# Ring of pari objects¶

AUTHORS:

• William Stein (2004): Initial version.
• Simon King (2011-08-24): Use UniqueRepresentation, element_class and proper initialisation of elements.
class sage.rings.pari_ring.Pari(x, parent=None)

Element of Pari pseudo-ring.

class sage.rings.pari_ring.PariRing

EXAMPLES:

sage: R = PariRing(); R
Pseudoring of all PARI objects.
True

Element

alias of Pari

characteristic()
is_field(proof=True)
random_element(x=None, y=None, distribution=None)

Return a random integer in Pari.

Note

The given arguments are passed to ZZ.random_element(...).

INPUT:

• $$x$$, $$y$$ – optional integers, that are lower and upper bound for the result. If only $$x$$ is provided, then the result is between 0 and $$x-1$$, inclusive. If both are provided, then the result is between $$x$$ and $$y-1$$, inclusive.
• $$distribution$$ – optional string, so that ZZ can make sense of it as a probability distribution.

EXAMPLES:

sage: R = PariRing()
sage: R.random_element()
-8
sage: R.random_element(5,13)
12
sage: [R.random_element(distribution="1/n") for _ in range(10)]
[0, 1, -1, 2, 1, -95, -1, -2, -12, 0]

zeta()

Return -1.

EXAMPLES:

sage: R = PariRing()
sage: R.zeta()
-1