FLINT Arithmetic Functions¶
- sage.libs.flint.arith_sage.bell_number(n)[source]¶
Return the \(n\)-th Bell number.
See Wikipedia article Bell_number.
ALGORITHM:
Uses
arith_bell_number()
.EXAMPLES:
sage: from sage.libs.flint.arith_sage import bell_number sage: [bell_number(i) for i in range(10)] [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147] sage: bell_number(10) 115975 sage: bell_number(40) 157450588391204931289324344702531067 sage: bell_number(100) 47585391276764833658790768841387207826363669686825611466616334637559114497892442622672724044217756306953557882560751
>>> from sage.all import * >>> from sage.libs.flint.arith_sage import bell_number >>> [bell_number(i) for i in range(Integer(10))] [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147] >>> bell_number(Integer(10)) 115975 >>> bell_number(Integer(40)) 157450588391204931289324344702531067 >>> bell_number(Integer(100)) 47585391276764833658790768841387207826363669686825611466616334637559114497892442622672724044217756306953557882560751
- sage.libs.flint.arith_sage.bernoulli_number(n)[source]¶
Return the \(n\)-th Bernoulli number.
See Wikipedia article Bernoulli_number.
EXAMPLES:
sage: from sage.libs.flint.arith_sage import bernoulli_number sage: [bernoulli_number(i) for i in range(10)] [1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0] sage: bernoulli_number(10) 5/66 sage: bernoulli_number(40) -261082718496449122051/13530 sage: bernoulli_number(100) -94598037819122125295227433069493721872702841533066936133385696204311395415197247711/33330
>>> from sage.all import * >>> from sage.libs.flint.arith_sage import bernoulli_number >>> [bernoulli_number(i) for i in range(Integer(10))] [1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0] >>> bernoulli_number(Integer(10)) 5/66 >>> bernoulli_number(Integer(40)) -261082718496449122051/13530 >>> bernoulli_number(Integer(100)) -94598037819122125295227433069493721872702841533066936133385696204311395415197247711/33330
- sage.libs.flint.arith_sage.dedekind_sum(p, q)[source]¶
Return the Dedekind sum \(s(p, q)\) where \(p\) and \(q\) are arbitrary integers.
See Wikipedia article Dedekind_sum.
EXAMPLES:
sage: from sage.libs.flint.arith_sage import dedekind_sum sage: dedekind_sum(4, 5) -1/5
>>> from sage.all import * >>> from sage.libs.flint.arith_sage import dedekind_sum >>> dedekind_sum(Integer(4), Integer(5)) -1/5
- sage.libs.flint.arith_sage.euler_number(n)[source]¶
Return the Euler number of index \(n\).
See Wikipedia article Euler_number.
EXAMPLES:
sage: from sage.libs.flint.arith_sage import euler_number sage: [euler_number(i) for i in range(8)] [1, 0, -1, 0, 5, 0, -61, 0]
>>> from sage.all import * >>> from sage.libs.flint.arith_sage import euler_number >>> [euler_number(i) for i in range(Integer(8))] [1, 0, -1, 0, 5, 0, -61, 0]
- sage.libs.flint.arith_sage.harmonic_number(n)[source]¶
Return the harmonic number \(H_n\).
See Wikipedia article Harmonic_number.
EXAMPLES:
sage: from sage.libs.flint.arith_sage import harmonic_number sage: n = 500 + randint(0,500) sage: bool( sum(1/k for k in range(1,n+1)) == harmonic_number(n) ) True
>>> from sage.all import * >>> from sage.libs.flint.arith_sage import harmonic_number >>> n = Integer(500) + randint(Integer(0),Integer(500)) >>> bool( sum(Integer(1)/k for k in range(Integer(1),n+Integer(1))) == harmonic_number(n) ) True
- sage.libs.flint.arith_sage.number_of_partitions(n)[source]¶
Return the number of partitions of the integer \(n\).
See Wikipedia article Partition_(number_theory).
EXAMPLES:
sage: from sage.libs.flint.arith_sage import number_of_partitions sage: number_of_partitions(3) 3 sage: number_of_partitions(10) 42 sage: number_of_partitions(40) 37338 sage: number_of_partitions(100) 190569292 sage: number_of_partitions(100000) 27493510569775696512677516320986352688173429315980054758203125984302147328114964173055050741660736621590157844774296248940493063070200461792764493033510116079342457190155718943509725312466108452006369558934464248716828789832182345009262853831404597021307130674510624419227311238999702284408609370935531629697851569569892196108480158600569421098519
>>> from sage.all import * >>> from sage.libs.flint.arith_sage import number_of_partitions >>> number_of_partitions(Integer(3)) 3 >>> number_of_partitions(Integer(10)) 42 >>> number_of_partitions(Integer(40)) 37338 >>> number_of_partitions(Integer(100)) 190569292 >>> number_of_partitions(Integer(100000)) 27493510569775696512677516320986352688173429315980054758203125984302147328114964173055050741660736621590157844774296248940493063070200461792764493033510116079342457190155718943509725312466108452006369558934464248716828789832182345009262853831404597021307130674510624419227311238999702284408609370935531629697851569569892196108480158600569421098519
- sage.libs.flint.arith_sage.stirling_number_1(n, k)[source]¶
Return the unsigned Stirling number of the first kind.
EXAMPLES:
sage: from sage.libs.flint.arith_sage import stirling_number_1 sage: [stirling_number_1(8,i) for i in range(9)] [0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1]
>>> from sage.all import * >>> from sage.libs.flint.arith_sage import stirling_number_1 >>> [stirling_number_1(Integer(8),i) for i in range(Integer(9))] [0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1]
- sage.libs.flint.arith_sage.stirling_number_2(n, k)[source]¶
Return the Stirling number of the second kind.
EXAMPLES:
sage: from sage.libs.flint.arith_sage import stirling_number_2 sage: [stirling_number_2(8,i) for i in range(9)] [0, 1, 127, 966, 1701, 1050, 266, 28, 1]
>>> from sage.all import * >>> from sage.libs.flint.arith_sage import stirling_number_2 >>> [stirling_number_2(Integer(8),i) for i in range(Integer(9))] [0, 1, 127, 966, 1701, 1050, 266, 28, 1]