Lineare Algebra

Sage stellt standardmäßige Konstruktionen der Linearen Algebra zur Verfügung. Zum Beispiel das charakteristische Polynom, die Zeilenstufenform, die Spur, die Zerlegung von Matrizen, usw..

Das Erzeugen von Matrizen und die Matrixmultiplikation sind einfach und natürlich:

sage: A = Matrix([[1,2,3],[3,2,1],[1,1,1]])
sage: w = vector([1,1,-4])
sage: w*A
(0, 0, 0)
sage: A*w
(-9, 1, -2)
sage: kernel(A)
Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:
[ 1  1 -4]
>>> from sage.all import *
>>> A = Matrix([[Integer(1),Integer(2),Integer(3)],[Integer(3),Integer(2),Integer(1)],[Integer(1),Integer(1),Integer(1)]])
>>> w = vector([Integer(1),Integer(1),-Integer(4)])
>>> w*A
(0, 0, 0)
>>> A*w
(-9, 1, -2)
>>> kernel(A)
Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:
[ 1  1 -4]

Beachten Sie, dass in Sage der Kern einer Matrix \(A\) der „linke Kern“, d.h. der Raum der Vektoren \(w\) mit \(wA=0\) ist.

Mit der Methode solve_right können Matrixgleichungen einfach gelöst werden. Das Auswerten von A.solve_right(Y) gibt eine Matrix (oder einen Vektor) \(X\) zurück, so dass \(AX=Y\) gilt:

sage: Y = vector([0, -4, -1])
sage: X = A.solve_right(Y)
sage: X
(-2, 1, 0)
sage: A * X   # wir überprüfen unsere Antwort...
(0, -4, -1)
>>> from sage.all import *
>>> Y = vector([Integer(0), -Integer(4), -Integer(1)])
>>> X = A.solve_right(Y)
>>> X
(-2, 1, 0)
>>> A * X   # wir überprüfen unsere Antwort...
(0, -4, -1)

Falls keine Lösung existiert, gibt Sage einen Fehler zurück:

sage: A.solve_right(w)
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions
>>> from sage.all import *
>>> A.solve_right(w)
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions

Auf ähnliche Weisen können Sie A.solve_left(Y) benutzen um nach \(X\) in \(XA=Y\) aufzulösen.

Sage kann auch Eigenwerte und Eigenvektoren berechnen:

sage: A = matrix([[0, 4], [-1, 0]])
sage: A.eigenvalues ()
[-2*I, 2*I]
sage: B = matrix([[1, 3], [3, 1]])
sage: B.eigenvectors_left()
[(4, [
(1, 1)
], 1), (-2, [
(1, -1)
], 1)]
>>> from sage.all import *
>>> A = matrix([[Integer(0), Integer(4)], [-Integer(1), Integer(0)]])
>>> A.eigenvalues ()
[-2*I, 2*I]
>>> B = matrix([[Integer(1), Integer(3)], [Integer(3), Integer(1)]])
>>> B.eigenvectors_left()
[(4, [
(1, 1)
], 1), (-2, [
(1, -1)
], 1)]

(Die Syntax der Ausgabe von eigenvectors_left ist eine Liste von Tripeln: (Eigenwert, Eigenvektor, Vielfachheit).) Eigenwerte und Eigenvektoren über QQ oder RR können auch unter Verwendung von Maxima berechnen werden (Lesen Sie Maxima unterhalb).

Wie in Wichtige Ringe bemerkt wurde, beeinflusst der Ring, über dem die Matrix definiert ist, einige ihrer Eigenschaften. Im Folgenden gibt erste Argument des matrix-Befehls Sage zu verstehen, dass die Matrix als Matrix über den ganzen Zahlen (ZZ), als Matrix über den rationalen Zahlen (QQ), oder als Matrix über den reellen Zahlen (RR), aufgefasst werden soll:

sage: AZ = matrix(ZZ, [[2,0], [0,1]])
sage: AQ = matrix(QQ, [[2,0], [0,1]])
sage: AR = matrix(RR, [[2,0], [0,1]])
sage: AZ.echelon_form()
[2 0]
[0 1]
sage: AQ.echelon_form()
[1 0]
[0 1]
sage: AR.echelon_form()
[ 1.00000000000000 0.000000000000000]
[0.000000000000000  1.00000000000000]
>>> from sage.all import *
>>> AZ = matrix(ZZ, [[Integer(2),Integer(0)], [Integer(0),Integer(1)]])
>>> AQ = matrix(QQ, [[Integer(2),Integer(0)], [Integer(0),Integer(1)]])
>>> AR = matrix(RR, [[Integer(2),Integer(0)], [Integer(0),Integer(1)]])
>>> AZ.echelon_form()
[2 0]
[0 1]
>>> AQ.echelon_form()
[1 0]
[0 1]
>>> AR.echelon_form()
[ 1.00000000000000 0.000000000000000]
[0.000000000000000  1.00000000000000]

Um Eigenwerte und Eigenvektoren mit reellen oder komplexen Gleitkommazahlen zu berechnen sollte die Matrix über RDF (Real Double Field = Körper der reellen Gleitkommazahlen mit doppelter Genauigkeit) oder CDF (Complex Double Field = Körper der komplexen Gleitkommazahlen mit doppelter Genauigkeit) definiert werden. Falls kein Koeffizientenring angegeben wird und die Matrixeinträge relle oder komplexe Gleitkommazahlen sind dann werden standardmässig die Körper RR oder CC verwendet, welche allerdings nicht alle der folgenden Berechnungen unterstützen:

sage: ARDF = matrix(RDF, [[1.2, 2], [2, 3]])
sage: ARDF.eigenvalues()  # rel tol 8e-16
[-0.09317121994613098, 4.293171219946131]
sage: ACDF = matrix(CDF, [[1.2, I], [2, 3]])
sage: ACDF.eigenvectors_right()  # rel tol 3e-15
[(0.8818456983293743 - 0.8209140653434135*I, [(0.7505608183809549, -0.616145932704589 + 0.2387941530333261*I)], 1),
(3.3181543016706256 + 0.8209140653434133*I, [(0.14559469829270957 + 0.3756690858502104*I, 0.9152458258662108)], 1)]
>>> from sage.all import *
>>> ARDF = matrix(RDF, [[RealNumber('1.2'), Integer(2)], [Integer(2), Integer(3)]])
>>> ARDF.eigenvalues()  # rel tol 8e-16
[-0.09317121994613098, 4.293171219946131]
>>> ACDF = matrix(CDF, [[RealNumber('1.2'), I], [Integer(2), Integer(3)]])
>>> ACDF.eigenvectors_right()  # rel tol 3e-15
[(0.8818456983293743 - 0.8209140653434135*I, [(0.7505608183809549, -0.616145932704589 + 0.2387941530333261*I)], 1),
(3.3181543016706256 + 0.8209140653434133*I, [(0.14559469829270957 + 0.3756690858502104*I, 0.9152458258662108)], 1)]

Matrizenräume

Wir erzeugen den Raum \(\text{Mat}_{3\times 3}(\QQ)\) der \(3 \times 3\) Matrizen mit rationalen Einträgen:

sage: M = MatrixSpace(QQ,3)
sage: M
Full MatrixSpace of 3 by 3 dense matrices over Rational Field
>>> from sage.all import *
>>> M = MatrixSpace(QQ,Integer(3))
>>> M
Full MatrixSpace of 3 by 3 dense matrices over Rational Field

(Um den Raum der 3 mal 4 Matrizen anzugeben würden Sie MatrixSpace(QQ,3,4) benutzen. Falls die Anzahl der Spalten nicht angegeben wurde, ist diese standardmäßig gleich der Anzahl der Zeilen, so dass MatrixSpace(QQ,3) ein Synonym für MatrixSpace(QQ,3,3) ist.) Der Matrizenraum ist mit seiner kanonischen Basis ausgestattet:

sage: B = M.basis()
sage: len(B)
9
sage: B[0,1]
[0 1 0]
[0 0 0]
[0 0 0]
>>> from sage.all import *
>>> B = M.basis()
>>> len(B)
9
>>> B[Integer(0),Integer(1)]
[0 1 0]
[0 0 0]
[0 0 0]

Wir erzeugen eine Matrix als ein Element von M.

sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
>>> from sage.all import *
>>> A = M(range(Integer(9))); A
[0 1 2]
[3 4 5]
[6 7 8]

Als nächstes berechnen wir die reduzierte Zeilenstufenform und den Kern.

sage: A.echelon_form()
[ 1  0 -1]
[ 0  1  2]
[ 0  0  0]
sage: A.kernel()
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2  1]
>>> from sage.all import *
>>> A.echelon_form()
[ 1  0 -1]
[ 0  1  2]
[ 0  0  0]
>>> A.kernel()
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2  1]

Nun zeigen wir, wie man Matrizen berechnen, die über endlichen Körpern definiert sind:

sage: M = MatrixSpace(GF(2),4,8)
sage: A = M([1,1,0,0, 1,1,1,1, 0,1,0,0, 1,0,1,1,
....:        0,0,1,0, 1,1,0,1, 0,0,1,1, 1,1,1,0])
sage: A
[1 1 0 0 1 1 1 1]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 1 1 1 1 1 0]
sage: rows = A.rows()
sage: A.columns()
[(1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1),
 (1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]
sage: rows
[(1, 1, 0, 0, 1, 1, 1, 1), (0, 1, 0, 0, 1, 0, 1, 1),
 (0, 0, 1, 0, 1, 1, 0, 1), (0, 0, 1, 1, 1, 1, 1, 0)]
>>> from sage.all import *
>>> M = MatrixSpace(GF(Integer(2)),Integer(4),Integer(8))
>>> A = M([Integer(1),Integer(1),Integer(0),Integer(0), Integer(1),Integer(1),Integer(1),Integer(1), Integer(0),Integer(1),Integer(0),Integer(0), Integer(1),Integer(0),Integer(1),Integer(1),
...        Integer(0),Integer(0),Integer(1),Integer(0), Integer(1),Integer(1),Integer(0),Integer(1), Integer(0),Integer(0),Integer(1),Integer(1), Integer(1),Integer(1),Integer(1),Integer(0)])
>>> A
[1 1 0 0 1 1 1 1]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 1 1 1 1 1 0]
>>> rows = A.rows()
>>> A.columns()
[(1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1),
 (1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]
>>> rows
[(1, 1, 0, 0, 1, 1, 1, 1), (0, 1, 0, 0, 1, 0, 1, 1),
 (0, 0, 1, 0, 1, 1, 0, 1), (0, 0, 1, 1, 1, 1, 1, 0)]

Wir erstellen den Unterraum von \(\GF{2}^8\), der von den obigen Zeilen aufgespannt wird.

sage: V = VectorSpace(GF(2),8)
sage: S = V.subspace(rows)
sage: S
Vector space of degree 8 and dimension 4 over Finite Field of size 2
Basis matrix:
[1 0 0 0 0 1 0 0]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 0 1 0 0 1 1]
sage: A.echelon_form()
[1 0 0 0 0 1 0 0]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 0 1 0 0 1 1]
>>> from sage.all import *
>>> V = VectorSpace(GF(Integer(2)),Integer(8))
>>> S = V.subspace(rows)
>>> S
Vector space of degree 8 and dimension 4 over Finite Field of size 2
Basis matrix:
[1 0 0 0 0 1 0 0]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 0 1 0 0 1 1]
>>> A.echelon_form()
[1 0 0 0 0 1 0 0]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 0 1 0 0 1 1]

Die Basis von \(S\), die von Sage benutzt wird, wird aus den von Null verschiedenen Zeilen der reduzierten Zeilenstufenform der Matrix der Generatoren von \(S\) erhalten.

Lineare Algebra mit dünnbesetzten Matrizen

Sage unterstützt Lineare Algebra mit dünnbesetzten Matrizen über Hauptidealringen.

sage: M = MatrixSpace(QQ, 100, sparse=True)
sage: A = M.random_element(density = 0.05)
sage: E = A.echelon_form()
>>> from sage.all import *
>>> M = MatrixSpace(QQ, Integer(100), sparse=True)
>>> A = M.random_element(density = RealNumber('0.05'))
>>> E = A.echelon_form()

Der multi-modulare Algorithmus kann bei quadratischen Matrizen gut angewendet werden (bei nicht quadratischen Matrizen ist er nicht so gut):

sage: M = MatrixSpace(QQ, 50, 100, sparse=True)
sage: A = M.random_element(density = 0.05)
sage: E = A.echelon_form()
sage: M = MatrixSpace(GF(2), 20, 40, sparse=True)
sage: A = M.random_element()
sage: E = A.echelon_form()
>>> from sage.all import *
>>> M = MatrixSpace(QQ, Integer(50), Integer(100), sparse=True)
>>> A = M.random_element(density = RealNumber('0.05'))
>>> E = A.echelon_form()
>>> M = MatrixSpace(GF(Integer(2)), Integer(20), Integer(40), sparse=True)
>>> A = M.random_element()
>>> E = A.echelon_form()

Beachten Sie, dass Python zwischen Klein- und Großschreibung unterscheidet:

sage: M = MatrixSpace(QQ, 10,10, Sparse=True)
Traceback (most recent call last):
...
TypeError: ...__init__() got an unexpected keyword argument 'Sparse'
>>> from sage.all import *
>>> M = MatrixSpace(QQ, Integer(10),Integer(10), Sparse=True)
Traceback (most recent call last):
...
TypeError: ...__init__() got an unexpected keyword argument 'Sparse'