Monomials#
- sage.rings.monomials.monomials(v, n)[source]#
Given two lists
v
andn
, of exactly the same length, return all monomials in the elements ofv
, where variablei
(i.e.,v[i]
) in the monomial appears to degree strictly less thann[i]
.INPUT:
v
– list of ring elementsn
– list of integers
EXAMPLES:
sage: monomials([x], [3]) # needs sage.symbolic [1, x, x^2] sage: R.<x,y,z> = QQ[] sage: monomials([x,y], [5,5]) [1, y, y^2, y^3, y^4, x, x*y, x*y^2, x*y^3, x*y^4, x^2, x^2*y, x^2*y^2, x^2*y^3, x^2*y^4, x^3, x^3*y, x^3*y^2, x^3*y^3, x^3*y^4, x^4, x^4*y, x^4*y^2, x^4*y^3, x^4*y^4] sage: monomials([x,y,z], [2,3,2]) [1, z, y, y*z, y^2, y^2*z, x, x*z, x*y, x*y*z, x*y^2, x*y^2*z]
>>> from sage.all import * >>> monomials([x], [Integer(3)]) # needs sage.symbolic [1, x, x^2] >>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3) >>> monomials([x,y], [Integer(5),Integer(5)]) [1, y, y^2, y^3, y^4, x, x*y, x*y^2, x*y^3, x*y^4, x^2, x^2*y, x^2*y^2, x^2*y^3, x^2*y^4, x^3, x^3*y, x^3*y^2, x^3*y^3, x^3*y^4, x^4, x^4*y, x^4*y^2, x^4*y^3, x^4*y^4] >>> monomials([x,y,z], [Integer(2),Integer(3),Integer(2)]) [1, z, y, y*z, y^2, y^2*z, x, x*z, x*y, x*y*z, x*y^2, x*y^2*z]