FLINT fmpz_poly class wrapper#

AUTHORS:

  • Robert Bradshaw (2007-09-15) Initial version.

  • William Stein (2007-10-02) update for new flint; add arithmetic and creation of coefficients of arbitrary size.

class sage.libs.flint.fmpz_poly_sage.Fmpz_poly[source]#

Bases: SageObject

Construct a new fmpz_poly from a sequence, constant coefficient, or string (in the same format as it prints).

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: Fmpz_poly([1,2,3])
3  1 2 3
sage: Fmpz_poly(5)
1  5
sage: Fmpz_poly(str(Fmpz_poly([3,5,7])))
3  3 5 7
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> Fmpz_poly([Integer(1),Integer(2),Integer(3)])
3  1 2 3
>>> Fmpz_poly(Integer(5))
1  5
>>> Fmpz_poly(str(Fmpz_poly([Integer(3),Integer(5),Integer(7)])))
3  3 5 7
degree()[source]#

The degree of self.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,2,3]); f
3  1 2 3
sage: f.degree()
2
sage: Fmpz_poly(range(1000)).degree()
999
sage: Fmpz_poly([2,0]).degree()
0
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1),Integer(2),Integer(3)]); f
3  1 2 3
>>> f.degree()
2
>>> Fmpz_poly(range(Integer(1000))).degree()
999
>>> Fmpz_poly([Integer(2),Integer(0)]).degree()
0
derivative()[source]#

Return the derivative of self.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,2,6])
sage: f.derivative().list() == [2, 12]
True
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1),Integer(2),Integer(6)])
>>> f.derivative().list() == [Integer(2), Integer(12)]
True
div_rem(other)[source]#

Return self / other, self, % other.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,3,4,5])
sage: g = f^23
sage: g.div_rem(f)[1]
0
sage: g.div_rem(f)[0] - f^22
0
sage: f = Fmpz_poly([1..10])
sage: g = Fmpz_poly([1,3,5])
sage: q, r = f.div_rem(g)
sage: q*f+r
17  1 2 3 4 4 4 10 11 17 18 22 26 30 23 26 18 20
sage: g
3  1 3 5
sage: q*g+r
10  1 2 3 4 5 6 7 8 9 10
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1),Integer(3),Integer(4),Integer(5)])
>>> g = f**Integer(23)
>>> g.div_rem(f)[Integer(1)]
0
>>> g.div_rem(f)[Integer(0)] - f**Integer(22)
0
>>> f = Fmpz_poly((ellipsis_range(Integer(1),Ellipsis,Integer(10))))
>>> g = Fmpz_poly([Integer(1),Integer(3),Integer(5)])
>>> q, r = f.div_rem(g)
>>> q*f+r
17  1 2 3 4 4 4 10 11 17 18 22 26 30 23 26 18 20
>>> g
3  1 3 5
>>> q*g+r
10  1 2 3 4 5 6 7 8 9 10
left_shift(n)[source]#

Left shift self by n.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,2])
sage: f.left_shift(1).list() == [0,1,2]
True
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1),Integer(2)])
>>> f.left_shift(Integer(1)).list() == [Integer(0),Integer(1),Integer(2)]
True
list()[source]#

Return self as a list of coefficients, lowest terms first.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([2,1,0,-1])
sage: f.list()
[2, 1, 0, -1]
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(2),Integer(1),Integer(0),-Integer(1)])
>>> f.list()
[2, 1, 0, -1]
pow_truncate(exp, n)[source]#

Return self raised to the power of exp mod x^n.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,2])
sage: f.pow_truncate(10,3)
3  1 20 180
sage: f.pow_truncate(1000,3)
3  1 2000 1998000
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1),Integer(2)])
>>> f.pow_truncate(Integer(10),Integer(3))
3  1 20 180
>>> f.pow_truncate(Integer(1000),Integer(3))
3  1 2000 1998000
pseudo_div(other)[source]#
pseudo_div_rem(other)[source]#
right_shift(n)[source]#

Right shift self by n.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,2])
sage: f.right_shift(1).list() == [2]
True
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1),Integer(2)])
>>> f.right_shift(Integer(1)).list() == [Integer(2)]
True
truncate(n)[source]#

Return the truncation of self at degree n.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,1])
sage: g = f**10; g
11  1 10 45 120 210 252 210 120 45 10 1
sage: g.truncate(5)
5  1 10 45 120 210
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1),Integer(1)])
>>> g = f**Integer(10); g
11  1 10 45 120 210 252 210 120 45 10 1
>>> g.truncate(Integer(5))
5  1 10 45 120 210