Univariate Polynomials over GF(2) via NTL’s GF2X¶
AUTHOR: - Martin Albrecht (2008-10) initial implementation
- sage.rings.polynomial.polynomial_gf2x.GF2X_BuildIrred_list(n)[source]¶
Return the list of coefficients of the lexicographically smallest irreducible polynomial of degree \(n\) over the field of 2 elements.
EXAMPLES:
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list sage: GF2X_BuildIrred_list(2) [1, 1, 1] sage: GF2X_BuildIrred_list(3) [1, 1, 0, 1] sage: GF2X_BuildIrred_list(4) [1, 1, 0, 0, 1] sage: GF(2)['x'](GF2X_BuildIrred_list(33)) x^33 + x^6 + x^3 + x + 1
>>> from sage.all import * >>> from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list >>> GF2X_BuildIrred_list(Integer(2)) [1, 1, 1] >>> GF2X_BuildIrred_list(Integer(3)) [1, 1, 0, 1] >>> GF2X_BuildIrred_list(Integer(4)) [1, 1, 0, 0, 1] >>> GF(Integer(2))['x'](GF2X_BuildIrred_list(Integer(33))) x^33 + x^6 + x^3 + x + 1
- sage.rings.polynomial.polynomial_gf2x.GF2X_BuildRandomIrred_list(n)[source]¶
Return the list of coefficients of an irreducible polynomial of degree \(n\) of minimal weight over the field of 2 elements.
EXAMPLES:
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildRandomIrred_list sage: GF2X_BuildRandomIrred_list(2) [1, 1, 1] sage: GF2X_BuildRandomIrred_list(3) in [[1, 1, 0, 1], [1, 0, 1, 1]] True
>>> from sage.all import * >>> from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildRandomIrred_list >>> GF2X_BuildRandomIrred_list(Integer(2)) [1, 1, 1] >>> GF2X_BuildRandomIrred_list(Integer(3)) in [[Integer(1), Integer(1), Integer(0), Integer(1)], [Integer(1), Integer(0), Integer(1), Integer(1)]] True
- sage.rings.polynomial.polynomial_gf2x.GF2X_BuildSparseIrred_list(n)[source]¶
Return the list of coefficients of an irreducible polynomial of degree \(n\) of minimal weight over the field of 2 elements.
EXAMPLES:
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list, GF2X_BuildSparseIrred_list sage: all([GF2X_BuildSparseIrred_list(n) == GF2X_BuildIrred_list(n) ....: for n in range(1,33)]) True sage: GF(2)['x'](GF2X_BuildSparseIrred_list(33)) x^33 + x^10 + 1
>>> from sage.all import * >>> from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list, GF2X_BuildSparseIrred_list >>> all([GF2X_BuildSparseIrred_list(n) == GF2X_BuildIrred_list(n) ... for n in range(Integer(1),Integer(33))]) True >>> GF(Integer(2))['x'](GF2X_BuildSparseIrred_list(Integer(33))) x^33 + x^10 + 1
- class sage.rings.polynomial.polynomial_gf2x.Polynomial_GF2X[source]¶
Bases:
Polynomial_template
Univariate Polynomials over \(\GF{2}\) via NTL’s GF2X.
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x^3 + x^2 + 1 x^3 + x^2 + 1
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> x**Integer(3) + x**Integer(2) + Integer(1) x^3 + x^2 + 1
- compose_mod(g, h, algorithm=None)[source]¶
Compute \(f(g) \pmod h\).
Both implementations use Brent-Kung’s Algorithm 2.1 (Fast Algorithms for Manipulation of Formal Power Series, JACM 1978).
INPUT:
g
– a polynomialh
– a polynomialalgorithm
– either'native'
or'ntl'
(default:'native'
)
EXAMPLES:
sage: P.<x> = GF(2)[] sage: r = 279 sage: f = x^r + x +1 sage: g = x^r sage: g.modular_composition(g, f) == g(g) % f True sage: P.<x> = GF(2)[] sage: f = x^29 + x^24 + x^22 + x^21 + x^20 + x^16 + x^15 + x^14 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^2 sage: g = x^31 + x^30 + x^28 + x^26 + x^24 + x^21 + x^19 + x^18 + x^11 + x^10 + x^9 + x^8 + x^5 + x^2 + 1 sage: h = x^30 + x^28 + x^26 + x^25 + x^24 + x^22 + x^21 + x^18 + x^17 + x^15 + x^13 + x^12 + x^11 + x^10 + x^9 + x^4 sage: f.modular_composition(g, h) == f(g) % h True
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> r = Integer(279) >>> f = x**r + x +Integer(1) >>> g = x**r >>> g.modular_composition(g, f) == g(g) % f True >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> f = x**Integer(29) + x**Integer(24) + x**Integer(22) + x**Integer(21) + x**Integer(20) + x**Integer(16) + x**Integer(15) + x**Integer(14) + x**Integer(10) + x**Integer(9) + x**Integer(8) + x**Integer(7) + x**Integer(6) + x**Integer(5) + x**Integer(2) >>> g = x**Integer(31) + x**Integer(30) + x**Integer(28) + x**Integer(26) + x**Integer(24) + x**Integer(21) + x**Integer(19) + x**Integer(18) + x**Integer(11) + x**Integer(10) + x**Integer(9) + x**Integer(8) + x**Integer(5) + x**Integer(2) + Integer(1) >>> h = x**Integer(30) + x**Integer(28) + x**Integer(26) + x**Integer(25) + x**Integer(24) + x**Integer(22) + x**Integer(21) + x**Integer(18) + x**Integer(17) + x**Integer(15) + x**Integer(13) + x**Integer(12) + x**Integer(11) + x**Integer(10) + x**Integer(9) + x**Integer(4) >>> f.modular_composition(g, h) == f(g) % h True
AUTHORS:
Paul Zimmermann (2008-10) initial implementation
Martin Albrecht (2008-10) performance improvements
- is_irreducible()[source]¶
Return whether this polynomial is irreducible over \(\GF{2}\).
EXAMPLES:
sage: R.<x> = GF(2)[] sage: (x^2 + 1).is_irreducible() False sage: (x^3 + x + 1).is_irreducible() True
>>> from sage.all import * >>> R = GF(Integer(2))['x']; (x,) = R._first_ngens(1) >>> (x**Integer(2) + Integer(1)).is_irreducible() False >>> (x**Integer(3) + x + Integer(1)).is_irreducible() True
Test that caching works:
sage: R.<x> = GF(2)[] sage: f = x^2 + 1 sage: f.is_irreducible() False sage: f.is_irreducible.cache False
>>> from sage.all import * >>> R = GF(Integer(2))['x']; (x,) = R._first_ngens(1) >>> f = x**Integer(2) + Integer(1) >>> f.is_irreducible() False >>> f.is_irreducible.cache False
- modular_composition(g, h, algorithm=None)[source]¶
Compute \(f(g) \pmod h\).
Both implementations use Brent-Kung’s Algorithm 2.1 (Fast Algorithms for Manipulation of Formal Power Series, JACM 1978).
INPUT:
g
– a polynomialh
– a polynomialalgorithm
– either'native'
or'ntl'
(default:'native'
)
EXAMPLES:
sage: P.<x> = GF(2)[] sage: r = 279 sage: f = x^r + x +1 sage: g = x^r sage: g.modular_composition(g, f) == g(g) % f True sage: P.<x> = GF(2)[] sage: f = x^29 + x^24 + x^22 + x^21 + x^20 + x^16 + x^15 + x^14 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^2 sage: g = x^31 + x^30 + x^28 + x^26 + x^24 + x^21 + x^19 + x^18 + x^11 + x^10 + x^9 + x^8 + x^5 + x^2 + 1 sage: h = x^30 + x^28 + x^26 + x^25 + x^24 + x^22 + x^21 + x^18 + x^17 + x^15 + x^13 + x^12 + x^11 + x^10 + x^9 + x^4 sage: f.modular_composition(g, h) == f(g) % h True
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> r = Integer(279) >>> f = x**r + x +Integer(1) >>> g = x**r >>> g.modular_composition(g, f) == g(g) % f True >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> f = x**Integer(29) + x**Integer(24) + x**Integer(22) + x**Integer(21) + x**Integer(20) + x**Integer(16) + x**Integer(15) + x**Integer(14) + x**Integer(10) + x**Integer(9) + x**Integer(8) + x**Integer(7) + x**Integer(6) + x**Integer(5) + x**Integer(2) >>> g = x**Integer(31) + x**Integer(30) + x**Integer(28) + x**Integer(26) + x**Integer(24) + x**Integer(21) + x**Integer(19) + x**Integer(18) + x**Integer(11) + x**Integer(10) + x**Integer(9) + x**Integer(8) + x**Integer(5) + x**Integer(2) + Integer(1) >>> h = x**Integer(30) + x**Integer(28) + x**Integer(26) + x**Integer(25) + x**Integer(24) + x**Integer(22) + x**Integer(21) + x**Integer(18) + x**Integer(17) + x**Integer(15) + x**Integer(13) + x**Integer(12) + x**Integer(11) + x**Integer(10) + x**Integer(9) + x**Integer(4) >>> f.modular_composition(g, h) == f(g) % h True
AUTHORS:
Paul Zimmermann (2008-10) initial implementation
Martin Albrecht (2008-10) performance improvements
- class sage.rings.polynomial.polynomial_gf2x.Polynomial_template[source]¶
Bases:
Polynomial
Template for interfacing to external C / C++ libraries for implementations of polynomials.
AUTHORS:
Robert Bradshaw (2008-10): original idea for templating
Martin Albrecht (2008-10): initial implementation
This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a ‘linkage’ file which implements the
celement_
functions (seesage.libs.ntl.ntl_GF2X_linkage
for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. Seesage.rings.polynomial.polynomial_gf2x
for an example.We illustrate the generic glueing using univariate polynomials over \(\mathop{\mathrm{GF}}(2)\).
Note
Implementations using this template MUST implement coercion from base ring elements and
get_unsafe()
. SeePolynomial_GF2X
for an example.- degree()[source]¶
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x.degree() 1 sage: P(1).degree() 0 sage: P(0).degree() -1
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> x.degree() 1 >>> P(Integer(1)).degree() 0 >>> P(Integer(0)).degree() -1
- gcd(other)[source]¶
Return the greatest common divisor of
self
andother
.EXAMPLES:
sage: P.<x> = GF(2)[] sage: f = x*(x+1) sage: f.gcd(x+1) x + 1 sage: f.gcd(x^2) x
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> f = x*(x+Integer(1)) >>> f.gcd(x+Integer(1)) x + 1 >>> f.gcd(x**Integer(2)) x
- is_gen()[source]¶
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x.is_gen() True sage: (x+1).is_gen() False
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> x.is_gen() True >>> (x+Integer(1)).is_gen() False
- is_one()[source]¶
EXAMPLES:
sage: P.<x> = GF(2)[] sage: P(1).is_one() True
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> P(Integer(1)).is_one() True
- is_zero()[source]¶
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x.is_zero() False
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> x.is_zero() False
- list(copy=True)[source]¶
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x.list() [0, 1] sage: list(x) [0, 1]
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> x.list() [0, 1] >>> list(x) [0, 1]
- quo_rem(right)[source]¶
EXAMPLES:
sage: P.<x> = GF(2)[] sage: f = x^2 + x + 1 sage: f.quo_rem(x + 1) (x, 1)
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> f = x**Integer(2) + x + Integer(1) >>> f.quo_rem(x + Integer(1)) (x, 1)
- shift(n)[source]¶
EXAMPLES:
sage: P.<x> = GF(2)[] sage: f = x^3 + x^2 + 1 sage: f.shift(1) x^4 + x^3 + x sage: f.shift(-1) x^2 + x
>>> from sage.all import * >>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1) >>> f = x**Integer(3) + x**Integer(2) + Integer(1) >>> f.shift(Integer(1)) x^4 + x^3 + x >>> f.shift(-Integer(1)) x^2 + x
- truncate(n)[source]¶
Return this polynomial mod \(x^n\).
EXAMPLES:
sage: R.<x> =GF(2)[] sage: f = sum(x^n for n in range(10)); f x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 sage: f.truncate(6) x^5 + x^4 + x^3 + x^2 + x + 1
>>> from sage.all import * >>> R = GF(Integer(2))['x']; (x,) = R._first_ngens(1) >>> f = sum(x**n for n in range(Integer(10))); f x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 >>> f.truncate(Integer(6)) x^5 + x^4 + x^3 + x^2 + x + 1
If the precision is higher than the degree of the polynomial then the polynomial itself is returned:
sage: f.truncate(10) is f True
>>> from sage.all import * >>> f.truncate(Integer(10)) is f True
If the precision is negative, the zero polynomial is returned:
sage: f.truncate(-1) 0
>>> from sage.all import * >>> f.truncate(-Integer(1)) 0
- xgcd(other)[source]¶
Compute extended gcd of
self
andother
.EXAMPLES:
sage: P.<x> = GF(7)[] sage: f = x*(x+1) sage: f.xgcd(x+1) (x + 1, 0, 1) sage: f.xgcd(x^2) (x, 1, 6)
>>> from sage.all import * >>> P = GF(Integer(7))['x']; (x,) = P._first_ngens(1) >>> f = x*(x+Integer(1)) >>> f.xgcd(x+Integer(1)) (x + 1, 0, 1) >>> f.xgcd(x**Integer(2)) (x, 1, 6)