# Ring $$\ZZ$$ of Integers#

The IntegerRing_class represents the ring $$\ZZ$$ of (arbitrary precision) integers. Each integer is an instance of Integer, which is defined in a Pyrex extension module that wraps GMP integers (the mpz_t type in GMP).

sage: Z = IntegerRing(); Z
Integer Ring
sage: Z.characteristic()
0
sage: Z.is_field()
False


There is a unique instance of the integer ring. To create an Integer, coerce either a Python int, long, or a string. Various other types will also coerce to the integers, when it makes sense.

sage: a = Z(1234); a
1234
sage: b = Z(5678); b
5678
sage: type(a)
<class 'sage.rings.integer.Integer'>
sage: a + b
6912
sage: Z('94803849083985934859834583945394')
94803849083985934859834583945394

sage.rings.integer_ring.IntegerRing()#

Return the integer ring.

EXAMPLES:

sage: IntegerRing()
Integer Ring
sage: ZZ==IntegerRing()
True

class sage.rings.integer_ring.IntegerRing_class#

The ring of integers.

In order to introduce the ring $$\ZZ$$ of integers, we illustrate creation, calling a few functions, and working with its elements.

sage: Z = IntegerRing(); Z
Integer Ring
sage: Z.characteristic()
0
sage: Z.is_field()
False
sage: Z.category()
Join of Category of euclidean domains
and Category of infinite enumerated sets
and Category of metric spaces
sage: Z(2^(2^5) + 1)
4294967297


One can give strings to create integers. Strings starting with 0x are interpreted as hexadecimal, and strings starting with 0o are interpreted as octal:

sage: parent('37')
<... 'str'>
sage: parent(Z('37'))
Integer Ring
sage: Z('0x10')
16
sage: Z('0x1a')
26
sage: Z('0o20')
16


As an inverse to digits(), lists of digits are accepted, provided that you give a base. The lists are interpreted in little-endian order, so that entry i of the list is the coefficient of base^i:

sage: Z([4,1,7], base=100)
70104
sage: Z([4,1,7], base=10)
714
sage: Z([3, 7], 10)
73
sage: Z([3, 7], 9)
66
sage: Z([], 10)
0


Alphanumeric strings can be used for bases 2..36; letters a to z represent numbers 10 to 36. Letter case does not matter.

sage: Z("sage", base=32)
928270
sage: Z("SAGE", base=32)
928270
sage: Z("Sage", base=32)
928270
sage: Z([14, 16, 10, 28], base=32)
928270
sage: 14 + 16*32 + 10*32^2 + 28*32^3
928270


We next illustrate basic arithmetic in $$\ZZ$$:

sage: a = Z(1234); a
1234
sage: b = Z(5678); b
5678
sage: type(a)
<class 'sage.rings.integer.Integer'>
sage: a + b
6912
sage: b + a
6912
sage: a * b
7006652
sage: b * a
7006652
sage: a - b
-4444
sage: b - a
4444


When we divide two integers using /, the result is automatically coerced to the field of rational numbers, even if the result is an integer.

sage: a / b
617/2839
sage: type(a/b)
<class 'sage.rings.rational.Rational'>
sage: a/a
1
sage: type(a/a)
<class 'sage.rings.rational.Rational'>


For floor division, use the // operator instead:

sage: a // b
0
sage: type(a//b)
<class 'sage.rings.integer.Integer'>


Next we illustrate arithmetic with automatic coercion. The types that coerce are: str, int, long, Integer.

sage: a + 17
1251
sage: a * 374
461516
sage: 374 * a
461516
sage: a/19
1234/19
sage: 0 + Z(-64)
-64


Integers can be coerced:

sage: a = Z(-64)
sage: int(a)
-64


We can create integers from several types of objects:

sage: Z(17/1)
17
sage: Z(Mod(19,23))
19
sage: Z(2 + 3*5 + O(5^3))                                                       # needs sage.rings.padics
17


Arbitrary numeric bases are supported; strings or list of integers are used to provide the digits (more details in IntegerRing_class):

sage: Z("sage", base=32)
928270
sage: Z([14, 16, 10, 28], base=32)
928270


The digits method allows you to get the list of digits of an integer in a different basis (note that the digits are returned in little-endian order):

sage: b = Z([4,1,7], base=100)
sage: b
70104
sage: b.digits(base=71)
[27, 64, 13]

sage: Z(15).digits(2)
[1, 1, 1, 1]
sage: Z(15).digits(3)
[0, 2, 1]


The str method returns a string of the digits, using letters a to z to represent digits 10..36:

sage: Z(928270).str(base=32)
'sage'


Note that str only works with bases 2 through 36.

absolute_degree()#

Return the absolute degree of the integers, which is 1.

Here, absolute degree refers to the rank of the ring as a module over the integers.

EXAMPLES:

sage: ZZ.absolute_degree()
1

characteristic()#

Return the characteristic of the integers, which is 0.

EXAMPLES:

sage: ZZ.characteristic()
0

completion(p, prec, extras={})#

Return the metric completion of the integers at the prime $$p$$.

INPUT:

• p – a prime (or infinity)

• prec – the desired precision

• extras – any further parameters to pass to the method used to create the completion.

OUTPUT:

• The completion of $$\ZZ$$ at $$p$$.

EXAMPLES:

sage: ZZ.completion(infinity, 53)
Integer Ring
sage: ZZ.completion(5, 15, {'print_mode': 'bars'})                          # needs sage.rings.padics
5-adic Ring with capped relative precision 15

degree()#

Return the degree of the integers, which is 1.

Here, degree refers to the rank of the ring as a module over the integers.

EXAMPLES:

sage: ZZ.degree()
1

extension(poly, names, **kwds)#

Return the order generated by the specified list of polynomials.

INPUT:

OUTPUT:

• Given a single polynomial as input, return the order generated by a root of the polynomial in the field generated by a root of the polynomial.

Given a list of polynomials as input, return the relative order generated by a root of the first polynomial in the list, over the order generated by the roots of the subsequent polynomials.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: ZZ.extension(x^2 - 5, 'a')                                            # needs sage.rings.number_field
Order in Number Field in a with defining polynomial x^2 - 5
sage: ZZ.extension([x^2 + 1, x^2 + 2], 'a,b')                               # needs sage.rings.number_field
Relative Order in Number Field in a
with defining polynomial x^2 + 1 over its base field

fraction_field()#

Return the field of rational numbers - the fraction field of the integers.

EXAMPLES:

sage: ZZ.fraction_field()
Rational Field
sage: ZZ.fraction_field() == QQ
True

gen(n=0)#

Return the additive generator of the integers, which is 1.

INPUT:

• n (default: 0) – In a ring with more than one generator, the optional parameter $$n$$ indicates which generator to return; since there is only one generator in this case, the only valid value for $$n$$ is 0.

EXAMPLES:

sage: ZZ.gen()
1
sage: type(ZZ.gen())
<class 'sage.rings.integer.Integer'>

gens()#

Return the tuple (1,) containing a single element, the additive generator of the integers, which is 1.

EXAMPLES:

sage: ZZ.gens(); ZZ.gens()
(1,)
1
sage: type(ZZ.gens())
<class 'sage.rings.integer.Integer'>

is_field(proof=True)#

Return False since the integers are not a field.

EXAMPLES:

sage: ZZ.is_field()
False

is_integrally_closed()#

Return that the integer ring is, in fact, integrally closed.

EXAMPLES:

sage: ZZ.is_integrally_closed()
True

is_noetherian()#

Return True since the integers are a Noetherian ring.

EXAMPLES:

sage: ZZ.is_noetherian()
True

krull_dimension()#

Return the Krull dimension of the integers, which is 1.

EXAMPLES:

sage: ZZ.krull_dimension()
1

ngens()#

Return the number of additive generators of the ring, which is 1.

EXAMPLES:

sage: ZZ.ngens()
1
sage: len(ZZ.gens())
1

order()#

Return the order (cardinality) of the integers, which is +Infinity.

EXAMPLES:

sage: ZZ.order()
+Infinity

parameter()#

Return an integer of degree 1 for the Euclidean property of $$\ZZ$$, namely 1.

EXAMPLES:

sage: ZZ.parameter()
1

quotient(I, names=None, **kwds)#

Return the quotient of $$\ZZ$$ by the ideal or integer I.

EXAMPLES:

sage: ZZ.quo(6*ZZ)
Ring of integers modulo 6
sage: ZZ.quo(0*ZZ)
Integer Ring
sage: ZZ.quo(3)
Ring of integers modulo 3
sage: ZZ.quo(3*QQ)
Traceback (most recent call last):
...
TypeError: I must be an ideal of ZZ

random_element(x=None, y=None, distribution=None)#

Return a random integer.

INPUT:

• x, y integers – bounds for the result.

• distribution– a string:

• 'uniform'

• 'mpz_rrandomb'

• '1/n'

• 'gaussian'

OUTPUT:

• With no input, return a random integer.

If only one integer $$x$$ is given, return an integer between 0 and $$x-1$$.

If two integers are given, return an integer between $$x$$ and $$y-1$$ inclusive.

If at least one bound is given, the default distribution is the uniform distribution; otherwise, it is the distribution described below.

If the distribution '1/n' is specified, the bounds are ignored.

If the distribution 'mpz_rrandomb' is specified, the output is in the range from 0 to $$2^x - 1$$.

If the distribution 'gaussian' is specified, the output is sampled from a discrete Gaussian distribution with parameter $$\sigma=x$$ and centered at zero. That is, the integer $$v$$ is returned with probability proportional to $$\mathrm{exp}(-v^2/(2\sigma^2))$$. See sage.stats.distributions.discrete_gaussian_integer for details. Note that if many samples from the same discrete Gaussian distribution are needed, it is faster to construct a sage.stats.distributions.discrete_gaussian_integer.DiscreteGaussianDistributionIntegerSampler object which is then repeatedly queried.

The default distribution for ZZ.random_element() is based on $$X = \mbox{trunc}(4/(5R))$$, where $$R$$ is a random variable uniformly distributed between $$-1$$ and $$1$$. This gives $$\mbox{Pr}(X = 0) = 1/5$$, and $$\mbox{Pr}(X = n) = 2/(5|n|(|n|+1))$$ for $$n \neq 0$$. Most of the samples will be small; $$-1$$, $$0$$, and $$1$$ occur with probability $$1/5$$ each. But we also have a small but non-negligible proportion of “outliers”; $$\mbox{Pr}(|X| \geq n) = 4/(5n)$$, so for instance, we expect that $$|X| \geq 1000$$ on one in 1250 samples.

We actually use an easy-to-compute truncation of the above distribution; the probabilities given above hold fairly well up to about $$|n| = 10000$$, but around $$|n| = 30000$$ some values will never be returned at all, and we will never return anything greater than $$2^{30}$$.

EXAMPLES:

sage: ZZ.random_element().parent() is ZZ
True


The default uniform distribution is integers in $$[-2, 2]$$:

sage: from collections import defaultdict
....:     global dic, counter
....:     for _ in range(100):
....:         counter += 1
....:         dic[ZZ.random_element(*args, **kwds)] += 1

sage: def prob(x):
....:     return 1/5
sage: dic = defaultdict(Integer)
sage: counter = 0.0
sage: while any(abs(dic[i]/counter - prob(i)) > 0.01 for i in dic):


Here we use the distribution '1/n':

sage: def prob(n):
....:     if n == 0:
....:         return 1/5
....:     return 2/(5*abs(n)*(abs(n) + 1))
sage: dic = defaultdict(Integer)
sage: counter = 0.0
sage: while any(abs(dic[i]/counter - prob(i)) > 0.01 for i in dic):


If a range is given, the default distribution is uniform in that range:

sage: -10 <= ZZ.random_element(-10, 10) < 10
True
sage: def prob(x):
....:     return 1/20
sage: dic = defaultdict(Integer)
sage: counter = 0.0
sage: while any(abs(dic[i]/counter - prob(i)) > 0.01 for i in dic):

sage: 0 <= ZZ.random_element(5) < 5
True
sage: def prob(x):
....:     return 1/5
sage: dic = defaultdict(Integer)
sage: counter = 0.0
sage: while any(abs(dic[i]/counter - prob(i)) > 0.01 for i in dic):

sage: while ZZ.random_element(10^50) < 10^49:
....:     pass


Notice that the right endpoint is not included:

sage: all(ZZ.random_element(-2, 2) < 2 for _ in range(100))
True


We return a sample from a discrete Gaussian distribution:

sage: ZZ.random_element(11.0, distribution="gaussian").parent() is ZZ      # needs sage.modules
True

range(start, end=None, step=None)#

Optimized range function for Sage integers.

AUTHORS:

EXAMPLES:

sage: ZZ.range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: ZZ.range(-5, 5)
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
sage: ZZ.range(0, 50, 5)
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
sage: ZZ.range(0, 50, -5)
[]
sage: ZZ.range(50, 0, -5)
[50, 45, 40, 35, 30, 25, 20, 15, 10, 5]
sage: ZZ.range(50, 0, 5)
[]
sage: ZZ.range(50, -1, -5)
[50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 0]


It uses different code if the step doesn’t fit in a long:

sage: ZZ.range(0, 2^83, 2^80)
[0, 1208925819614629174706176, 2417851639229258349412352,
3626777458843887524118528, 4835703278458516698824704, 6044629098073145873530880,
7253554917687775048237056, 8462480737302404222943232]


Make sure github issue #8818 is fixed:

sage: ZZ.range(1r, 10r)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

residue_field(prime, check=True, names=None)#

Return the residue field of the integers modulo the given prime, i.e. $$\ZZ/p\ZZ$$.

INPUT:

• prime - a prime number

• check - (boolean, default True) whether or not to check the primality of prime

• names - ignored (for compatibility with number fields)

OUTPUT: The residue field at this prime.

EXAMPLES:

sage: # needs sage.libs.pari
sage: F = ZZ.residue_field(61); F
Residue field of Integers modulo 61
sage: pi = F.reduction_map(); pi
Partially defined reduction map:
From: Rational Field
To:   Residue field of Integers modulo 61
sage: pi(123/234)
6
sage: pi(1/61)
Traceback (most recent call last):
...
ZeroDivisionError: Cannot reduce rational 1/61 modulo 61:
it has negative valuation
sage: lift = F.lift_map(); lift
Lifting map:
From: Residue field of Integers modulo 61
To:   Integer Ring
sage: lift(F(12345/67890))
33
sage: (12345/67890) % 61
33


Construction can be from a prime ideal instead of a prime:

sage: ZZ.residue_field(ZZ.ideal(97))
Residue field of Integers modulo 97

valuation(p)#

Return the discrete valuation with uniformizer p.

EXAMPLES:

sage: v = ZZ.valuation(3); v                                                # needs sage.rings.padics
1

zeta(n=2)#

Return a primitive n-th root of unity in the integers, or raise an error if none exists.

INPUT:

• n – (default 2) a positive integer

OUTPUT:

an n-th root of unity in $$\ZZ$$

EXAMPLES:

sage: ZZ.zeta()
-1
sage: ZZ.zeta(1)
1
sage: ZZ.zeta(3)
Traceback (most recent call last):
...
ValueError: no nth root of unity in integer ring
sage: ZZ.zeta(0)
Traceback (most recent call last):
...
ValueError: n must be positive in zeta()

sage.rings.integer_ring.crt_basis(X, xgcd=None)#

Compute and return a Chinese Remainder Theorem basis for the list X of coprime integers.

INPUT:

• X – a list of Integers that are coprime in pairs.

• xgcd – an optional parameter which is ignored.

OUTPUT:

• E - a list of Integers such that E[i] = 1 (mod X[i]) and E[i] = 0 (mod X[j]) for all $$j \neq i$$.

For this explanation, let E[i] be denoted by $$E_i$$.

The $$E_i$$ have the property that if $$A$$ is a list of objects, e.g., integers, vectors, matrices, etc., where $$A_i$$ is understood modulo $$X_i$$, then a CRT lift of $$A$$ is simply

$\sum_i E_i A_i.$

ALGORITHM: To compute $$E_i$$, compute integers $$s$$ and $$t$$ such that

$s X_i + t \prod_{i \neq j} X_j = 1. (\*)$

Then

$E_i = t \prod_{i \neq j} X[j].$

Notice that equation (*) implies that $$E_i$$ is congruent to 1 modulo $$X_i$$ and to 0 modulo the other $$X_j$$ for $$j \neq i$$.

COMPLEXITY: We compute len(X) extended GCD’s.

EXAMPLES:

sage: X = [11,20,31,51]
sage: E = crt_basis([11,20,31,51])
sage: E%X, E%X, E%X, E%X
(1, 0, 0, 0)
sage: E%X, E%X, E%X, E%X
(0, 1, 0, 0)
sage: E%X, E%X, E%X, E%X
(0, 0, 1, 0)
sage: E%X, E%X, E%X, E%X
(0, 0, 0, 1)

sage.rings.integer_ring.is_IntegerRing(x)#

Internal function: return True iff x is the ring $$\ZZ$$ of integers.