n – the object for which to determine primality

Exceptional special cases:

  • For integers, determine whether \(n\) is a positive prime.

  • For number fields except \(\QQ\), determine whether \(n\) is a prime element of the maximal order.

ALGORITHM:

For integers, this function uses a provable primality test or a strong pseudo-primality test depending on the global arithmetic proof flag.

EXAMPLES:

sage: is_prime(389)
True
sage: is_prime(2000)
False
sage: is_prime(2)
True
sage: is_prime(-1)
False
sage: is_prime(1)
False
sage: is_prime(-2)
False
>>> from sage.all import *
>>> is_prime(Integer(389))
True
>>> is_prime(Integer(2000))
False
>>> is_prime(Integer(2))
True
>>> is_prime(-Integer(1))
False
>>> is_prime(Integer(1))
False
>>> is_prime(-Integer(2))
False

sage: a = 2**2048 + 981
sage: is_prime(a)    # not tested - takes ~ 1min
sage: proof.arithmetic(False)
sage: is_prime(a)    # instantaneous!                                           # needs sage.libs.pari
True
sage: proof.arithmetic(True)
>>> from sage.all import *
>>> a = Integer(2)**Integer(2048) + Integer(981)
>>> is_prime(a)    # not tested - takes ~ 1min
>>> proof.arithmetic(False)
>>> is_prime(a)    # instantaneous!                                           # needs sage.libs.pari
True
>>> proof.arithmetic(True)
sage.arith.misc.is_prime_power(n, get_data=False)[source]

Test whether n is a positive power of a prime number.

This function simply calls the method Integer.is_prime_power() of Integers.

INPUT:

  • n – integer

  • get_data – if set to True, return a pair (p,k) such that this integer equals p^k instead of True or (self,0) instead of False

EXAMPLES:

sage: # needs sage.libs.pari
sage: is_prime_power(389)
True
sage: is_prime_power(2000)
False
sage: is_prime_power(2)
True
sage: is_prime_power(1024)
True
sage: is_prime_power(1024, get_data=True)
(2, 10)
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> is_prime_power(Integer(389))
True
>>> is_prime_power(Integer(2000))
False
>>> is_prime_power(Integer(2))
True
>>> is_prime_power(Integer(1024))
True
>>> is_prime_power(Integer(1024), get_data=True)
(2, 10)

The same results can be obtained with:

sage: # needs sage.libs.pari
sage: 389.is_prime_power()
True
sage: 2000.is_prime_power()
False
sage: 2.is_prime_power()
True
sage: 1024.is_prime_power()
True
sage: 1024.is_prime_power(get_data=True)
(2, 10)
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> Integer(389).is_prime_power()
True
>>> Integer(2000).is_prime_power()
False
>>> Integer(2).is_prime_power()
True
>>> Integer(1024).is_prime_power()
True
>>> Integer(1024).is_prime_power(get_data=True)
(2, 10)
sage.arith.misc.is_pseudoprime(n)[source]

Test whether n is a pseudo-prime.

The result is NOT proven correct - this is a pseudo-primality test!.

INPUT:

  • n – integer

Note

We do not consider negatives of prime numbers as prime.

EXAMPLES:

sage: # needs sage.libs.pari
sage: is_pseudoprime(389)
True
sage: is_pseudoprime(2000)
False
sage: is_pseudoprime(2)
True
sage: is_pseudoprime(-1)
False
sage: factor(-6)
-1 * 2 * 3
sage: is_pseudoprime(1)
False
sage: is_pseudoprime(-2)
False
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> is_pseudoprime(Integer(389))
True
>>> is_pseudoprime(Integer(2000))
False
>>> is_pseudoprime(Integer(2))
True
>>> is_pseudoprime(-Integer(1))
False
>>> factor(-Integer(6))
-1 * 2 * 3
>>> is_pseudoprime(Integer(1))
False
>>> is_pseudoprime(-Integer(2))
False
sage.arith.misc.is_pseudoprime_power(n, get_data=False)[source]

Test if n is a power of a pseudoprime.

The result is NOT proven correct - this IS a pseudo-primality test!. Note that a prime power is a positive power of a prime number so that 1 is not a prime power.

INPUT:

  • n – integer

  • get_data – boolean (default: False); instead of a boolean return a pair \((p,k)\) so that n equals \(p^k\) and \(p\) is a pseudoprime or \((n,0)\) otherwise

EXAMPLES:

sage: # needs sage.libs.pari
sage: is_pseudoprime_power(389)
True
sage: is_pseudoprime_power(2000)
False
sage: is_pseudoprime_power(2)
True
sage: is_pseudoprime_power(1024)
True
sage: is_pseudoprime_power(-1)
False
sage: is_pseudoprime_power(1)
False
sage: is_pseudoprime_power(997^100)
True
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> is_pseudoprime_power(Integer(389))
True
>>> is_pseudoprime_power(Integer(2000))
False
>>> is_pseudoprime_power(Integer(2))
True
>>> is_pseudoprime_power(Integer(1024))
True
>>> is_pseudoprime_power(-Integer(1))
False
>>> is_pseudoprime_power(Integer(1))
False
>>> is_pseudoprime_power(Integer(997)**Integer(100))
True

Use of the get_data keyword:

sage: # needs sage.libs.pari
sage: is_pseudoprime_power(3^1024, get_data=True)
(3, 1024)
sage: is_pseudoprime_power(2^256, get_data=True)
(2, 256)
sage: is_pseudoprime_power(31, get_data=True)
(31, 1)
sage: is_pseudoprime_power(15, get_data=True)
(15, 0)
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> is_pseudoprime_power(Integer(3)**Integer(1024), get_data=True)
(3, 1024)
>>> is_pseudoprime_power(Integer(2)**Integer(256), get_data=True)
(2, 256)
>>> is_pseudoprime_power(Integer(31), get_data=True)
(31, 1)
>>> is_pseudoprime_power(Integer(15), get_data=True)
(15, 0)

Tests with numpy and gmpy2 numbers:

sage: from numpy import int16                                                   # needs numpy
sage: is_pseudoprime_power(int16(1024))                                         # needs numpy sage.libs.pari
True
sage: from gmpy2 import mpz
sage: is_pseudoprime_power(mpz(1024))
True
>>> from sage.all import *
>>> from numpy import int16                                                   # needs numpy
>>> is_pseudoprime_power(int16(Integer(1024)))                                         # needs numpy sage.libs.pari
True
>>> from gmpy2 import mpz
>>> is_pseudoprime_power(mpz(Integer(1024)))
True
sage.arith.misc.is_square(n, root=False)[source]

Return whether or not \(n\) is square.

If \(n\) is a square also return the square root. If \(n\) is not square, also return None.

INPUT:

  • n – integer

  • root – whether or not to also return a square root (default: False)

OUTPUT:

  • bool – whether or not a square

  • object – (optional) an actual square if found, and None otherwise

EXAMPLES:

sage: is_square(2)
False
sage: is_square(4)
True
sage: is_square(2.2)
True
sage: is_square(-2.2)
False
sage: is_square(CDF(-2.2))                                                      # needs sage.rings.complex_double
True
sage: is_square((x-1)^2)                                                        # needs sage.symbolic
Traceback (most recent call last):
...
NotImplementedError: is_square() not implemented for
non-constant or relational elements of Symbolic Ring
>>> from sage.all import *
>>> is_square(Integer(2))
False
>>> is_square(Integer(4))
True
>>> is_square(RealNumber('2.2'))
True
>>> is_square(-RealNumber('2.2'))
False
>>> is_square(CDF(-RealNumber('2.2')))                                                      # needs sage.rings.complex_double
True
>>> is_square((x-Integer(1))**Integer(2))                                                        # needs sage.symbolic
Traceback (most recent call last):
...
NotImplementedError: is_square() not implemented for
non-constant or relational elements of Symbolic Ring

sage: is_square(4, True)
(True, 2)
>>> from sage.all import *
>>> is_square(Integer(4), True)
(True, 2)

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: is_square(int8(4))                                                        # needs numpy
True
sage: from gmpy2 import mpz
sage: is_square(mpz(4))
True
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> is_square(int8(Integer(4)))                                                        # needs numpy
True
>>> from gmpy2 import mpz
>>> is_square(mpz(Integer(4)))
True

Tests with Polynomial:

sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
sage: H = IwahoriHeckeAlgebra('A3', v**2)                                       # needs sage.combinat sage.modules
sage: R.<a,b,c,d> = QQ[]
sage: p = a*b + c*d*a*d*a + 5
sage: is_square(p**2)
True
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, 'v', names=('v',)); (v,) = R._first_ngens(1)
>>> H = IwahoriHeckeAlgebra('A3', v**Integer(2))                                       # needs sage.combinat sage.modules
>>> R = QQ['a, b, c, d']; (a, b, c, d,) = R._first_ngens(4)
>>> p = a*b + c*d*a*d*a + Integer(5)
>>> is_square(p**Integer(2))
True
sage.arith.misc.is_squarefree(n)[source]

Test whether n is square free.

EXAMPLES:

sage: is_squarefree(100)                                                        # needs sage.libs.pari
False
sage: is_squarefree(101)                                                        # needs sage.libs.pari
True

sage: R = ZZ['x']
sage: x = R.gen()
sage: is_squarefree((x^2+x+1) * (x-2))                                          # needs sage.libs.pari
True
sage: is_squarefree((x-1)**2 * (x-3))                                           # needs sage.libs.pari
False

sage: # needs sage.rings.number_field sage.symbolic
sage: O = ZZ[sqrt(-1)]
sage: I = O.gen(1)
sage: is_squarefree(I + 1)
True
sage: is_squarefree(O(2))
False
sage: O(2).factor()
(-I) * (I + 1)^2
>>> from sage.all import *
>>> is_squarefree(Integer(100))                                                        # needs sage.libs.pari
False
>>> is_squarefree(Integer(101))                                                        # needs sage.libs.pari
True

>>> R = ZZ['x']
>>> x = R.gen()
>>> is_squarefree((x**Integer(2)+x+Integer(1)) * (x-Integer(2)))                                          # needs sage.libs.pari
True
>>> is_squarefree((x-Integer(1))**Integer(2) * (x-Integer(3)))                                           # needs sage.libs.pari
False

>>> # needs sage.rings.number_field sage.symbolic
>>> O = ZZ[sqrt(-Integer(1))]
>>> I = O.gen(Integer(1))
>>> is_squarefree(I + Integer(1))
True
>>> is_squarefree(O(Integer(2)))
False
>>> O(Integer(2)).factor()
(-I) * (I + 1)^2

This method fails on domains which are not Unique Factorization Domains:

sage: O = ZZ[sqrt(-5)]                                                          # needs sage.rings.number_field sage.symbolic
sage: a = O.gen(1)                                                              # needs sage.rings.number_field sage.symbolic
sage: is_squarefree(a - 3)                                                      # needs sage.rings.number_field sage.symbolic
Traceback (most recent call last):
...
ArithmeticError: non-principal ideal in factorization
>>> from sage.all import *
>>> O = ZZ[sqrt(-Integer(5))]                                                          # needs sage.rings.number_field sage.symbolic
>>> a = O.gen(Integer(1))                                                              # needs sage.rings.number_field sage.symbolic
>>> is_squarefree(a - Integer(3))                                                      # needs sage.rings.number_field sage.symbolic
Traceback (most recent call last):
...
ArithmeticError: non-principal ideal in factorization

Tests with numpy and gmpy2 numbers:

sage: # needs sage.libs.pari
sage: from numpy import int8                                                    # needs numpy
sage: is_squarefree(int8(100))                                                  # needs numpy
False
sage: is_squarefree(int8(101))                                                  # needs numpy
True
sage: from gmpy2 import mpz
sage: is_squarefree(mpz(100))
False
sage: is_squarefree(mpz(101))
True
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> from numpy import int8                                                    # needs numpy
>>> is_squarefree(int8(Integer(100)))                                                  # needs numpy
False
>>> is_squarefree(int8(Integer(101)))                                                  # needs numpy
True
>>> from gmpy2 import mpz
>>> is_squarefree(mpz(Integer(100)))
False
>>> is_squarefree(mpz(Integer(101)))
True
sage.arith.misc.jacobi_symbol(a, b)[source]

The Jacobi symbol of integers \(a\) and \(b\), where \(b\) is odd.

Note

The kronecker_symbol() command extends the Jacobi symbol to all integers \(b\).

If

\(b = p_1^{e_1} * ... * p_r^{e_r}\)

then

\((a|b) = (a|p_1)^{e_1} ... (a|p_r)^{e_r}\)

where \((a|p_j)\) are Legendre Symbols.

INPUT:

  • a – integer

  • b – odd integer

EXAMPLES:

sage: jacobi_symbol(10,777)
-1
sage: jacobi_symbol(10,5)
0
sage: jacobi_symbol(10,2)
Traceback (most recent call last):
...
ValueError: second input must be odd, 2 is not odd
>>> from sage.all import *
>>> jacobi_symbol(Integer(10),Integer(777))
-1
>>> jacobi_symbol(Integer(10),Integer(5))
0
>>> jacobi_symbol(Integer(10),Integer(2))
Traceback (most recent call last):
...
ValueError: second input must be odd, 2 is not odd

Tests with numpy and gmpy2 numbers:

sage: from numpy import int16                                                   # needs numpy
sage: jacobi_symbol(int16(10), int16(777))                                      # needs numpy
-1
sage: from gmpy2 import mpz
sage: jacobi_symbol(mpz(10),mpz(777))
-1
>>> from sage.all import *
>>> from numpy import int16                                                   # needs numpy
>>> jacobi_symbol(int16(Integer(10)), int16(Integer(777)))                                      # needs numpy
-1
>>> from gmpy2 import mpz
>>> jacobi_symbol(mpz(Integer(10)),mpz(Integer(777)))
-1
sage.arith.misc.kronecker(x, y)[source]

The Kronecker symbol \((x|y)\).

INPUT:

  • x – integer

  • y – integer

OUTPUT: integer

EXAMPLES:

sage: kronecker_symbol(13,21)
-1
sage: kronecker_symbol(101,4)
1
>>> from sage.all import *
>>> kronecker_symbol(Integer(13),Integer(21))
-1
>>> kronecker_symbol(Integer(101),Integer(4))
1

This is also available as kronecker():

sage: kronecker(3,5)
-1
sage: kronecker(3,15)
0
sage: kronecker(2,15)
1
sage: kronecker(-2,15)
-1
sage: kronecker(2/3,5)
1
>>> from sage.all import *
>>> kronecker(Integer(3),Integer(5))
-1
>>> kronecker(Integer(3),Integer(15))
0
>>> kronecker(Integer(2),Integer(15))
1
>>> kronecker(-Integer(2),Integer(15))
-1
>>> kronecker(Integer(2)/Integer(3),Integer(5))
1

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: kronecker_symbol(int8(13),int8(21))                                       # needs numpy
-1
sage: from gmpy2 import mpz
sage: kronecker_symbol(mpz(13),mpz(21))
-1
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> kronecker_symbol(int8(Integer(13)),int8(Integer(21)))                                       # needs numpy
-1
>>> from gmpy2 import mpz
>>> kronecker_symbol(mpz(Integer(13)),mpz(Integer(21)))
-1
sage.arith.misc.kronecker_symbol(x, y)[source]

The Kronecker symbol \((x|y)\).

INPUT:

  • x – integer

  • y – integer

OUTPUT: integer

EXAMPLES:

sage: kronecker_symbol(13,21)
-1
sage: kronecker_symbol(101,4)
1
>>> from sage.all import *
>>> kronecker_symbol(Integer(13),Integer(21))
-1
>>> kronecker_symbol(Integer(101),Integer(4))
1

This is also available as kronecker():

sage: kronecker(3,5)
-1
sage: kronecker(3,15)
0
sage: kronecker(2,15)
1
sage: kronecker(-2,15)
-1
sage: kronecker(2/3,5)
1
>>> from sage.all import *
>>> kronecker(Integer(3),Integer(5))
-1
>>> kronecker(Integer(3),Integer(15))
0
>>> kronecker(Integer(2),Integer(15))
1
>>> kronecker(-Integer(2),Integer(15))
-1
>>> kronecker(Integer(2)/Integer(3),Integer(5))
1

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: kronecker_symbol(int8(13),int8(21))                                       # needs numpy
-1
sage: from gmpy2 import mpz
sage: kronecker_symbol(mpz(13),mpz(21))
-1
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> kronecker_symbol(int8(Integer(13)),int8(Integer(21)))                                       # needs numpy
-1
>>> from gmpy2 import mpz
>>> kronecker_symbol(mpz(Integer(13)),mpz(Integer(21)))
-1
sage.arith.misc.legendre_symbol(x, p)[source]

The Legendre symbol \((x|p)\), for \(p\) prime.

Note

The kronecker_symbol() command extends the Legendre symbol to composite moduli and \(p=2\).

INPUT:

  • x – integer

  • p – odd prime number

EXAMPLES:

sage: legendre_symbol(2,3)
-1
sage: legendre_symbol(1,3)
1
sage: legendre_symbol(1,2)
Traceback (most recent call last):
...
ValueError: p must be odd
sage: legendre_symbol(2,15)
Traceback (most recent call last):
...
ValueError: p must be a prime
sage: kronecker_symbol(2,15)
1
sage: legendre_symbol(2/3,7)
-1
>>> from sage.all import *
>>> legendre_symbol(Integer(2),Integer(3))
-1
>>> legendre_symbol(Integer(1),Integer(3))
1
>>> legendre_symbol(Integer(1),Integer(2))
Traceback (most recent call last):
...
ValueError: p must be odd
>>> legendre_symbol(Integer(2),Integer(15))
Traceback (most recent call last):
...
ValueError: p must be a prime
>>> kronecker_symbol(Integer(2),Integer(15))
1
>>> legendre_symbol(Integer(2)/Integer(3),Integer(7))
-1

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: legendre_symbol(int8(2), int8(3))                                         # needs numpy
-1
sage: from gmpy2 import mpz
sage: legendre_symbol(mpz(2),mpz(3))
-1
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> legendre_symbol(int8(Integer(2)), int8(Integer(3)))                                         # needs numpy
-1
>>> from gmpy2 import mpz
>>> legendre_symbol(mpz(Integer(2)),mpz(Integer(3)))
-1
sage.arith.misc.mqrr_rational_reconstruction(u, m, T)[source]

Maximal Quotient Rational Reconstruction.

For research purposes only - this is pure Python, so slow.

INPUT:

  • u, m, T – integers such that \(m > u \ge 0\), \(T > 0\)

OUTPUT:

Either integers \(n,d\) such that \(d>0\), \(\mathop{\mathrm{gcd}}(n,d)=1\), \(n/d=u \bmod m\), and \(T \cdot d \cdot |n| < m\), or None.

Reference: Monagan, Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational Reconstruction (page 11)

This algorithm is probabilistic.

EXAMPLES:

sage: mqrr_rational_reconstruction(21, 3100, 13)
(21, 1)
>>> from sage.all import *
>>> mqrr_rational_reconstruction(Integer(21), Integer(3100), Integer(13))
(21, 1)

Tests with numpy and gmpy2 numbers:

sage: from numpy import int16                                                   # needs numpy
sage: mqrr_rational_reconstruction(int16(21), int16(3100), int16(13))           # needs numpy
(21, 1)
sage: from gmpy2 import mpz
sage: mqrr_rational_reconstruction(mpz(21), mpz(3100), mpz(13))
(21, 1)
>>> from sage.all import *
>>> from numpy import int16                                                   # needs numpy
>>> mqrr_rational_reconstruction(int16(Integer(21)), int16(Integer(3100)), int16(Integer(13)))           # needs numpy
(21, 1)
>>> from gmpy2 import mpz
>>> mqrr_rational_reconstruction(mpz(Integer(21)), mpz(Integer(3100)), mpz(Integer(13)))
(21, 1)
sage.arith.misc.multinomial(*ks)[source]

Return the multinomial coefficient.

INPUT:

  • either an arbitrary number of integer arguments \(k_1,\dots,k_n\)

  • or an iterable (e.g. a list) of integers \([k_1,\dots,k_n]\)

OUTPUT: the integer:

\[\binom{k_1 + \cdots + k_n}{k_1, \cdots, k_n} =\frac{\left(\sum_{i=1}^n k_i\right)!}{\prod_{i=1}^n k_i!} = \prod_{i=1}^n \binom{\sum_{j=1}^i k_j}{k_i}\]

EXAMPLES:

sage: multinomial(0, 0, 2, 1, 0, 0)
3
sage: multinomial([0, 0, 2, 1, 0, 0])
3
sage: multinomial(3, 2)
10
sage: multinomial(2^30, 2, 1)
618970023101454657175683075
sage: multinomial([2^30, 2, 1])
618970023101454657175683075
sage: multinomial(Composition([1, 3]))
4
sage: multinomial(Partition([4, 2]))                                            # needs sage.combinat
15
>>> from sage.all import *
>>> multinomial(Integer(0), Integer(0), Integer(2), Integer(1), Integer(0), Integer(0))
3
>>> multinomial([Integer(0), Integer(0), Integer(2), Integer(1), Integer(0), Integer(0)])
3
>>> multinomial(Integer(3), Integer(2))
10
>>> multinomial(Integer(2)**Integer(30), Integer(2), Integer(1))
618970023101454657175683075
>>> multinomial([Integer(2)**Integer(30), Integer(2), Integer(1)])
618970023101454657175683075
>>> multinomial(Composition([Integer(1), Integer(3)]))
4
>>> multinomial(Partition([Integer(4), Integer(2)]))                                            # needs sage.combinat
15

AUTHORS:

  • Gabriel Ebner

sage.arith.misc.multinomial_coefficients(m, n)[source]

Return a dictionary containing pairs \(\{(k_1, k_2, ..., k_m) : C_{k, n}\}\) where \(C_{k, n}\) are multinomial coefficients such that \(n = k_1 + k_2 + ...+ k_m\).

INPUT:

  • m – integer

  • n – integer

OUTPUT: dictionary

EXAMPLES:

sage: sorted(multinomial_coefficients(2, 5).items())
[((0, 5), 1), ((1, 4), 5), ((2, 3), 10), ((3, 2), 10), ((4, 1), 5), ((5, 0), 1)]
>>> from sage.all import *
>>> sorted(multinomial_coefficients(Integer(2), Integer(5)).items())
[((0, 5), 1), ((1, 4), 5), ((2, 3), 10), ((3, 2), 10), ((4, 1), 5), ((5, 0), 1)]

Notice that these are the coefficients of \((x+y)^5\):

sage: R.<x,y> = QQ[]
sage: (x+y)^5
x^5 + 5*x^4*y + 10*x^3*y^2 + 10*x^2*y^3 + 5*x*y^4 + y^5
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> (x+y)**Integer(5)
x^5 + 5*x^4*y + 10*x^3*y^2 + 10*x^2*y^3 + 5*x*y^4 + y^5

sage: sorted(multinomial_coefficients(3, 2).items())
[((0, 0, 2), 1), ((0, 1, 1), 2), ((0, 2, 0), 1), ((1, 0, 1), 2), ((1, 1, 0), 2), ((2, 0, 0), 1)]
>>> from sage.all import *
>>> sorted(multinomial_coefficients(Integer(3), Integer(2)).items())
[((0, 0, 2), 1), ((0, 1, 1), 2), ((0, 2, 0), 1), ((1, 0, 1), 2), ((1, 1, 0), 2), ((2, 0, 0), 1)]

ALGORITHM: The algorithm we implement for computing the multinomial coefficients is based on the following result:

\[\binom{n}{k_1, \cdots, k_m} = \frac{k_1+1}{n-k_1}\sum_{i=2}^m \binom{n}{k_1+1, \cdots, k_i-1, \cdots}\]

e.g.:

sage: k = (2, 4, 1, 0, 2, 6, 0, 0, 3, 5, 7, 1) # random value
sage: n = sum(k)
sage: s = 0
sage: for i in range(1, len(k)):
....:     ki = list(k)
....:     ki[0] += 1
....:     ki[i] -= 1
....:     s += multinomial(n, *ki)
sage: multinomial(n, *k) == (k[0] + 1) / (n - k[0]) * s
True
>>> from sage.all import *
>>> k = (Integer(2), Integer(4), Integer(1), Integer(0), Integer(2), Integer(6), Integer(0), Integer(0), Integer(3), Integer(5), Integer(7), Integer(1)) # random value
>>> n = sum(k)
>>> s = Integer(0)
>>> for i in range(Integer(1), len(k)):
...     ki = list(k)
...     ki[Integer(0)] += Integer(1)
...     ki[i] -= Integer(1)
...     s += multinomial(n, *ki)
>>> multinomial(n, *k) == (k[Integer(0)] + Integer(1)) / (n - k[Integer(0)]) * s
True
sage.arith.misc.next_prime(n, proof=None)[source]

The next prime greater than the integer \(n\). If \(n\) is prime, then this function does not return \(n\), but the next prime after \(n\). If the optional argument proof is False, this function only returns a pseudo-prime, as defined by the PARI nextprime function. If it is None, uses the global default (see sage.structure.proof.proof)

INPUT:

  • n – integer

  • proof – boolean or None (default: None)

EXAMPLES:

sage: # needs sage.libs.pari
sage: next_prime(-100)
2
sage: next_prime(1)
2
sage: next_prime(2)
3
sage: next_prime(3)
5
sage: next_prime(4)
5
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> next_prime(-Integer(100))
2
>>> next_prime(Integer(1))
2
>>> next_prime(Integer(2))
3
>>> next_prime(Integer(3))
5
>>> next_prime(Integer(4))
5

Notice that the next_prime(5) is not 5 but 7.

sage: next_prime(5)                                                             # needs sage.libs.pari
7
sage: next_prime(2004)                                                          # needs sage.libs.pari
2011
>>> from sage.all import *
>>> next_prime(Integer(5))                                                             # needs sage.libs.pari
7
>>> next_prime(Integer(2004))                                                          # needs sage.libs.pari
2011
sage.arith.misc.next_prime_power(n)[source]

Return the smallest prime power greater than n.

Note that if n is a prime power, then this function does not return n, but the next prime power after n.

This function just calls the method Integer.next_prime_power() of Integers.

EXAMPLES:

sage: # needs sage.libs.pari
sage: next_prime_power(1)
2
sage: next_prime_power(2)
3
sage: next_prime_power(10)
11
sage: next_prime_power(7)
8
sage: next_prime_power(99)
101
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> next_prime_power(Integer(1))
2
>>> next_prime_power(Integer(2))
3
>>> next_prime_power(Integer(10))
11
>>> next_prime_power(Integer(7))
8
>>> next_prime_power(Integer(99))
101

The same results can be obtained with:

sage: 1.next_prime_power()
2
sage: 2.next_prime_power()
3
sage: 10.next_prime_power()
11
>>> from sage.all import *
>>> Integer(1).next_prime_power()
2
>>> Integer(2).next_prime_power()
3
>>> Integer(10).next_prime_power()
11

Note that \(2\) is the smallest prime power:

sage: next_prime_power(-10)
2
sage: next_prime_power(0)
2
>>> from sage.all import *
>>> next_prime_power(-Integer(10))
2
>>> next_prime_power(Integer(0))
2
sage.arith.misc.next_probable_prime(n)[source]

Return the next probable prime after self, as determined by PARI.

INPUT:

  • n – integer

EXAMPLES:

sage: # needs sage.libs.pari
sage: next_probable_prime(-100)
2
sage: next_probable_prime(19)
23
sage: next_probable_prime(int(999999999))
1000000007
sage: next_probable_prime(2^768)
1552518092300708935148979488462502555256886017116696611139052038026050952686376886330878408828646477950487730697131073206171580044114814391444287275041181139204454976020849905550265285631598444825262999193716468750892846853816058039
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> next_probable_prime(-Integer(100))
2
>>> next_probable_prime(Integer(19))
23
>>> next_probable_prime(int(Integer(999999999)))
1000000007
>>> next_probable_prime(Integer(2)**Integer(768))
1552518092300708935148979488462502555256886017116696611139052038026050952686376886330878408828646477950487730697131073206171580044114814391444287275041181139204454976020849905550265285631598444825262999193716468750892846853816058039
sage.arith.misc.nth_prime(n)[source]

Return the \(n\)-th prime number (1-indexed, so that 2 is the 1st prime).

INPUT:

  • n – positive integer

OUTPUT: the \(n\)-th prime number

EXAMPLES:

sage: nth_prime(3)                                                              # needs sage.libs.pari
5
sage: nth_prime(10)                                                             # needs sage.libs.pari
29
sage: nth_prime(10^7)                                                           # needs sage.libs.pari
179424673
>>> from sage.all import *
>>> nth_prime(Integer(3))                                                              # needs sage.libs.pari
5
>>> nth_prime(Integer(10))                                                             # needs sage.libs.pari
29
>>> nth_prime(Integer(10)**Integer(7))                                                           # needs sage.libs.pari
179424673

sage: nth_prime(0)
Traceback (most recent call last):
...
ValueError: nth prime meaningless for nonpositive n (=0)
>>> from sage.all import *
>>> nth_prime(Integer(0))
Traceback (most recent call last):
...
ValueError: nth prime meaningless for nonpositive n (=0)
sage.arith.misc.number_of_divisors(n)[source]

Return the number of divisors of the integer \(n\).

INPUT:

  • n – nonzero integer

OUTPUT: integer; the number of divisors of \(n\)

EXAMPLES:

sage: number_of_divisors(100)                                                   # needs sage.libs.pari
9
sage: number_of_divisors(-720)                                                  # needs sage.libs.pari
30
>>> from sage.all import *
>>> number_of_divisors(Integer(100))                                                   # needs sage.libs.pari
9
>>> number_of_divisors(-Integer(720))                                                  # needs sage.libs.pari
30

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: number_of_divisors(int8(100))                                             # needs numpy sage.libs.pari
9
sage: from gmpy2 import mpz
sage: number_of_divisors(mpz(100))                                              # needs sage.libs.pari
9
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> number_of_divisors(int8(Integer(100)))                                             # needs numpy sage.libs.pari
9
>>> from gmpy2 import mpz
>>> number_of_divisors(mpz(Integer(100)))                                              # needs sage.libs.pari
9
sage.arith.misc.odd_part(n)[source]

The odd part of the integer \(n\). This is \(n / 2^v\), where \(v = \mathrm{valuation}(n,2)\).

EXAMPLES:

sage: odd_part(5)
5
sage: odd_part(4)
1
sage: odd_part(factorial(31))
122529844256906551386796875
>>> from sage.all import *
>>> odd_part(Integer(5))
5
>>> odd_part(Integer(4))
1
>>> odd_part(factorial(Integer(31)))
122529844256906551386796875

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: odd_part(int8(5))                                                         # needs numpy
5
sage: from gmpy2 import mpz
sage: odd_part(mpz(5))
5
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> odd_part(int8(Integer(5)))                                                         # needs numpy
5
>>> from gmpy2 import mpz
>>> odd_part(mpz(Integer(5)))
5
sage.arith.misc.power_mod(a, n, m)[source]

Return the \(n\)-th power of \(a\) modulo \(m\), where \(a\) and \(m\) are elements of a ring that implements the modulo operator %.

ALGORITHM: square-and-multiply

EXAMPLES:

sage: power_mod(2, 388, 389)
1
sage: power_mod(2, 390, 391)
285
sage: power_mod(2, -1, 7)
4
sage: power_mod(11, 1, 7)
4
>>> from sage.all import *
>>> power_mod(Integer(2), Integer(388), Integer(389))
1
>>> power_mod(Integer(2), Integer(390), Integer(391))
285
>>> power_mod(Integer(2), -Integer(1), Integer(7))
4
>>> power_mod(Integer(11), Integer(1), Integer(7))
4

This function works for fairly general rings:

sage: R.<x> = ZZ[]
sage: power_mod(3*x, 10, 7)
4*x^10
sage: power_mod(-3*x^2 + 4, 7, 2*x^3 - 5)
x^14 + x^8 + x^6 + x^3 + 962509*x^2 - 791910*x - 698281
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> power_mod(Integer(3)*x, Integer(10), Integer(7))
4*x^10
>>> power_mod(-Integer(3)*x**Integer(2) + Integer(4), Integer(7), Integer(2)*x**Integer(3) - Integer(5))
x^14 + x^8 + x^6 + x^3 + 962509*x^2 - 791910*x - 698281
sage.arith.misc.previous_prime(n)[source]

The largest prime < n. The result is provably correct. If n <= 1, this function raises a ValueError.

EXAMPLES:

sage: # needs sage.libs.pari
sage: previous_prime(10)
7
sage: previous_prime(7)
5
sage: previous_prime(8)
7
sage: previous_prime(7)
5
sage: previous_prime(5)
3
sage: previous_prime(3)
2
sage: previous_prime(2)
Traceback (most recent call last):
...
ValueError: no previous prime
sage: previous_prime(1)
Traceback (most recent call last):
...
ValueError: no previous prime
sage: previous_prime(-20)
Traceback (most recent call last):
...
ValueError: no previous prime
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> previous_prime(Integer(10))
7
>>> previous_prime(Integer(7))
5
>>> previous_prime(Integer(8))
7
>>> previous_prime(Integer(7))
5
>>> previous_prime(Integer(5))
3
>>> previous_prime(Integer(3))
2
>>> previous_prime(Integer(2))
Traceback (most recent call last):
...
ValueError: no previous prime
>>> previous_prime(Integer(1))
Traceback (most recent call last):
...
ValueError: no previous prime
>>> previous_prime(-Integer(20))
Traceback (most recent call last):
...
ValueError: no previous prime
sage.arith.misc.previous_prime_power(n)[source]

Return the largest prime power smaller than n.

The result is provably correct. If n is smaller or equal than 2 this function raises an error.

This function simply call the method Integer.previous_prime_power() of Integers.

EXAMPLES:

sage: # needs sage.libs.pari
sage: previous_prime_power(3)
2
sage: previous_prime_power(10)
9
sage: previous_prime_power(7)
5
sage: previous_prime_power(127)
125
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> previous_prime_power(Integer(3))
2
>>> previous_prime_power(Integer(10))
9
>>> previous_prime_power(Integer(7))
5
>>> previous_prime_power(Integer(127))
125

The same results can be obtained with:

sage: # needs sage.libs.pari
sage: 3.previous_prime_power()
2
sage: 10.previous_prime_power()
9
sage: 7.previous_prime_power()
5
sage: 127.previous_prime_power()
125
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> Integer(3).previous_prime_power()
2
>>> Integer(10).previous_prime_power()
9
>>> Integer(7).previous_prime_power()
5
>>> Integer(127).previous_prime_power()
125

Input less than or equal to \(2\) raises errors:

sage: previous_prime_power(2)
Traceback (most recent call last):
...
ValueError: no prime power less than 2
sage: previous_prime_power(-10)
Traceback (most recent call last):
...
ValueError: no prime power less than 2
>>> from sage.all import *
>>> previous_prime_power(Integer(2))
Traceback (most recent call last):
...
ValueError: no prime power less than 2
>>> previous_prime_power(-Integer(10))
Traceback (most recent call last):
...
ValueError: no prime power less than 2

sage: n = previous_prime_power(2^16 - 1)                                        # needs sage.libs.pari
sage: while is_prime(n):                                                        # needs sage.libs.pari
....:     n = previous_prime_power(n)
sage: factor(n)                                                                 # needs sage.libs.pari
251^2
>>> from sage.all import *
>>> n = previous_prime_power(Integer(2)**Integer(16) - Integer(1))                                        # needs sage.libs.pari
>>> while is_prime(n):                                                        # needs sage.libs.pari
...     n = previous_prime_power(n)
>>> factor(n)                                                                 # needs sage.libs.pari
251^2
sage.arith.misc.prime_divisors(n)[source]

Return the list of prime divisors (up to units) of this element of a unique factorization domain.

INPUT:

  • n – any object which can be decomposed into prime factors

OUTPUT:

A list of prime factors of n. For integers, this list is sorted in increasing order.

EXAMPLES:

Prime divisors of positive integers:

sage: prime_divisors(1)
[]
sage: prime_divisors(100)
[2, 5]
sage: prime_divisors(2004)
[2, 3, 167]
>>> from sage.all import *
>>> prime_divisors(Integer(1))
[]
>>> prime_divisors(Integer(100))
[2, 5]
>>> prime_divisors(Integer(2004))
[2, 3, 167]

If n is negative, we do not include -1 among the prime divisors, since -1 is not a prime number:

sage: prime_divisors(-100)
[2, 5]
>>> from sage.all import *
>>> prime_divisors(-Integer(100))
[2, 5]

For polynomials we get all irreducible factors:

sage: R.<x> = PolynomialRing(QQ)
sage: prime_divisors(x^12 - 1)                                                  # needs sage.libs.pari
[x - 1, x + 1, x^2 - x + 1, x^2 + 1, x^2 + x + 1, x^4 - x^2 + 1]
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> prime_divisors(x**Integer(12) - Integer(1))                                                  # needs sage.libs.pari
[x - 1, x + 1, x^2 - x + 1, x^2 + 1, x^2 + x + 1, x^4 - x^2 + 1]

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: prime_divisors(int8(-100))                                                # needs numpy
[2, 5]
sage: from gmpy2 import mpz
sage: prime_divisors(mpz(-100))
[2, 5]
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> prime_divisors(int8(-Integer(100)))                                                # needs numpy
[2, 5]
>>> from gmpy2 import mpz
>>> prime_divisors(mpz(-Integer(100)))
[2, 5]
sage.arith.misc.prime_factors(n)[source]

Return the list of prime divisors (up to units) of this element of a unique factorization domain.

INPUT:

  • n – any object which can be decomposed into prime factors

OUTPUT:

A list of prime factors of n. For integers, this list is sorted in increasing order.

EXAMPLES:

Prime divisors of positive integers:

sage: prime_divisors(1)
[]
sage: prime_divisors(100)
[2, 5]
sage: prime_divisors(2004)
[2, 3, 167]
>>> from sage.all import *
>>> prime_divisors(Integer(1))
[]
>>> prime_divisors(Integer(100))
[2, 5]
>>> prime_divisors(Integer(2004))
[2, 3, 167]

If n is negative, we do not include -1 among the prime divisors, since -1 is not a prime number:

sage: prime_divisors(-100)
[2, 5]
>>> from sage.all import *
>>> prime_divisors(-Integer(100))
[2, 5]

For polynomials we get all irreducible factors:

sage: R.<x> = PolynomialRing(QQ)
sage: prime_divisors(x^12 - 1)                                                  # needs sage.libs.pari
[x - 1, x + 1, x^2 - x + 1, x^2 + 1, x^2 + x + 1, x^4 - x^2 + 1]
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> prime_divisors(x**Integer(12) - Integer(1))                                                  # needs sage.libs.pari
[x - 1, x + 1, x^2 - x + 1, x^2 + 1, x^2 + x + 1, x^4 - x^2 + 1]

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: prime_divisors(int8(-100))                                                # needs numpy
[2, 5]
sage: from gmpy2 import mpz
sage: prime_divisors(mpz(-100))
[2, 5]
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> prime_divisors(int8(-Integer(100)))                                                # needs numpy
[2, 5]
>>> from gmpy2 import mpz
>>> prime_divisors(mpz(-Integer(100)))
[2, 5]
sage.arith.misc.prime_powers(start, stop=None)[source]

List of all positive primes powers between start and stop-1, inclusive. If the second argument is omitted, returns the prime powers up to the first argument.

INPUT:

  • start – integer; if two inputs are given, a lower bound for the returned set of prime powers. If this is the only input, then it is an upper bound.

  • stop – integer (default: None); an upper bound for the returned set of prime powers

OUTPUT:

The set of all prime powers between start and stop or, if only one argument is passed, the set of all prime powers between 1 and start. The number \(n\) is a prime power if \(n=p^k\), where \(p\) is a prime number and \(k\) is a positive integer. Thus, \(1\) is not a prime power.

EXAMPLES:

sage: prime_powers(20)                                                          # needs sage.libs.pari
[2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19]
sage: len(prime_powers(1000))                                                   # needs sage.libs.pari
193
sage: len(prime_range(1000))                                                    # needs sage.libs.pari
168

sage: # needs sage.libs.pari
sage: a = [z for z in range(95, 1234) if is_prime_power(z)]
sage: b = prime_powers(95, 1234)
sage: len(b)
194
sage: len(a)
194
sage: a[:10]
[97, 101, 103, 107, 109, 113, 121, 125, 127, 128]
sage: b[:10]
[97, 101, 103, 107, 109, 113, 121, 125, 127, 128]
sage: a == b
True

sage: prime_powers(100) == [i for i in range(100) if is_prime_power(i)]         # needs sage.libs.pari
True

sage: prime_powers(10, 7)
[]
sage: prime_powers(-5)
[]
sage: prime_powers(-1, 3)                                                       # needs sage.libs.pari
[2]
>>> from sage.all import *
>>> prime_powers(Integer(20))                                                          # needs sage.libs.pari
[2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19]
>>> len(prime_powers(Integer(1000)))                                                   # needs sage.libs.pari
193
>>> len(prime_range(Integer(1000)))                                                    # needs sage.libs.pari
168

>>> # needs sage.libs.pari
>>> a = [z for z in range(Integer(95), Integer(1234)) if is_prime_power(z)]
>>> b = prime_powers(Integer(95), Integer(1234))
>>> len(b)
194
>>> len(a)
194
>>> a[:Integer(10)]
[97, 101, 103, 107, 109, 113, 121, 125, 127, 128]
>>> b[:Integer(10)]
[97, 101, 103, 107, 109, 113, 121, 125, 127, 128]
>>> a == b
True

>>> prime_powers(Integer(100)) == [i for i in range(Integer(100)) if is_prime_power(i)]         # needs sage.libs.pari
True

>>> prime_powers(Integer(10), Integer(7))
[]
>>> prime_powers(-Integer(5))
[]
>>> prime_powers(-Integer(1), Integer(3))                                                       # needs sage.libs.pari
[2]
sage.arith.misc.prime_to_m_part(n, m)[source]

Return the prime-to-\(m\) part of \(n\).

This is the largest divisor of \(n\) that is coprime to \(m\).

INPUT:

  • n – integer (nonzero)

  • m – integer

OUTPUT: integer

EXAMPLES:

sage: prime_to_m_part(240,2)
15
sage: prime_to_m_part(240,3)
80
sage: prime_to_m_part(240,5)
48
sage: prime_to_m_part(43434,20)
21717
>>> from sage.all import *
>>> prime_to_m_part(Integer(240),Integer(2))
15
>>> prime_to_m_part(Integer(240),Integer(3))
80
>>> prime_to_m_part(Integer(240),Integer(5))
48
>>> prime_to_m_part(Integer(43434),Integer(20))
21717

Note that integers also have a method with the same name:

sage: 240.prime_to_m_part(2)
15
>>> from sage.all import *
>>> Integer(240).prime_to_m_part(Integer(2))
15

Tests with numpy and gmpy2 numbers:

sage: from numpy import int16                                                   # needs numpy
sage: prime_to_m_part(int16(240), int16(2))                                     # needs numpy
15
sage: from gmpy2 import mpz
sage: prime_to_m_part(mpz(240), mpz(2))
15
>>> from sage.all import *
>>> from numpy import int16                                                   # needs numpy
>>> prime_to_m_part(int16(Integer(240)), int16(Integer(2)))                                     # needs numpy
15
>>> from gmpy2 import mpz
>>> prime_to_m_part(mpz(Integer(240)), mpz(Integer(2)))
15
sage.arith.misc.primes(start=2, stop=None, proof=None)[source]

Return an iterator over all primes between start and stop-1, inclusive. This is much slower than prime_range(), but potentially uses less memory. As with next_prime(), the optional argument proof controls whether the numbers returned are guaranteed to be prime or not.

This command is like the Python 3 range() command, except it only iterates over primes. In some cases it is better to use primes() than prime_range(), because primes() does not build a list of all primes in the range in memory all at once. However, it is potentially much slower since it simply calls the next_prime() function repeatedly, and next_prime() is slow.

INPUT:

  • start – integer (default: 2); lower bound for the primes

  • stop – integer (or infinity); upper (open) bound for the primes

  • proof – boolean or None (default: None); if True, the function yields only proven primes. If False, the function uses a pseudo-primality test, which is much faster for really big numbers but does not provide a proof of primality. If None, uses the global default (see sage.structure.proof.proof)

OUTPUT: an iterator over primes from start to stop-1, inclusive

EXAMPLES:

sage: # needs sage.libs.pari
sage: for p in primes(5, 10):
....:     print(p)
5
7
sage: list(primes(13))
[2, 3, 5, 7, 11]
sage: list(primes(10000000000, 10000000100))
[10000000019, 10000000033, 10000000061, 10000000069, 10000000097]
sage: max(primes(10^100, 10^100+10^4, proof=False))
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009631
sage: next(p for p in primes(10^20, infinity) if is_prime(2*p+1))
100000000000000001243
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> for p in primes(Integer(5), Integer(10)):
...     print(p)
5
7
>>> list(primes(Integer(13)))
[2, 3, 5, 7, 11]
>>> list(primes(Integer(10000000000), Integer(10000000100)))
[10000000019, 10000000033, 10000000061, 10000000069, 10000000097]
>>> max(primes(Integer(10)**Integer(100), Integer(10)**Integer(100)+Integer(10)**Integer(4), proof=False))
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009631
>>> next(p for p in primes(Integer(10)**Integer(20), infinity) if is_prime(Integer(2)*p+Integer(1)))
100000000000000001243
sage.arith.misc.primes_first_n(n, leave_pari=False)[source]

Return the first \(n\) primes.

INPUT:

  • n – nonnegative integer

OUTPUT: list of the first \(n\) prime numbers

EXAMPLES:

sage: primes_first_n(10)                                                        # needs sage.libs.pari
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
sage: len(primes_first_n(1000))                                                 # needs sage.libs.pari
1000
sage: primes_first_n(0)
[]
>>> from sage.all import *
>>> primes_first_n(Integer(10))                                                        # needs sage.libs.pari
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
>>> len(primes_first_n(Integer(1000)))                                                 # needs sage.libs.pari
1000
>>> primes_first_n(Integer(0))
[]
sage.arith.misc.primitive_root(n, check=True)[source]

Return a positive integer that generates the multiplicative group of integers modulo \(n\), if one exists; otherwise, raise a ValueError.

A primitive root exists if \(n=4\) or \(n=p^k\) or \(n=2p^k\), where \(p\) is an odd prime and \(k\) is a nonnegative number.

INPUT:

  • n – nonzero integer

  • check – boolean (default: True); if False, then \(n\) is assumed to be a positive integer possessing a primitive root, and behavior is undefined otherwise.

OUTPUT:

A primitive root of \(n\). If \(n\) is prime, this is the smallest primitive root.

EXAMPLES:

sage: # needs sage.libs.pari
sage: primitive_root(23)
5
sage: primitive_root(-46)
5
sage: primitive_root(25)
2
sage: print([primitive_root(p) for p in primes(100)])
[1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5]
sage: primitive_root(8)
Traceback (most recent call last):
...
ValueError: no primitive root
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> primitive_root(Integer(23))
5
>>> primitive_root(-Integer(46))
5
>>> primitive_root(Integer(25))
2
>>> print([primitive_root(p) for p in primes(Integer(100))])
[1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5]
>>> primitive_root(Integer(8))
Traceback (most recent call last):
...
ValueError: no primitive root

Note

It takes extra work to check if \(n\) has a primitive root; to avoid this, use check=False, which may slightly speed things up (but could also result in undefined behavior). For example, the second call below is an order of magnitude faster than the first:

sage: n = 10^50 + 151   # a prime
sage: primitive_root(n)                                                         # needs sage.libs.pari
11
sage: primitive_root(n, check=False)                                            # needs sage.libs.pari
11
>>> from sage.all import *
>>> n = Integer(10)**Integer(50) + Integer(151)   # a prime
>>> primitive_root(n)                                                         # needs sage.libs.pari
11
>>> primitive_root(n, check=False)                                            # needs sage.libs.pari
11
sage.arith.misc.quadratic_residues(n)[source]

Return a sorted list of all squares modulo the integer \(n\) in the range \(0\leq x < |n|\).

EXAMPLES:

sage: quadratic_residues(11)
[0, 1, 3, 4, 5, 9]
sage: quadratic_residues(1)
[0]
sage: quadratic_residues(2)
[0, 1]
sage: quadratic_residues(8)
[0, 1, 4]
sage: quadratic_residues(-10)
[0, 1, 4, 5, 6, 9]
sage: v = quadratic_residues(1000); len(v)
159
>>> from sage.all import *
>>> quadratic_residues(Integer(11))
[0, 1, 3, 4, 5, 9]
>>> quadratic_residues(Integer(1))
[0]
>>> quadratic_residues(Integer(2))
[0, 1]
>>> quadratic_residues(Integer(8))
[0, 1, 4]
>>> quadratic_residues(-Integer(10))
[0, 1, 4, 5, 6, 9]
>>> v = quadratic_residues(Integer(1000)); len(v)
159

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: quadratic_residues(int8(11))                                              # needs numpy
[0, 1, 3, 4, 5, 9]
sage: from gmpy2 import mpz
sage: quadratic_residues(mpz(11))
[0, 1, 3, 4, 5, 9]
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> quadratic_residues(int8(Integer(11)))                                              # needs numpy
[0, 1, 3, 4, 5, 9]
>>> from gmpy2 import mpz
>>> quadratic_residues(mpz(Integer(11)))
[0, 1, 3, 4, 5, 9]
sage.arith.misc.radical(n, *args, **kwds)[source]

Return the product of the prime divisors of n.

This calls n.radical(*args, **kwds).

EXAMPLES:

sage: radical(2 * 3^2 * 5^5)
30
sage: radical(0)
Traceback (most recent call last):
...
ArithmeticError: radical of 0 is not defined
sage: K.<i> = QuadraticField(-1)                                                # needs sage.rings.number_field
sage: radical(K(2))                                                             # needs sage.rings.number_field
i + 1
>>> from sage.all import *
>>> radical(Integer(2) * Integer(3)**Integer(2) * Integer(5)**Integer(5))
30
>>> radical(Integer(0))
Traceback (most recent call last):
...
ArithmeticError: radical of 0 is not defined
>>> K = QuadraticField(-Integer(1), names=('i',)); (i,) = K._first_ngens(1)# needs sage.rings.number_field
>>> radical(K(Integer(2)))                                                             # needs sage.rings.number_field
i + 1

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: radical(int8(50))                                                         # needs numpy
10
sage: from gmpy2 import mpz
sage: radical(mpz(50))
10
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> radical(int8(Integer(50)))                                                         # needs numpy
10
>>> from gmpy2 import mpz
>>> radical(mpz(Integer(50)))
10
sage.arith.misc.random_prime(n, proof=None, lbound=2)[source]

Return a random prime \(p\) between lbound and \(n\).

The returned prime \(p\) satisfies lbound \(\leq p \leq n\).

The returned prime \(p\) is chosen uniformly at random from the set of prime numbers less than or equal to \(n\).

INPUT:

  • n – integer \(\geq 2\)

  • proof – boolean or None (default: None); if False, the function uses a pseudo-primality test, which is much faster for really big numbers but does not provide a proof of primality. If None, uses the global default (see sage.structure.proof.proof)

  • lbound – integer; \(\geq 2\), lower bound for the chosen primes

EXAMPLES:

sage: # needs sage.libs.pari
sage: p = random_prime(100000)
sage: p.is_prime()
True
sage: p <= 100000
True
sage: random_prime(2)
2
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> p = random_prime(Integer(100000))
>>> p.is_prime()
True
>>> p <= Integer(100000)
True
>>> random_prime(Integer(2))
2

Here we generate a random prime between 100 and 200:

sage: p = random_prime(200, lbound=100)
sage: p.is_prime()
True
sage: 100 <= p <= 200
True
>>> from sage.all import *
>>> p = random_prime(Integer(200), lbound=Integer(100))
>>> p.is_prime()
True
>>> Integer(100) <= p <= Integer(200)
True

If all we care about is finding a pseudo prime, then we can pass in proof=False

sage: p = random_prime(200, proof=False, lbound=100)                            # needs sage.libs.pari
sage: p.is_pseudoprime()                                                        # needs sage.libs.pari
True
sage: 100 <= p <= 200
True
>>> from sage.all import *
>>> p = random_prime(Integer(200), proof=False, lbound=Integer(100))                            # needs sage.libs.pari
>>> p.is_pseudoprime()                                                        # needs sage.libs.pari
True
>>> Integer(100) <= p <= Integer(200)
True

AUTHORS:

  • Jon Hanke (2006-08-08): with standard Stein cleanup

  • Jonathan Bober (2007-03-17)

sage.arith.misc.rational_reconstruction(a, m, algorithm='fast')[source]

This function tries to compute \(x/y\), where \(x/y\) is a rational number in lowest terms such that the reduction of \(x/y\) modulo \(m\) is equal to \(a\) and the absolute values of \(x\) and \(y\) are both \(\le \sqrt{m/2}\). If such \(x/y\) exists, that pair is unique and this function returns it. If no such pair exists, this function raises ZeroDivisionError.

An efficient algorithm for computing rational reconstruction is very similar to the extended Euclidean algorithm. For more details, see Knuth, Vol 2, 3rd ed, pages 656-657.

INPUT:

  • a – integer

  • m – a modulus

  • algorithm – string (default: 'fast')

  • 'fast' – a fast implementation using direct GMP library calls

    in Cython

OUTPUT:

Numerator and denominator \(n\), \(d\) of the unique rational number \(r=n/d\), if it exists, with \(n\) and \(|d| \le \sqrt{N/2}\). Return \((0,0)\) if no such number exists.

The algorithm for rational reconstruction is described (with a complete nontrivial proof) on pages 656-657 of Knuth, Vol 2, 3rd ed. as the solution to exercise 51 on page 379. See in particular the conclusion paragraph right in the middle of page 657, which describes the algorithm thus:

This discussion proves that the problem can be solved efficiently by applying Algorithm 4.5.2X with \(u=m\) and \(v=a\), but with the following replacement for step X2: If \(v3 \le \sqrt{m/2}\), the algorithm terminates. The pair \((x,y)=(|v2|,v3*\mathrm{sign}(v2))\) is then the unique solution, provided that \(x\) and \(y\) are coprime and \(x \le \sqrt{m/2}\); otherwise there is no solution. (Alg 4.5.2X is the extended Euclidean algorithm.)

Knuth remarks that this algorithm is due to Wang, Kornerup, and Gregory from around 1983.

EXAMPLES:

sage: m = 100000
sage: (119*inverse_mod(53,m))%m
11323
sage: rational_reconstruction(11323,m)
119/53
>>> from sage.all import *
>>> m = Integer(100000)
>>> (Integer(119)*inverse_mod(Integer(53),m))%m
11323
>>> rational_reconstruction(Integer(11323),m)
119/53

sage: rational_reconstruction(400,1000)
Traceback (most recent call last):
...
ArithmeticError: rational reconstruction of 400 (mod 1000) does not exist
>>> from sage.all import *
>>> rational_reconstruction(Integer(400),Integer(1000))
Traceback (most recent call last):
...
ArithmeticError: rational reconstruction of 400 (mod 1000) does not exist

sage: rational_reconstruction(3, 292393)
3
sage: a = Integers(292393)(45/97); a
204977
sage: rational_reconstruction(a, 292393, algorithm='fast')
45/97
sage: rational_reconstruction(293048, 292393)
Traceback (most recent call last):
...
ArithmeticError: rational reconstruction of 655 (mod 292393) does not exist
sage: rational_reconstruction(0, 0)
Traceback (most recent call last):
...
ZeroDivisionError: rational reconstruction with zero modulus
sage: rational_reconstruction(0, 1, algorithm='foobar')
Traceback (most recent call last):
...
ValueError: unknown algorithm 'foobar'
>>> from sage.all import *
>>> rational_reconstruction(Integer(3), Integer(292393))
3
>>> a = Integers(Integer(292393))(Integer(45)/Integer(97)); a
204977
>>> rational_reconstruction(a, Integer(292393), algorithm='fast')
45/97
>>> rational_reconstruction(Integer(293048), Integer(292393))
Traceback (most recent call last):
...
ArithmeticError: rational reconstruction of 655 (mod 292393) does not exist
>>> rational_reconstruction(Integer(0), Integer(0))
Traceback (most recent call last):
...
ZeroDivisionError: rational reconstruction with zero modulus
>>> rational_reconstruction(Integer(0), Integer(1), algorithm='foobar')
Traceback (most recent call last):
...
ValueError: unknown algorithm 'foobar'

Tests with numpy and gmpy2 numbers:

sage: from numpy import int32                                                   # needs numpy
sage: rational_reconstruction(int32(3), int32(292393))                          # needs numpy
3
sage: from gmpy2 import mpz
sage: rational_reconstruction(mpz(3), mpz(292393))
3
>>> from sage.all import *
>>> from numpy import int32                                                   # needs numpy
>>> rational_reconstruction(int32(Integer(3)), int32(Integer(292393)))                          # needs numpy
3
>>> from gmpy2 import mpz
>>> rational_reconstruction(mpz(Integer(3)), mpz(Integer(292393)))
3
sage.arith.misc.rising_factorial(x, a)[source]

Return the rising factorial \((x)^a\).

The notation in the literature is a mess: often \((x)^a\), but there are many other notations: GKP: Concrete Mathematics uses \(x^{\overline{a}}\).

The rising factorial is also known as the Pochhammer symbol, see Maple and Mathematica.

Definition: for integer \(a \ge 0\) we have \(x(x+1) \cdots (x+a-1)\). In all other cases we use the GAMMA-function: \(\frac {\Gamma(x+a)} {\Gamma(x)}\).

INPUT:

  • x – element of a ring

  • a – nonnegative integer or

  • x, a – any numbers

OUTPUT: the rising factorial

EXAMPLES:

sage: rising_factorial(10,3)
1320

sage: # needs sage.symbolic
sage: rising_factorial(10, RR('3.0'))
1320.00000000000
sage: rising_factorial(10, RR('3.3'))
2826.38895824964
sage: a = rising_factorial(1+I, I); a
gamma(2*I + 1)/gamma(I + 1)
sage: CC(a)
0.266816390637832 + 0.122783354006372*I
sage: a = rising_factorial(I, 4); a
-10

sage: x = polygen(ZZ)
sage: rising_factorial(x, 4)
x^4 + 6*x^3 + 11*x^2 + 6*x
>>> from sage.all import *
>>> rising_factorial(Integer(10),Integer(3))
1320

>>> # needs sage.symbolic
>>> rising_factorial(Integer(10), RR('3.0'))
1320.00000000000
>>> rising_factorial(Integer(10), RR('3.3'))
2826.38895824964
>>> a = rising_factorial(Integer(1)+I, I); a
gamma(2*I + 1)/gamma(I + 1)
>>> CC(a)
0.266816390637832 + 0.122783354006372*I
>>> a = rising_factorial(I, Integer(4)); a
-10

>>> x = polygen(ZZ)
>>> rising_factorial(x, Integer(4))
x^4 + 6*x^3 + 11*x^2 + 6*x

AUTHORS:

  • Jaap Spies (2006-03-05)

sage.arith.misc.smooth_part(x, base)[source]

Given an element x of a Euclidean domain and a factor base base, return a Factorization object corresponding to the largest divisor of x that splits completely over base.

The factor base can be specified in the following ways:

  • A sequence of elements.

  • A ProductTree built from such a sequence. (Caching the tree in the caller will speed things up if this function is called multiple times with the same factor base.)

EXAMPLES:

sage: from sage.arith.misc import smooth_part
sage: from sage.rings.generic import ProductTree
sage: smooth_part(10^77+1, primes(1000))
11^2 * 23 * 463
sage: tree = ProductTree(primes(1000))
sage: smooth_part(10^77+1, tree)
11^2 * 23 * 463
sage: smooth_part(10^99+1, tree)
7 * 11^2 * 13 * 19 * 23
>>> from sage.all import *
>>> from sage.arith.misc import smooth_part
>>> from sage.rings.generic import ProductTree
>>> smooth_part(Integer(10)**Integer(77)+Integer(1), primes(Integer(1000)))
11^2 * 23 * 463
>>> tree = ProductTree(primes(Integer(1000)))
>>> smooth_part(Integer(10)**Integer(77)+Integer(1), tree)
11^2 * 23 * 463
>>> smooth_part(Integer(10)**Integer(99)+Integer(1), tree)
7 * 11^2 * 13 * 19 * 23
sage.arith.misc.sort_complex_numbers_for_display(nums)[source]

Given a list of complex numbers (or a list of tuples, where the first element of each tuple is a complex number), we sort the list in a “pretty” order.

Real numbers (with a zero imaginary part) come before complex numbers, and are sorted. Complex numbers are sorted by their real part unless their real parts are quite close, in which case they are sorted by their imaginary part.

This is not a useful function mathematically (not least because there is no principled way to determine whether the real components should be treated as equal or not). It is called by various polynomial root-finders; its purpose is to make doctest printing more reproducible.

We deliberately choose a cumbersome name for this function to discourage use, since it is mathematically meaningless.

EXAMPLES:

sage: # needs sage.rings.complex_double
sage: import sage.arith.misc
sage: sort_c = sort_complex_numbers_for_display
sage: nums = [CDF(i) for i in range(3)]
sage: for i in range(3):
....:     nums.append(CDF(i + RDF.random_element(-3e-11, 3e-11),
....:                     RDF.random_element()))
....:     nums.append(CDF(i + RDF.random_element(-3e-11, 3e-11),
....:                     RDF.random_element()))
sage: shuffle(nums)
sage: nums = sort_c(nums)
sage: for i in range(len(nums)):
....:     if nums[i].imag():
....:         first_non_real = i
....:         break
....: else:
....:     first_non_real = len(nums)
sage: assert first_non_real >= 3
sage: for i in range(first_non_real - 1):
....:     assert nums[i].real() <= nums[i + 1].real()
sage: def truncate(n):
....:     if n.real() < 1e-10:
....:         return 0
....:     else:
....:         return n.real().n(digits=9)
sage: for i in range(first_non_real, len(nums)-1):
....:     assert truncate(nums[i]) <= truncate(nums[i + 1])
....:     if truncate(nums[i]) == truncate(nums[i + 1]):
....:         assert nums[i].imag() <= nums[i+1].imag()
>>> from sage.all import *
>>> # needs sage.rings.complex_double
>>> import sage.arith.misc
>>> sort_c = sort_complex_numbers_for_display
>>> nums = [CDF(i) for i in range(Integer(3))]
>>> for i in range(Integer(3)):
...     nums.append(CDF(i + RDF.random_element(-RealNumber('3e-11'), RealNumber('3e-11')),
...                     RDF.random_element()))
...     nums.append(CDF(i + RDF.random_element(-RealNumber('3e-11'), RealNumber('3e-11')),
...                     RDF.random_element()))
>>> shuffle(nums)
>>> nums = sort_c(nums)
>>> for i in range(len(nums)):
...     if nums[i].imag():
...         first_non_real = i
...         break
... else:
...     first_non_real = len(nums)
>>> assert first_non_real >= Integer(3)
>>> for i in range(first_non_real - Integer(1)):
...     assert nums[i].real() <= nums[i + Integer(1)].real()
>>> def truncate(n):
...     if n.real() < RealNumber('1e-10'):
...         return Integer(0)
...     else:
...         return n.real().n(digits=Integer(9))
>>> for i in range(first_non_real, len(nums)-Integer(1)):
...     assert truncate(nums[i]) <= truncate(nums[i + Integer(1)])
...     if truncate(nums[i]) == truncate(nums[i + Integer(1)]):
...         assert nums[i].imag() <= nums[i+Integer(1)].imag()
sage.arith.misc.squarefree_divisors(x)[source]

Return an iterator over the squarefree divisors (up to units) of this ring element.

Depends on the output of the prime_divisors function.

Squarefree divisors of an integer are not necessarily yielded in increasing order.

INPUT:

  • x – an element of any ring for which the prime_divisors function works

EXAMPLES:

Integers with few prime divisors:

sage: list(squarefree_divisors(7))
[1, 7]
sage: list(squarefree_divisors(6))
[1, 2, 3, 6]
sage: list(squarefree_divisors(12))
[1, 2, 3, 6]
>>> from sage.all import *
>>> list(squarefree_divisors(Integer(7)))
[1, 7]
>>> list(squarefree_divisors(Integer(6)))
[1, 2, 3, 6]
>>> list(squarefree_divisors(Integer(12)))
[1, 2, 3, 6]

Squarefree divisors are not yielded in increasing order:

sage: list(squarefree_divisors(30))
[1, 2, 3, 6, 5, 10, 15, 30]
>>> from sage.all import *
>>> list(squarefree_divisors(Integer(30)))
[1, 2, 3, 6, 5, 10, 15, 30]
sage.arith.misc.subfactorial(n)[source]

Subfactorial or rencontres numbers, or derangements: number of permutations of \(n\) elements with no fixed points.

INPUT:

  • n – nonnegative integer

OUTPUT: integer

EXAMPLES:

sage: subfactorial(0)
1
sage: subfactorial(1)
0
sage: subfactorial(8)
14833
>>> from sage.all import *
>>> subfactorial(Integer(0))
1
>>> subfactorial(Integer(1))
0
>>> subfactorial(Integer(8))
14833

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: subfactorial(int8(8))                                                     # needs numpy
14833
sage: from gmpy2 import mpz
sage: subfactorial(mpz(8))
14833
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> subfactorial(int8(Integer(8)))                                                     # needs numpy
14833
>>> from gmpy2 import mpz
>>> subfactorial(mpz(Integer(8)))
14833

AUTHORS:

  • Jaap Spies (2007-01-23)

sage.arith.misc.sum_of_k_squares(k, n)[source]

Write the integer \(n\) as a sum of \(k\) integer squares if possible; otherwise raise a ValueError.

INPUT:

  • k – nonnegative integer

  • n – integer

OUTPUT: a tuple \((x_1, ..., x_k)\) of nonnegative integers such that their squares sum to \(n\).

EXAMPLES:

sage: sum_of_k_squares(2, 9634)
(15, 97)
sage: sum_of_k_squares(3, 9634)
(0, 15, 97)
sage: sum_of_k_squares(4, 9634)
(1, 2, 5, 98)
sage: sum_of_k_squares(5, 9634)
(0, 1, 2, 5, 98)
sage: sum_of_k_squares(6, 11^1111 - 1)                                          # needs sage.libs.pari
(19215400822645944253860920437586326284, 37204645194585992174252915693267578306,
 3473654819477394665857484221256136567800161086815834297092488779216863122,
 5860191799617673633547572610351797996721850737768032876360978911074629287841061578270832330322236796556721252602860754789786937515870682024273948,
 20457423294558182494001919812379023992538802203730791019728543439765347851316366537094696896669915675685581905102118246887673397020172285247862426612188418787649371716686651256443143210952163970564228423098202682066311189439731080552623884051737264415984619097656479060977602722566383385989,
 311628095411678159849237738619458396497534696043580912225334269371611836910345930320700816649653412141574887113710604828156159177769285115652741014638785285820578943010943846225597311231847997461959204894255074229895666356909071243390280307709880906261008237873840245959883405303580405277298513108957483306488193844321589356441983980532251051786704380984788999660195252373574924026139168936921591652831237741973242604363696352878914129671292072201700073286987126265965322808664802662993006926302359371379531571194266134916767573373504566621665949840469229781956838744551367172353)
sage: sum_of_k_squares(7, 0)
(0, 0, 0, 0, 0, 0, 0)
sage: sum_of_k_squares(30,999999)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7, 44, 999)
sage: sum_of_k_squares(1, 9)
(3,)
sage: sum_of_k_squares(1, 10)
Traceback (most recent call last):
...
ValueError: 10 is not a sum of 1 square
sage: sum_of_k_squares(1, -10)
Traceback (most recent call last):
...
ValueError: -10 is not a sum of 1 square
sage: sum_of_k_squares(0, 9)
Traceback (most recent call last):
...
ValueError: 9 is not a sum of 0 squares
sage: sum_of_k_squares(0, 0)
()
sage: sum_of_k_squares(7, -1)
Traceback (most recent call last):
...
ValueError: -1 is not a sum of 7 squares
sage: sum_of_k_squares(-1, 0)
Traceback (most recent call last):
...
ValueError: k = -1 must be nonnegative
>>> from sage.all import *
>>> sum_of_k_squares(Integer(2), Integer(9634))
(15, 97)
>>> sum_of_k_squares(Integer(3), Integer(9634))
(0, 15, 97)
>>> sum_of_k_squares(Integer(4), Integer(9634))
(1, 2, 5, 98)
>>> sum_of_k_squares(Integer(5), Integer(9634))
(0, 1, 2, 5, 98)
>>> sum_of_k_squares(Integer(6), Integer(11)**Integer(1111) - Integer(1))                                          # needs sage.libs.pari
(19215400822645944253860920437586326284, 37204645194585992174252915693267578306,
 3473654819477394665857484221256136567800161086815834297092488779216863122,
 5860191799617673633547572610351797996721850737768032876360978911074629287841061578270832330322236796556721252602860754789786937515870682024273948,
 20457423294558182494001919812379023992538802203730791019728543439765347851316366537094696896669915675685581905102118246887673397020172285247862426612188418787649371716686651256443143210952163970564228423098202682066311189439731080552623884051737264415984619097656479060977602722566383385989,
 311628095411678159849237738619458396497534696043580912225334269371611836910345930320700816649653412141574887113710604828156159177769285115652741014638785285820578943010943846225597311231847997461959204894255074229895666356909071243390280307709880906261008237873840245959883405303580405277298513108957483306488193844321589356441983980532251051786704380984788999660195252373574924026139168936921591652831237741973242604363696352878914129671292072201700073286987126265965322808664802662993006926302359371379531571194266134916767573373504566621665949840469229781956838744551367172353)
>>> sum_of_k_squares(Integer(7), Integer(0))
(0, 0, 0, 0, 0, 0, 0)
>>> sum_of_k_squares(Integer(30),Integer(999999))
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7, 44, 999)
>>> sum_of_k_squares(Integer(1), Integer(9))
(3,)
>>> sum_of_k_squares(Integer(1), Integer(10))
Traceback (most recent call last):
...
ValueError: 10 is not a sum of 1 square
>>> sum_of_k_squares(Integer(1), -Integer(10))
Traceback (most recent call last):
...
ValueError: -10 is not a sum of 1 square
>>> sum_of_k_squares(Integer(0), Integer(9))
Traceback (most recent call last):
...
ValueError: 9 is not a sum of 0 squares
>>> sum_of_k_squares(Integer(0), Integer(0))
()
>>> sum_of_k_squares(Integer(7), -Integer(1))
Traceback (most recent call last):
...
ValueError: -1 is not a sum of 7 squares
>>> sum_of_k_squares(-Integer(1), Integer(0))
Traceback (most recent call last):
...
ValueError: k = -1 must be nonnegative

Tests with numpy and gmpy2 numbers:

sage: from numpy import int16                                                   # needs numpy
sage: sum_of_k_squares(int16(2), int16(9634))                                   # needs numpy
(15, 97)
sage: from gmpy2 import mpz
sage: sum_of_k_squares(mpz(2), mpz(9634))
(15, 97)
>>> from sage.all import *
>>> from numpy import int16                                                   # needs numpy
>>> sum_of_k_squares(int16(Integer(2)), int16(Integer(9634)))                                   # needs numpy
(15, 97)
>>> from gmpy2 import mpz
>>> sum_of_k_squares(mpz(Integer(2)), mpz(Integer(9634)))
(15, 97)
sage.arith.misc.three_squares(n)[source]

Write the integer \(n\) as a sum of three integer squares if possible; otherwise raise a ValueError.

INPUT:

  • n – integer

OUTPUT: a tuple \((a,b,c)\) of nonnegative integers such that \(n = a^2 + b^2 + c^2\) with \(a <= b <= c\).

EXAMPLES:

sage: three_squares(389)
(1, 8, 18)
sage: three_squares(946)
(9, 9, 28)
sage: three_squares(2986)
(3, 24, 49)
sage: three_squares(7^100)
(0, 0, 1798465042647412146620280340569649349251249)
sage: three_squares(11^111 - 1)                                                 # needs sage.libs.pari
(616274160655975340150706442680, 901582938385735143295060746161,
 6270382387635744140394001363065311967964099981788593947233)
sage: three_squares(7 * 2^41)                                                   # needs sage.libs.pari
(1048576, 2097152, 3145728)
sage: three_squares(7 * 2^42)
Traceback (most recent call last):
...
ValueError: 30786325577728 is not a sum of 3 squares
sage: three_squares(0)
(0, 0, 0)
sage: three_squares(-1)
Traceback (most recent call last):
...
ValueError: -1 is not a sum of 3 squares
>>> from sage.all import *
>>> three_squares(Integer(389))
(1, 8, 18)
>>> three_squares(Integer(946))
(9, 9, 28)
>>> three_squares(Integer(2986))
(3, 24, 49)
>>> three_squares(Integer(7)**Integer(100))
(0, 0, 1798465042647412146620280340569649349251249)
>>> three_squares(Integer(11)**Integer(111) - Integer(1))                                                 # needs sage.libs.pari
(616274160655975340150706442680, 901582938385735143295060746161,
 6270382387635744140394001363065311967964099981788593947233)
>>> three_squares(Integer(7) * Integer(2)**Integer(41))                                                   # needs sage.libs.pari
(1048576, 2097152, 3145728)
>>> three_squares(Integer(7) * Integer(2)**Integer(42))
Traceback (most recent call last):
...
ValueError: 30786325577728 is not a sum of 3 squares
>>> three_squares(Integer(0))
(0, 0, 0)
>>> three_squares(-Integer(1))
Traceback (most recent call last):
...
ValueError: -1 is not a sum of 3 squares

ALGORITHM:

See https://schorn.ch/lagrange.html

sage.arith.misc.trial_division(n, bound=None)[source]

Return the smallest prime divisor less than or equal to bound of the positive integer \(n\), or \(n\) if there is no such prime. If the optional argument bound is omitted, then bound \(\leq n\).

INPUT:

  • n – positive integer

  • bound – (optional) positive integer

OUTPUT: a prime p=bound that divides \(n\), or \(n\) if there is no such prime

EXAMPLES:

sage: trial_division(15)
3
sage: trial_division(91)
7
sage: trial_division(11)
11
sage: trial_division(387833, 300)
387833
sage: # 300 is not big enough to split off a
sage: # factor, but 400 is.
sage: trial_division(387833, 400)
389
>>> from sage.all import *
>>> trial_division(Integer(15))
3
>>> trial_division(Integer(91))
7
>>> trial_division(Integer(11))
11
>>> trial_division(Integer(387833), Integer(300))
387833
>>> # 300 is not big enough to split off a
>>> # factor, but 400 is.
>>> trial_division(Integer(387833), Integer(400))
389

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8                                                    # needs numpy
sage: trial_division(int8(91))                                                  # needs numpy
7
sage: from gmpy2 import mpz
sage: trial_division(mpz(91))
7
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> trial_division(int8(Integer(91)))                                                  # needs numpy
7
>>> from gmpy2 import mpz
>>> trial_division(mpz(Integer(91)))
7
sage.arith.misc.two_squares(n)[source]

Write the integer \(n\) as a sum of two integer squares if possible; otherwise raise a ValueError.

INPUT:

  • n – integer

OUTPUT: a tuple \((a,b)\) of nonnegative integers such that \(n = a^2 + b^2\) with \(a <= b\).

EXAMPLES:

sage: two_squares(389)
(10, 17)
sage: two_squares(21)
Traceback (most recent call last):
...
ValueError: 21 is not a sum of 2 squares
sage: two_squares(21^2)
(0, 21)
sage: a, b = two_squares(100000000000000000129); a, b                           # needs sage.libs.pari
(4418521500, 8970878873)
sage: a^2 + b^2                                                                 # needs sage.libs.pari
100000000000000000129
sage: two_squares(2^222 + 1)                                                    # needs sage.libs.pari
(253801659504708621991421712450521, 2583712713213354898490304645018692)
sage: two_squares(0)
(0, 0)
sage: two_squares(-1)
Traceback (most recent call last):
...
ValueError: -1 is not a sum of 2 squares
>>> from sage.all import *
>>> two_squares(Integer(389))
(10, 17)
>>> two_squares(Integer(21))
Traceback (most recent call last):
...
ValueError: 21 is not a sum of 2 squares
>>> two_squares(Integer(21)**Integer(2))
(0, 21)
>>> a, b = two_squares(Integer(100000000000000000129)); a, b                           # needs sage.libs.pari
(4418521500, 8970878873)
>>> a**Integer(2) + b**Integer(2)                                                                 # needs sage.libs.pari
100000000000000000129
>>> two_squares(Integer(2)**Integer(222) + Integer(1))                                                    # needs sage.libs.pari
(253801659504708621991421712450521, 2583712713213354898490304645018692)
>>> two_squares(Integer(0))
(0, 0)
>>> two_squares(-Integer(1))
Traceback (most recent call last):
...
ValueError: -1 is not a sum of 2 squares

ALGORITHM:

See https://schorn.ch/lagrange.html

sage.arith.misc.valuation(m, *args, **kwds)[source]

Return the valuation of m.

This function simply calls the m.valuation() method. See the documentation of m.valuation() for a more precise description.

Note that the use of this functions is discouraged as it is better to use m.valuation() directly.

Note

This is not always a valuation in the mathematical sense. For more information see: sage.rings.finite_rings.integer_mod.IntegerMod_int.valuation

EXAMPLES:

sage: valuation(512,2)
9
sage: valuation(1,2)
0
sage: valuation(5/9, 3)
-2
>>> from sage.all import *
>>> valuation(Integer(512),Integer(2))
9
>>> valuation(Integer(1),Integer(2))
0
>>> valuation(Integer(5)/Integer(9), Integer(3))
-2

Valuation of 0 is defined, but valuation with respect to 0 is not:

sage: valuation(0,7)
+Infinity
sage: valuation(3,0)
Traceback (most recent call last):
...
ValueError: You can only compute the valuation with respect to a integer larger than 1.
>>> from sage.all import *
>>> valuation(Integer(0),Integer(7))
+Infinity
>>> valuation(Integer(3),Integer(0))
Traceback (most recent call last):
...
ValueError: You can only compute the valuation with respect to a integer larger than 1.

Here are some other examples:

sage: valuation(100,10)
2
sage: valuation(200,10)
2
sage: valuation(243,3)
5
sage: valuation(243*10007,3)
5
sage: valuation(243*10007,10007)
1
sage: y = QQ['y'].gen()
sage: valuation(y^3, y)
3
sage: x = QQ[['x']].gen()
sage: valuation((x^3-x^2)/(x-4))
2
sage: valuation(4r,2r)
2
sage: valuation(1r,1r)
Traceback (most recent call last):
...
ValueError: You can only compute the valuation with respect to a integer larger than 1.
sage: from numpy import int16                                                   # needs numpy
sage: valuation(int16(512), int16(2))                                           # needs numpy
9
sage: from gmpy2 import mpz
sage: valuation(mpz(512), mpz(2))
9
>>> from sage.all import *
>>> valuation(Integer(100),Integer(10))
2
>>> valuation(Integer(200),Integer(10))
2
>>> valuation(Integer(243),Integer(3))
5
>>> valuation(Integer(243)*Integer(10007),Integer(3))
5
>>> valuation(Integer(243)*Integer(10007),Integer(10007))
1
>>> y = QQ['y'].gen()
>>> valuation(y**Integer(3), y)
3
>>> x = QQ[['x']].gen()
>>> valuation((x**Integer(3)-x**Integer(2))/(x-Integer(4)))
2
>>> valuation(4,2)
2
>>> valuation(1,1)
Traceback (most recent call last):
...
ValueError: You can only compute the valuation with respect to a integer larger than 1.
>>> from numpy import int16                                                   # needs numpy
>>> valuation(int16(Integer(512)), int16(Integer(2)))                                           # needs numpy
9
>>> from gmpy2 import mpz
>>> valuation(mpz(Integer(512)), mpz(Integer(2)))
9
sage.arith.misc.xgcd(a, b=None)[source]

Return the greatest common divisor and the Bézout coefficients of the input arguments.

When both a and b are given, then return a triple (g,s,t) such that \(g = s\cdot a+t\cdot b = \gcd(a,b)\). When only a is given, then return a tuple r of length len(a) + 1 such that \(r_0 = \sum_{i = 0}^{len(a) - 1} r_{i + 1}a_i = gcd(a_0, \dots, a_{len(a) - 1})\)

Note

One exception is if the elements are not in a principal ideal domain (see Wikipedia article Principal_ideal_domain), e.g., they are both polynomials over the integers. Then this function can’t in general return (g,s,t) or r as above, since they need not exist. Instead, over the integers, when a and b are given, we first multiply \(g\) by a divisor of the resultant of \(a/g\) and \(b/g\), up to sign.

INPUT:

One of the following:

  • a, b – integers or more generally, element of a ring for which the xgcd make sense (e.g. a field or univariate polynomials).

  • a – a list or tuple of at least two integers or more generally, elements of a ring which the xgcd make sense.

OUTPUT:

One of the following:

  • g, s, t – when two inputs a, b are given. They satisfy \(g = s\cdot a + t\cdot b\).

  • r – a tuple, when only a is given (and b = None). Its first entry r[0] is the gcd of the inputs, and has length one longer than the length of a. Its entries satisfy \(r_0 = \sum_{i = 0}^{len(a) - 1} r_{i + 1}a_i\).

Note

There is no guarantee that the returned cofactors (s and t) are minimal.

EXAMPLES:

sage: xgcd(56, 44)
(4, 4, -5)
sage: 4*56 + (-5)*44
4
sage: xgcd([56, 44])
(4, 4, -5)
sage: r = xgcd([30, 105, 70, 42]); r
(1, -255, 85, -17, -2)
sage: (-255)*30 + 85*105 + (-17)*70 + (-2)*42
1
sage: xgcd([])
(0,)
sage: xgcd([42])
(42, 1)

sage: g, a, b = xgcd(5/1, 7/1); g, a, b
(1, 3, -2)
sage: a*(5/1) + b*(7/1) == g
True

sage: x = polygen(QQ)
sage: xgcd(x^3 - 1, x^2 - 1)
(x - 1, 1, -x)
sage: g, a, b, c = xgcd([x^4 - x, x^6 - 1, x^4 - 1]); g, a, b, c
(x - 1, x^3, -x, 1)
sage: a*(x^4 - x) + b*(x^6 - 1) + c*(x^4 - 1) == g
True

sage: K.<g> = NumberField(x^2 - 3)                                              # needs sage.rings.number_field
sage: g.xgcd(g + 2)                                                             # needs sage.rings.number_field
(1, 1/3*g, 0)

sage: # needs sage.rings.number_field
sage: R.<a,b> = K[]
sage: S.<y> = R.fraction_field()[]
sage: xgcd(y^2, a*y + b)
(1, a^2/b^2, ((-a)/b^2)*y + 1/b)
sage: xgcd((b+g)*y^2, (a+g)*y + b)
(1, (a^2 + (2*g)*a + 3)/(b^3 + g*b^2), ((-a + (-g))/b^2)*y + 1/b)
>>> from sage.all import *
>>> xgcd(Integer(56), Integer(44))
(4, 4, -5)
>>> Integer(4)*Integer(56) + (-Integer(5))*Integer(44)
4
>>> xgcd([Integer(56), Integer(44)])
(4, 4, -5)
>>> r = xgcd([Integer(30), Integer(105), Integer(70), Integer(42)]); r
(1, -255, 85, -17, -2)
>>> (-Integer(255))*Integer(30) + Integer(85)*Integer(105) + (-Integer(17))*Integer(70) + (-Integer(2))*Integer(42)
1
>>> xgcd([])
(0,)
>>> xgcd([Integer(42)])
(42, 1)

>>> g, a, b = xgcd(Integer(5)/Integer(1), Integer(7)/Integer(1)); g, a, b
(1, 3, -2)
>>> a*(Integer(5)/Integer(1)) + b*(Integer(7)/Integer(1)) == g
True

>>> x = polygen(QQ)
>>> xgcd(x**Integer(3) - Integer(1), x**Integer(2) - Integer(1))
(x - 1, 1, -x)
>>> g, a, b, c = xgcd([x**Integer(4) - x, x**Integer(6) - Integer(1), x**Integer(4) - Integer(1)]); g, a, b, c
(x - 1, x^3, -x, 1)
>>> a*(x**Integer(4) - x) + b*(x**Integer(6) - Integer(1)) + c*(x**Integer(4) - Integer(1)) == g
True

>>> K = NumberField(x**Integer(2) - Integer(3), names=('g',)); (g,) = K._first_ngens(1)# needs sage.rings.number_field
>>> g.xgcd(g + Integer(2))                                                             # needs sage.rings.number_field
(1, 1/3*g, 0)

>>> # needs sage.rings.number_field
>>> R = K['a, b']; (a, b,) = R._first_ngens(2)
>>> S = R.fraction_field()['y']; (y,) = S._first_ngens(1)
>>> xgcd(y**Integer(2), a*y + b)
(1, a^2/b^2, ((-a)/b^2)*y + 1/b)
>>> xgcd((b+g)*y**Integer(2), (a+g)*y + b)
(1, (a^2 + (2*g)*a + 3)/(b^3 + g*b^2), ((-a + (-g))/b^2)*y + 1/b)

Here is an example of a xgcd for two polynomials over the integers, where the linear combination is not the gcd but the gcd multiplied by the resultant:

sage: R.<x> = ZZ[]
sage: gcd(2*x*(x-1), x^2)
x
sage: xgcd(2*x*(x-1), x^2)
(2*x, -1, 2)
sage: (2*(x-1)).resultant(x)                                                    # needs sage.libs.pari
2
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> gcd(Integer(2)*x*(x-Integer(1)), x**Integer(2))
x
>>> xgcd(Integer(2)*x*(x-Integer(1)), x**Integer(2))
(2*x, -1, 2)
>>> (Integer(2)*(x-Integer(1))).resultant(x)                                                    # needs sage.libs.pari
2

Tests with numpy and gmpy2 types:

sage: from numpy import int8                                                    # needs numpy
sage: xgcd(4, int8(8))                                                          # needs numpy
(4, 1, 0)
sage: xgcd(int8(4), int8(8))                                                    # needs numpy
(4, 1, 0)
sage: xgcd([int8(4), int8(8), int(10)])                                         # needs numpy
(2, -2, 0, 1)
sage: from gmpy2 import mpz
sage: xgcd(mpz(4), mpz(8))
(4, 1, 0)
sage: xgcd(4, mpz(8))
(4, 1, 0)
sage: xgcd([4, mpz(8), mpz(10)])
(2, -2, 0, 1)
>>> from sage.all import *
>>> from numpy import int8                                                    # needs numpy
>>> xgcd(Integer(4), int8(Integer(8)))                                                          # needs numpy
(4, 1, 0)
>>> xgcd(int8(Integer(4)), int8(Integer(8)))                                                    # needs numpy
(4, 1, 0)
>>> xgcd([int8(Integer(4)), int8(Integer(8)), int(Integer(10))])                                         # needs numpy
(2, -2, 0, 1)
>>> from gmpy2 import mpz
>>> xgcd(mpz(Integer(4)), mpz(Integer(8)))
(4, 1, 0)
>>> xgcd(Integer(4), mpz(Integer(8)))
(4, 1, 0)
>>> xgcd([Integer(4), mpz(Integer(8)), mpz(Integer(10))])
(2, -2, 0, 1)
sage.arith.misc.xkcd(n='')[source]

This function is similar to the xgcd function, but behaves in a completely different way.

See https://xkcd.com/json.html for more details.

INPUT:

  • n – integer (optional)

OUTPUT: a fragment of HTML

EXAMPLES:

sage: xkcd(353)  # optional - internet
<h1>Python</h1><img src="https://imgs.xkcd.com/comics/python.png" title="I wrote 20 short programs in Python yesterday.  It was wonderful.  Perl, I'm leaving you."><div>Source: <a href="http://xkcd.com/353" target="_blank">http://xkcd.com/353</a></div>
>>> from sage.all import *
>>> xkcd(Integer(353))  # optional - internet
<h1>Python</h1><img src="https://imgs.xkcd.com/comics/python.png" title="I wrote 20 short programs in Python yesterday.  It was wonderful.  Perl, I'm leaving you."><div>Source: <a href="http://xkcd.com/353" target="_blank">http://xkcd.com/353</a></div>
sage.arith.misc.xlcm(m, n)[source]

Extended lcm function: given two positive integers \(m,n\), returns a triple \((l,m_1,n_1)\) such that \(l=\mathop{\mathrm{lcm}}(m,n)=m_1 \cdot n_1\) where \(m_1|m\), \(n_1|n\) and \(\gcd(m_1,n_1)=1\), all with no factorization.

Used to construct an element of order \(l\) from elements of orders \(m,n\) in any group: see sage/groups/generic.py for examples.

EXAMPLES:

sage: xlcm(120,36)
(360, 40, 9)
>>> from sage.all import *
>>> xlcm(Integer(120),Integer(36))
(360, 40, 9)