libSingular: Options#
Singular uses a set of global options to determine verbosity and the behavior of certain algorithms. We provide an interface to these options in the most ‘natural’ python-ic way. Users who do not wish to deal with Singular functions directly usually do not have to worry about this interface or Singular options in general since this is taken care of by higher level functions.
We compute a Groebner basis for Cyclic-5 in two different contexts:
sage: P.<a,b,c,d,e> = PolynomialRing(GF(127))
sage: I = sage.rings.ideal.Cyclic(P)
sage: import sage.libs.singular.function_factory
sage: std = sage.libs.singular.function_factory.ff.std
>>> from sage.all import *
>>> P = PolynomialRing(GF(Integer(127)), names=('a', 'b', 'c', 'd', 'e',)); (a, b, c, d, e,) = P._first_ngens(5)
>>> I = sage.rings.ideal.Cyclic(P)
>>> import sage.libs.singular.function_factory
>>> std = sage.libs.singular.function_factory.ff.std
By default, tail reductions are performed:
sage: from sage.libs.singular.option import opt, opt_ctx
sage: opt['red_tail']
True
sage: std(I)[-1]
d^2*e^6 + 28*b*c*d + ...
>>> from sage.all import *
>>> from sage.libs.singular.option import opt, opt_ctx
>>> opt['red_tail']
True
>>> std(I)[-Integer(1)]
d^2*e^6 + 28*b*c*d + ...
If we don’t want this, we can create an option context, which disables this:
sage: with opt_ctx(red_tail=False, red_sb=False):
....: std(I)[-1]
d^2*e^6 + 8*c^3 + ...
>>> from sage.all import *
>>> with opt_ctx(red_tail=False, red_sb=False):
... std(I)[-Integer(1)]
d^2*e^6 + 8*c^3 + ...
However, this does not affect the global state:
sage: opt['red_tail']
True
>>> from sage.all import *
>>> opt['red_tail']
True
On the other hand, any assignment to an option object will immediately change the global state:
sage: opt['red_tail'] = False
sage: opt['red_tail']
False
sage: opt['red_tail'] = True
sage: opt['red_tail']
True
>>> from sage.all import *
>>> opt['red_tail'] = False
>>> opt['red_tail']
False
>>> opt['red_tail'] = True
>>> opt['red_tail']
True
Assigning values within an option context, only affects this context:
sage: with opt_ctx:
....: opt['red_tail'] = False
sage: opt['red_tail']
True
>>> from sage.all import *
>>> with opt_ctx:
... opt['red_tail'] = False
>>> opt['red_tail']
True
Option contexts can also be safely stacked:
sage: with opt_ctx:
....: opt['red_tail'] = False
....: print(opt)
....: with opt_ctx:
....: opt['red_through'] = False
....: print(opt)
general options for libSingular (current value 0x00000082)
general options for libSingular (current value 0x00000002)
sage: print(opt)
general options for libSingular (current value 0x02000082)
>>> from sage.all import *
>>> with opt_ctx:
... opt['red_tail'] = False
... print(opt)
... with opt_ctx:
... opt['red_through'] = False
... print(opt)
general options for libSingular (current value 0x00000082)
general options for libSingular (current value 0x00000002)
>>> print(opt)
general options for libSingular (current value 0x02000082)
Furthermore, the integer valued options deg_bound
and
mult_bound
can be used:
sage: R.<x,y> = QQ[]
sage: I = R*[x^3+y^2,x^2*y+1]
sage: opt['deg_bound'] = 2
sage: std(I)
[x^2*y + 1, x^3 + y^2]
sage: opt['deg_bound'] = 0
sage: std(I)
[y^3 - x, x^2*y + 1, x^3 + y^2]
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> I = R*[x**Integer(3)+y**Integer(2),x**Integer(2)*y+Integer(1)]
>>> opt['deg_bound'] = Integer(2)
>>> std(I)
[x^2*y + 1, x^3 + y^2]
>>> opt['deg_bound'] = Integer(0)
>>> std(I)
[y^3 - x, x^2*y + 1, x^3 + y^2]
The same interface is available for verbosity options:
sage: from sage.libs.singular.option import opt_verb
sage: opt_verb['not_warn_sb']
False
sage: opt.reset_default() # needed to avoid side effects
sage: opt_verb.reset_default() # needed to avoid side effects
>>> from sage.all import *
>>> from sage.libs.singular.option import opt_verb
>>> opt_verb['not_warn_sb']
False
>>> opt.reset_default() # needed to avoid side effects
>>> opt_verb.reset_default() # needed to avoid side effects
AUTHOR:
Martin Albrecht (2009-08): initial implementation
Martin Albrecht (2010-01): better interface, verbosity options
Simon King (2010-07): Python-ic option names; deg_bound and mult_bound
- class sage.libs.singular.option.LibSingularOptions[source]#
Bases:
LibSingularOptions_abstract
Pythonic Interface to libSingular’s options.
Supported options are:
return_sb
orreturnSB
– the functionssyz
,intersect
,quotient
,modulo
return a standard base instead of a generating set ifreturn_sb
is set. This option should not be used forlift
.fast_hc
orfastHC
– tries to find the highest corner of the staircase (HC) as fast as possible during a standard basis computation (only used for local orderings).int_strategy
orintStrategy
– avoids division of coefficients during standard basis computations. This option is ring dependent. By default, it is set for rings with characteristic 0 and not set for all other rings.lazy
– uses a more lazy approach in std computations, which was used in SINGULAR version before 2-0 (and which may lead to faster or slower computations, depending on the example).length
– select shorter reducers in std computations.not_regularity
ornotRegularity
– disables the regularity bound forres
andmres
.not_sugar
ornotSugar
– disables the sugar strategy during standard basis computation.not_buckets
ornotBuckets
– disables the bucket representation of polynomials during standard basis computations. This option usually decreases the memory usage but increases the computation time. It should only be set for memory-critical standard basis computations.old_std
oroldStd
– uses a more lazy approach in std computations, which was used in SINGULAR version before 2-0 (and which may lead to faster or slower computations, depending on the example).prot
– shows protocol information indicating the progress during the following computations:facstd
,fglm
,groebner
,lres
,mres
,minres
,mstd
,res
,slimgb
,sres
,std
,stdfglm
,stdhilb
,syz
.red_sb
orredSB
– computes a reduced standard basis in any standard basis computation.red_tail
orredTail
– reduction of the tails of polynomials during standard basis computations. This option is ring dependent. By default, it is set for rings with global degree orderings and not set for all other rings.red_through
orredThrough
– for inhomogeneous input, polynomial reductions during standard basis computations are never postponed, but always finished through. This option is ring dependent. By default, it is set for rings with global degree orderings and not set for all other rings.sugar_crit
orsugarCrit
– uses criteria similar to the homogeneous case to keep more useless pairs.weight_m
orweightM
– automatically computes suitable weights for the weighted ecart and the weighted sugar method.
In addition, two integer valued parameters are supported, namely:
deg_bound
ordegBound
– The standard basis computation is stopped if the total (weighted) degree exceedsdeg_bound
.deg_bound
should not be used for a global ordering with inhomogeneous input. Reset this bound by settingdeg_bound
to 0. The exact meaning of “degree” depends on the ring ordering and the command:slimgb
uses always the total degree with weights 1,std
does so for block orderings, only.mult_bound
ormultBound
– The standard basis computation is stopped if the ideal is zero-dimensional in a ring with local ordering and its multiplicity is lower thanmult_bound
. Reset this bound by settingmult_bound
to 0.
EXAMPLES:
sage: from sage.libs.singular.option import LibSingularOptions sage: libsingular_options = LibSingularOptions() sage: libsingular_options general options for libSingular (current value 0x06000082)
>>> from sage.all import * >>> from sage.libs.singular.option import LibSingularOptions >>> libsingular_options = LibSingularOptions() >>> libsingular_options general options for libSingular (current value 0x06000082)
Here we demonstrate the intended way of using libSingular options:
sage: R.<x,y> = QQ[] sage: I = R*[x^3+y^2,x^2*y+1] sage: I.groebner_basis(deg_bound=2) [x^3 + y^2, x^2*y + 1] sage: I.groebner_basis() [x^3 + y^2, x^2*y + 1, y^3 - x]
>>> from sage.all import * >>> R = QQ['x, y']; (x, y,) = R._first_ngens(2) >>> I = R*[x**Integer(3)+y**Integer(2),x**Integer(2)*y+Integer(1)] >>> I.groebner_basis(deg_bound=Integer(2)) [x^3 + y^2, x^2*y + 1] >>> I.groebner_basis() [x^3 + y^2, x^2*y + 1, y^3 - x]
The option
mult_bound
is only relevant in the local case:sage: from sage.libs.singular.option import opt sage: Rlocal.<x,y,z> = PolynomialRing(QQ, order='ds') sage: x^2<x True sage: J = [x^7+y^7+z^6,x^6+y^8+z^7,x^7+y^5+z^8, x^2*y^3+y^2*z^3+x^3*z^2,x^3*y^2+y^3*z^2+x^2*z^3]*Rlocal sage: J.groebner_basis(mult_bound=100) [x^3*y^2 + y^3*z^2 + x^2*z^3, x^2*y^3 + x^3*z^2 + y^2*z^3, y^5, x^6 + x*y^4*z^5, x^4*z^2 - y^4*z^2 - x^2*y*z^3 + x*y^2*z^3, z^6 - x*y^4*z^4 - x^3*y*z^5] sage: opt['red_tail'] = True # the previous commands reset opt['red_tail'] to False sage: J.groebner_basis() [x^3*y^2 + y^3*z^2 + x^2*z^3, x^2*y^3 + x^3*z^2 + y^2*z^3, y^5, x^6, x^4*z^2 - y^4*z^2 - x^2*y*z^3 + x*y^2*z^3, z^6, y^4*z^3 - y^3*z^4 - x^2*z^5, x^3*y*z^4 - x^2*y^2*z^4 + x*y^3*z^4, x^3*z^5, x^2*y*z^5 + y^3*z^5, x*y^3*z^5]
>>> from sage.all import * >>> from sage.libs.singular.option import opt >>> Rlocal = PolynomialRing(QQ, order='ds', names=('x', 'y', 'z',)); (x, y, z,) = Rlocal._first_ngens(3) >>> x**Integer(2)<x True >>> J = [x**Integer(7)+y**Integer(7)+z**Integer(6),x**Integer(6)+y**Integer(8)+z**Integer(7),x**Integer(7)+y**Integer(5)+z**Integer(8), x**Integer(2)*y**Integer(3)+y**Integer(2)*z**Integer(3)+x**Integer(3)*z**Integer(2),x**Integer(3)*y**Integer(2)+y**Integer(3)*z**Integer(2)+x**Integer(2)*z**Integer(3)]*Rlocal >>> J.groebner_basis(mult_bound=Integer(100)) [x^3*y^2 + y^3*z^2 + x^2*z^3, x^2*y^3 + x^3*z^2 + y^2*z^3, y^5, x^6 + x*y^4*z^5, x^4*z^2 - y^4*z^2 - x^2*y*z^3 + x*y^2*z^3, z^6 - x*y^4*z^4 - x^3*y*z^5] >>> opt['red_tail'] = True # the previous commands reset opt['red_tail'] to False >>> J.groebner_basis() [x^3*y^2 + y^3*z^2 + x^2*z^3, x^2*y^3 + x^3*z^2 + y^2*z^3, y^5, x^6, x^4*z^2 - y^4*z^2 - x^2*y*z^3 + x*y^2*z^3, z^6, y^4*z^3 - y^3*z^4 - x^2*z^5, x^3*y*z^4 - x^2*y^2*z^4 + x*y^3*z^4, x^3*z^5, x^2*y*z^5 + y^3*z^5, x*y^3*z^5]
- reset_default()[source]#
Reset libSingular’s default options.
EXAMPLES:
sage: from sage.libs.singular.option import opt sage: opt['red_tail'] True sage: opt['red_tail'] = False sage: opt['red_tail'] False sage: opt['deg_bound'] 0 sage: opt['deg_bound'] = 2 sage: opt['deg_bound'] 2 sage: opt.reset_default() sage: opt['red_tail'] True sage: opt['deg_bound'] 0
>>> from sage.all import * >>> from sage.libs.singular.option import opt >>> opt['red_tail'] True >>> opt['red_tail'] = False >>> opt['red_tail'] False >>> opt['deg_bound'] 0 >>> opt['deg_bound'] = Integer(2) >>> opt['deg_bound'] 2 >>> opt.reset_default() >>> opt['red_tail'] True >>> opt['deg_bound'] 0
- class sage.libs.singular.option.LibSingularOptionsContext[source]#
Bases:
object
Option context
This object localizes changes to options.
EXAMPLES:
sage: from sage.libs.singular.option import opt, opt_ctx sage: opt general options for libSingular (current value 0x06000082)
>>> from sage.all import * >>> from sage.libs.singular.option import opt, opt_ctx >>> opt general options for libSingular (current value 0x06000082)
sage: with opt_ctx(redTail=False): ....: print(opt) ....: with opt_ctx(redThrough=False): ....: print(opt) general options for libSingular (current value 0x04000082) general options for libSingular (current value 0x04000002) sage: print(opt) general options for libSingular (current value 0x06000082)
>>> from sage.all import * >>> with opt_ctx(redTail=False): ... print(opt) ... with opt_ctx(redThrough=False): ... print(opt) general options for libSingular (current value 0x04000082) general options for libSingular (current value 0x04000002) >>> print(opt) general options for libSingular (current value 0x06000082)
- class sage.libs.singular.option.LibSingularOptions_abstract[source]#
Bases:
object
Abstract Base Class for libSingular options.
- load(value=None)[source]#
EXAMPLES:
sage: from sage.libs.singular.option import opt as sopt sage: bck = sopt.save(); hex(bck[0]), bck[1], bck[2] ('0x6000082', 0, 0) sage: sopt['redTail'] = False sage: hex(int(sopt)) '0x4000082' sage: sopt.load(bck) sage: sopt['redTail'] True
>>> from sage.all import * >>> from sage.libs.singular.option import opt as sopt >>> bck = sopt.save(); hex(bck[Integer(0)]), bck[Integer(1)], bck[Integer(2)] ('0x6000082', 0, 0) >>> sopt['redTail'] = False >>> hex(int(sopt)) '0x4000082' >>> sopt.load(bck) >>> sopt['redTail'] True
- save()[source]#
Return a triple of integers that allow reconstruction of the options.
EXAMPLES:
sage: from sage.libs.singular.option import opt sage: opt['deg_bound'] 0 sage: opt['red_tail'] True sage: s = opt.save() sage: opt['deg_bound'] = 2 sage: opt['red_tail'] = False sage: opt['deg_bound'] 2 sage: opt['red_tail'] False sage: opt.load(s) sage: opt['deg_bound'] 0 sage: opt['red_tail'] True sage: opt.reset_default() # needed to avoid side effects
>>> from sage.all import * >>> from sage.libs.singular.option import opt >>> opt['deg_bound'] 0 >>> opt['red_tail'] True >>> s = opt.save() >>> opt['deg_bound'] = Integer(2) >>> opt['red_tail'] = False >>> opt['deg_bound'] 2 >>> opt['red_tail'] False >>> opt.load(s) >>> opt['deg_bound'] 0 >>> opt['red_tail'] True >>> opt.reset_default() # needed to avoid side effects
- class sage.libs.singular.option.LibSingularVerboseOptions[source]#
Bases:
LibSingularOptions_abstract
Pythonic Interface to libSingular’s verbosity options.
Supported options are:
mem
– shows memory usage in square brackets.yacc
– Only available in debug version.redefine
– warns about variable redefinitions.reading
– shows the number of characters read from a file.loadLib
orload_lib
– shows loading of libraries.debugLib
ordebug_lib
– warns about syntax errors when loading a library.loadProc
orload_proc
– shows loading of procedures from libraries.defRes
ordef_res
– shows the names of the syzygy modules while convertingresolution
tolist
.usage
– shows correct usage in error messages.Imap
orimap
– shows the mapping of variables with thefetch
andimap
commands.notWarnSB
ornot_warn_sb
– do not warn if a basis is not a standard basiscontentSB
orcontent_sb
– avoids to divide by the content of a polynomial instd
and related algorithms. Should usually not be used.cancelunit
– avoids to divide polynomials by non-constant units instd
in the local case. Should usually not be used.
EXAMPLES:
sage: from sage.libs.singular.option import LibSingularVerboseOptions sage: libsingular_verbose = LibSingularVerboseOptions() sage: libsingular_verbose verbosity options for libSingular (current value 0x00002851)
>>> from sage.all import * >>> from sage.libs.singular.option import LibSingularVerboseOptions >>> libsingular_verbose = LibSingularVerboseOptions() >>> libsingular_verbose verbosity options for libSingular (current value 0x00002851)
- reset_default()[source]#
Return to libSingular’s default verbosity options
EXAMPLES:
sage: from sage.libs.singular.option import opt_verb sage: opt_verb['not_warn_sb'] False sage: opt_verb['not_warn_sb'] = True sage: opt_verb['not_warn_sb'] True sage: opt_verb.reset_default() sage: opt_verb['not_warn_sb'] False
>>> from sage.all import * >>> from sage.libs.singular.option import opt_verb >>> opt_verb['not_warn_sb'] False >>> opt_verb['not_warn_sb'] = True >>> opt_verb['not_warn_sb'] True >>> opt_verb.reset_default() >>> opt_verb['not_warn_sb'] False