Ring of pari objects#
AUTHORS:
William Stein (2004): Initial version.
Simon King (2011-08-24): Use UniqueRepresentation, element_class and proper initialisation of elements.
- class sage.rings.pari_ring.Pari(x, parent=None)[source]#
Bases:
RingElement
Element of Pari pseudo-ring.
- class sage.rings.pari_ring.PariRing[source]#
-
EXAMPLES:
sage: R = PariRing(); R Pseudoring of all PARI objects. sage: loads(R.dumps()) is R True
>>> from sage.all import * >>> R = PariRing(); R Pseudoring of all PARI objects. >>> loads(R.dumps()) is R True
- random_element(x=None, y=None, distribution=None)[source]#
Return a random integer in Pari.
Note
The given arguments are passed to
ZZ.random_element(...)
.INPUT:
\(x\), \(y\) – optional integers, that are lower and upper bound for the result. If only \(x\) is provided, then the result is between 0 and \(x-1\), inclusive. If both are provided, then the result is between \(x\) and \(y-1\), inclusive.
\(distribution\) – optional string, so that
ZZ
can make sense of it as a probability distribution.
EXAMPLES:
sage: R = PariRing() sage: R.random_element().parent() is R True sage: R(5) <= R.random_element(5,13) < R(13) True sage: R.random_element(distribution="1/n").parent() is R True
>>> from sage.all import * >>> R = PariRing() >>> R.random_element().parent() is R True >>> R(Integer(5)) <= R.random_element(Integer(5),Integer(13)) < R(Integer(13)) True >>> R.random_element(distribution="1/n").parent() is R True