Generic data structures for multivariate polynomials¶
This module provides an implementation of a generic data structure
PolyDict
and the underlying arithmetic for multi-variate polynomial
rings. It uses a sparse representation of polynomials encoded as a Python
dictionary where keys are exponents and values coefficients.
{(e1,...,er):c1,...} <-> c1*x1^e1*...*xr^er+...
,
The exponent (e1,...,er)
in this representation is an instance of the class
ETuple
.
AUTHORS:
William Stein
David Joyner
Martin Albrecht (ETuple)
Joel B. Mohler (2008-03-17) – ETuple rewrite as sparse C array
- class sage.rings.polynomial.polydict.ETuple[source]¶
Bases:
object
Representation of the exponents of a polydict monomial. If (0,0,3,0,5) is the exponent tuple of x_2^3*x_4^5 then this class only stores {2:3, 4:5} instead of the full tuple. This sparse information may be obtained by provided methods.
The index/value data is all stored in the _data C int array member variable. For the example above, the C array would contain 2,3,4,5. The indices are interlaced with the values.
This data structure is very nice to work with for some functions implemented in this class, but tricky for others. One reason that I really like the format is that it requires a single memory allocation for all of the values. A hash table would require more allocations and presumably be slower. I didn’t benchmark this question (although, there is no question that this is much faster than the prior use of python dicts).
- combine_to_positives(other)[source]¶
Given a pair of ETuples (self, other), returns a triple of ETuples (a, b, c) so that self = a + b, other = a + c and b and c have all positive entries.
EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([-2, 1, -5, 3, 1, 0]) sage: f = ETuple([1, -3, -3, 4, 0, 2]) sage: e.combine_to_positives(f) ((-2, -3, -5, 3, 0, 0), (0, 4, 0, 0, 1, 0), (3, 0, 2, 1, 0, 2))
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([-Integer(2), Integer(1), -Integer(5), Integer(3), Integer(1), Integer(0)]) >>> f = ETuple([Integer(1), -Integer(3), -Integer(3), Integer(4), Integer(0), Integer(2)]) >>> e.combine_to_positives(f) ((-2, -3, -5, 3, 0, 0), (0, 4, 0, 0, 1, 0), (3, 0, 2, 1, 0, 2))
- common_nonzero_positions(other, sort=False)[source]¶
Return an optionally sorted list of nonzero positions either in
self
or other, i.e. the only positions that need to be considered for any vector operation.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: f = ETuple([0, 0, 1]) sage: e.common_nonzero_positions(f) {0, 2} sage: e.common_nonzero_positions(f, sort=True) [0, 2]
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> f = ETuple([Integer(0), Integer(0), Integer(1)]) >>> e.common_nonzero_positions(f) {0, 2} >>> e.common_nonzero_positions(f, sort=True) [0, 2]
- divide_by_gcd(other)[source]¶
Return
self / gcd(self, other)
.The entries of the result are the maximum of 0 and the difference of the corresponding entries of
self
andother
.
- divide_by_var(pos)[source]¶
Return division of
self
by the variable with indexpos
.If
self[pos] == 0
then aArithmeticError
is raised. Otherwise, anETuple
is returned that is zero in positionpos
and coincides withself
in the other positions.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 2, 0, 1]) sage: e.divide_by_var(0) (0, 2, 0, 1) sage: e.divide_by_var(1) (1, 1, 0, 1) sage: e.divide_by_var(3) (1, 2, 0, 0) sage: e.divide_by_var(2) Traceback (most recent call last): ... ArithmeticError: not divisible by this variable
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(2), Integer(0), Integer(1)]) >>> e.divide_by_var(Integer(0)) (0, 2, 0, 1) >>> e.divide_by_var(Integer(1)) (1, 1, 0, 1) >>> e.divide_by_var(Integer(3)) (1, 2, 0, 0) >>> e.divide_by_var(Integer(2)) Traceback (most recent call last): ... ArithmeticError: not divisible by this variable
- divides(other)[source]¶
Return whether
self
dividesother
, i.e., no entry ofself
exceeds that ofother
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: ETuple([1, 1, 0, 1, 0]).divides(ETuple([2, 2, 2, 2, 2])) True sage: ETuple([0, 3, 0, 1, 0]).divides(ETuple([2, 2, 2, 2, 2])) False sage: ETuple([0, 3, 0, 1, 0]).divides(ETuple([0, 3, 2, 2, 2])) True sage: ETuple([0, 0, 0, 0, 0]).divides(ETuple([2, 2, 2, 2, 2])) True sage: ETuple({104: 18, 256: 25, 314:78}, length=400r).divides(ETuple({104: 19, 105: 20, 106: 21}, length=400r)) False sage: ETuple({104: 18, 256: 25, 314:78}, length=400r).divides(ETuple({104: 19, 105: 20, 106: 21, 255: 2, 256: 25, 312: 5, 314: 79, 315: 28}, length=400r)) True
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> ETuple([Integer(1), Integer(1), Integer(0), Integer(1), Integer(0)]).divides(ETuple([Integer(2), Integer(2), Integer(2), Integer(2), Integer(2)])) True >>> ETuple([Integer(0), Integer(3), Integer(0), Integer(1), Integer(0)]).divides(ETuple([Integer(2), Integer(2), Integer(2), Integer(2), Integer(2)])) False >>> ETuple([Integer(0), Integer(3), Integer(0), Integer(1), Integer(0)]).divides(ETuple([Integer(0), Integer(3), Integer(2), Integer(2), Integer(2)])) True >>> ETuple([Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)]).divides(ETuple([Integer(2), Integer(2), Integer(2), Integer(2), Integer(2)])) True >>> ETuple({Integer(104): Integer(18), Integer(256): Integer(25), Integer(314):Integer(78)}, length=400).divides(ETuple({Integer(104): Integer(19), Integer(105): Integer(20), Integer(106): Integer(21)}, length=400)) False >>> ETuple({Integer(104): Integer(18), Integer(256): Integer(25), Integer(314):Integer(78)}, length=400).divides(ETuple({Integer(104): Integer(19), Integer(105): Integer(20), Integer(106): Integer(21), Integer(255): Integer(2), Integer(256): Integer(25), Integer(312): Integer(5), Integer(314): Integer(79), Integer(315): Integer(28)}, length=400)) True
- dotprod(other)[source]¶
Return the dot product of this tuple by
other
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: f = ETuple([0, 1, 1]) sage: e.dotprod(f) 2 sage: e = ETuple([1, 1, -1]) sage: f = ETuple([0, -2, 1]) sage: e.dotprod(f) -3
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> f = ETuple([Integer(0), Integer(1), Integer(1)]) >>> e.dotprod(f) 2 >>> e = ETuple([Integer(1), Integer(1), -Integer(1)]) >>> f = ETuple([Integer(0), -Integer(2), Integer(1)]) >>> e.dotprod(f) -3
- eadd(other)[source]¶
Return the vector addition of
self
withother
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: f = ETuple([0, 1, 1]) sage: e.eadd(f) (1, 1, 3)
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> f = ETuple([Integer(0), Integer(1), Integer(1)]) >>> e.eadd(f) (1, 1, 3)
Verify that Issue #6428 has been addressed:
sage: # needs sage.libs.singular sage: R.<y, z> = Frac(QQ['x'])[] sage: type(y) <class 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'> sage: y^(2^32) Traceback (most recent call last): ... OverflowError: exponent overflow (...) # 64-bit OverflowError: Python int too large to convert to C unsigned long # 32-bit
>>> from sage.all import * >>> # needs sage.libs.singular >>> R = Frac(QQ['x'])['y, z']; (y, z,) = R._first_ngens(2) >>> type(y) <class 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'> >>> y**(Integer(2)**Integer(32)) Traceback (most recent call last): ... OverflowError: exponent overflow (...) # 64-bit OverflowError: Python int too large to convert to C unsigned long # 32-bit
- eadd_p(other, pos)[source]¶
Add
other
toself
at positionpos
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: e.eadd_p(5, 1) (1, 5, 2) sage: e = ETuple([0]*7) sage: e.eadd_p(5, 4) (0, 0, 0, 0, 5, 0, 0) sage: ETuple([0,1]).eadd_p(1, 0) == ETuple([1,1]) True sage: e = ETuple([0, 1, 0]) sage: e.eadd_p(0, 0).nonzero_positions() [1] sage: e.eadd_p(0, 1).nonzero_positions() [1] sage: e.eadd_p(0, 2).nonzero_positions() [1]
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> e.eadd_p(Integer(5), Integer(1)) (1, 5, 2) >>> e = ETuple([Integer(0)]*Integer(7)) >>> e.eadd_p(Integer(5), Integer(4)) (0, 0, 0, 0, 5, 0, 0) >>> ETuple([Integer(0),Integer(1)]).eadd_p(Integer(1), Integer(0)) == ETuple([Integer(1),Integer(1)]) True >>> e = ETuple([Integer(0), Integer(1), Integer(0)]) >>> e.eadd_p(Integer(0), Integer(0)).nonzero_positions() [1] >>> e.eadd_p(Integer(0), Integer(1)).nonzero_positions() [1] >>> e.eadd_p(Integer(0), Integer(2)).nonzero_positions() [1]
- eadd_scaled(other, scalar)[source]¶
Vector addition of
self
withscalar * other
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: f = ETuple([0, 1, 1]) sage: e.eadd_scaled(f, 3) (1, 3, 5)
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> f = ETuple([Integer(0), Integer(1), Integer(1)]) >>> e.eadd_scaled(f, Integer(3)) (1, 3, 5)
- emax(other)[source]¶
Vector of maximum of components of
self
andother
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: f = ETuple([0, 1, 1]) sage: e.emax(f) (1, 1, 2) sage: e = ETuple((1, 2, 3, 4)) sage: f = ETuple((4, 0, 2, 1)) sage: f.emax(e) (4, 2, 3, 4) sage: e = ETuple((1, -2, -2, 4)) sage: f = ETuple((4, 0, 0, 0)) sage: f.emax(e) (4, 0, 0, 4) sage: f.emax(e).nonzero_positions() [0, 3]
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> f = ETuple([Integer(0), Integer(1), Integer(1)]) >>> e.emax(f) (1, 1, 2) >>> e = ETuple((Integer(1), Integer(2), Integer(3), Integer(4))) >>> f = ETuple((Integer(4), Integer(0), Integer(2), Integer(1))) >>> f.emax(e) (4, 2, 3, 4) >>> e = ETuple((Integer(1), -Integer(2), -Integer(2), Integer(4))) >>> f = ETuple((Integer(4), Integer(0), Integer(0), Integer(0))) >>> f.emax(e) (4, 0, 0, 4) >>> f.emax(e).nonzero_positions() [0, 3]
- emin(other)[source]¶
Vector of minimum of components of
self
andother
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: f = ETuple([0, 1, 1]) sage: e.emin(f) (0, 0, 1) sage: e = ETuple([1, 0, -1]) sage: f = ETuple([0, -2, 1]) sage: e.emin(f) (0, -2, -1)
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> f = ETuple([Integer(0), Integer(1), Integer(1)]) >>> e.emin(f) (0, 0, 1) >>> e = ETuple([Integer(1), Integer(0), -Integer(1)]) >>> f = ETuple([Integer(0), -Integer(2), Integer(1)]) >>> e.emin(f) (0, -2, -1)
- emul(factor)[source]¶
Scalar Vector multiplication of
self
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: e.emul(2) (2, 0, 4)
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> e.emul(Integer(2)) (2, 0, 4)
- escalar_div(n)[source]¶
Divide each exponent by
n
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: ETuple([1, 0, 2]).escalar_div(2) (0, 0, 1) sage: ETuple([0, 3, 12]).escalar_div(3) (0, 1, 4) sage: ETuple([1, 5, 2]).escalar_div(0) Traceback (most recent call last): ... ZeroDivisionError
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> ETuple([Integer(1), Integer(0), Integer(2)]).escalar_div(Integer(2)) (0, 0, 1) >>> ETuple([Integer(0), Integer(3), Integer(12)]).escalar_div(Integer(3)) (0, 1, 4) >>> ETuple([Integer(1), Integer(5), Integer(2)]).escalar_div(Integer(0)) Traceback (most recent call last): ... ZeroDivisionError
- esub(other)[source]¶
Vector subtraction of
self
withother
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: f = ETuple([0, 1, 1]) sage: e.esub(f) (1, -1, 1)
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> f = ETuple([Integer(0), Integer(1), Integer(1)]) >>> e.esub(f) (1, -1, 1)
- is_constant()[source]¶
Return if all exponents are zero in the tuple.
EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: e.is_constant() False sage: e = ETuple([0, 0]) sage: e.is_constant() True
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> e.is_constant() False >>> e = ETuple([Integer(0), Integer(0)]) >>> e.is_constant() True
- is_multiple_of(n)[source]¶
Test whether each entry is a multiple of
n
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: ETuple([0, 0]).is_multiple_of(3) True sage: ETuple([0, 3, 12, 0, 6]).is_multiple_of(3) True sage: ETuple([0, 0, 2]).is_multiple_of(3) False
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> ETuple([Integer(0), Integer(0)]).is_multiple_of(Integer(3)) True >>> ETuple([Integer(0), Integer(3), Integer(12), Integer(0), Integer(6)]).is_multiple_of(Integer(3)) True >>> ETuple([Integer(0), Integer(0), Integer(2)]).is_multiple_of(Integer(3)) False
- nonzero_positions(sort=False)[source]¶
Return the positions of nonzero exponents in the tuple.
INPUT:
sort
– boolean (default:False
); ifTrue
a sorted list is returned; ifFalse
an unsorted list is returned
EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2]) sage: e.nonzero_positions() [0, 2]
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2)]) >>> e.nonzero_positions() [0, 2]
- nonzero_values(sort=True)[source]¶
Return the nonzero values of the tuple.
INPUT:
sort
– boolean (default:True
); ifTrue
the values are sorted by their indices. Otherwise the values are returned unsorted.
EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([2, 0, 1]) sage: e.nonzero_values() [2, 1] sage: f = ETuple([0, -1, 1]) sage: f.nonzero_values(sort=True) [-1, 1]
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(2), Integer(0), Integer(1)]) >>> e.nonzero_values() [2, 1] >>> f = ETuple([Integer(0), -Integer(1), Integer(1)]) >>> f.nonzero_values(sort=True) [-1, 1]
- reversed()[source]¶
Return the reversed ETuple of
self
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 2, 3]) sage: e.reversed() (3, 2, 1)
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(2), Integer(3)]) >>> e.reversed() (3, 2, 1)
- sparse_iter()[source]¶
Iterator over the elements of
self
where the elements are returned as(i, e)
wherei
is the position ofe
in the tuple.EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 0, 2, 0, 3]) sage: list(e.sparse_iter()) [(0, 1), (2, 2), (4, 3)]
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(0), Integer(2), Integer(0), Integer(3)]) >>> list(e.sparse_iter()) [(0, 1), (2, 2), (4, 3)]
- unweighted_degree()[source]¶
Return the sum of entries.
EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: ETuple([1, 1, 0, 2, 0]).unweighted_degree() 4 sage: ETuple([-1, 1]).unweighted_degree() 0
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> ETuple([Integer(1), Integer(1), Integer(0), Integer(2), Integer(0)]).unweighted_degree() 4 >>> ETuple([-Integer(1), Integer(1)]).unweighted_degree() 0
- unweighted_quotient_degree(other)[source]¶
Return the degree of
self
divided by its gcd withother
.It amounts to counting the nonnegative entries of
self.esub(other)
.
- weighted_degree(w)[source]¶
Return the weighted sum of entries.
INPUT:
w
– tuple of nonnegative integers
EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple sage: e = ETuple([1, 1, 0, 2, 0]) sage: e.weighted_degree((1, 2, 3, 4, 5)) 11 sage: ETuple([-1, 1]).weighted_degree((1, 2)) 1 sage: ETuple([1, 0]).weighted_degree((1, 2, 3)) Traceback (most recent call last): ... ValueError: w must be of the same length as the ETuple
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple >>> e = ETuple([Integer(1), Integer(1), Integer(0), Integer(2), Integer(0)]) >>> e.weighted_degree((Integer(1), Integer(2), Integer(3), Integer(4), Integer(5))) 11 >>> ETuple([-Integer(1), Integer(1)]).weighted_degree((Integer(1), Integer(2))) 1 >>> ETuple([Integer(1), Integer(0)]).weighted_degree((Integer(1), Integer(2), Integer(3))) Traceback (most recent call last): ... ValueError: w must be of the same length as the ETuple
- class sage.rings.polynomial.polydict.PolyDict[source]¶
Bases:
object
Data structure for multivariate polynomials.
A PolyDict holds a dictionary all of whose keys are
ETuple
and whose values are coefficients on which it is implicitely assumed that arithmetic operations can be performed.No arithmetic operation on
PolyDict
clear zero coefficients as of now there is no reliable way of testing it in the most general setting, see Issue #35319. For removing zero coefficients from aPolyDict
you can use the methodremove_zeros()
which can be parametrized by a zero test.- apply_map(f)[source]¶
Apply the map
f
on the coefficients (inplace).EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(1, 0): 1, (1, 1): -2}) sage: f.apply_map(lambda x: x^2) sage: f PolyDict with representation {(1, 0): 1, (1, 1): 4}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(1), Integer(0)): Integer(1), (Integer(1), Integer(1)): -Integer(2)}) >>> f.apply_map(lambda x: x**Integer(2)) >>> f PolyDict with representation {(1, 0): 1, (1, 1): 4}
- coefficient(mon)[source]¶
Return a polydict that defines a polynomial in 1 less number of variables that gives the coefficient of mon in this polynomial.
The coefficient is defined as follows. If f is this polynomial, then the coefficient is the sum T/mon where the sum is over terms T in f that are exactly divisible by mon.
- coefficients()[source]¶
Return the coefficients of
self
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: sorted(f.coefficients()) [2, 3, 4]
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> sorted(f.coefficients()) [2, 3, 4]
- coerce_coefficients(A)[source]¶
Coerce the coefficients in the parent
A
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 0}) sage: f PolyDict with representation {(2, 3): 0} sage: f.coerce_coefficients(QQ) doctest:warning ... DeprecationWarning: coerce_cefficients is deprecated; use apply_map instead See https://github.com/sagemath/sage/issues/34000 for details. sage: f PolyDict with representation {(2, 3): 0}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(0)}) >>> f PolyDict with representation {(2, 3): 0} >>> f.coerce_coefficients(QQ) doctest:warning ... DeprecationWarning: coerce_cefficients is deprecated; use apply_map instead See https://github.com/sagemath/sage/issues/34000 for details. >>> f PolyDict with representation {(2, 3): 0}
- degree(x=None)[source]¶
Return the total degree or the maximum degree in the variable
x
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.degree() 5 sage: f.degree(PolyDict({(1, 0): 1})) 2 sage: f.degree(PolyDict({(0, 1): 1})) 3
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.degree() 5 >>> f.degree(PolyDict({(Integer(1), Integer(0)): Integer(1)})) 2 >>> f.degree(PolyDict({(Integer(0), Integer(1)): Integer(1)})) 3
- derivative(x)[source]¶
Return the derivative of
self
with respect tox
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.derivative(PolyDict({(1, 0): 1})) PolyDict with representation {(0, 2): 3, (1, 1): 8, (1, 3): 4} sage: f.derivative(PolyDict({(0, 1): 1})) PolyDict with representation {(1, 1): 6, (2, 0): 4, (2, 2): 6} sage: PolyDict({(-1,): 1}).derivative(PolyDict({(1,): 1})) PolyDict with representation {(-2,): -1} sage: PolyDict({(-2,): 1}).derivative(PolyDict({(1,): 1})) PolyDict with representation {(-3,): -2} sage: PolyDict({}).derivative(PolyDict({(1, 1): 1})) Traceback (most recent call last): ... ValueError: x must be a generator
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.derivative(PolyDict({(Integer(1), Integer(0)): Integer(1)})) PolyDict with representation {(0, 2): 3, (1, 1): 8, (1, 3): 4} >>> f.derivative(PolyDict({(Integer(0), Integer(1)): Integer(1)})) PolyDict with representation {(1, 1): 6, (2, 0): 4, (2, 2): 6} >>> PolyDict({(-Integer(1),): Integer(1)}).derivative(PolyDict({(Integer(1),): Integer(1)})) PolyDict with representation {(-2,): -1} >>> PolyDict({(-Integer(2),): Integer(1)}).derivative(PolyDict({(Integer(1),): Integer(1)})) PolyDict with representation {(-3,): -2} >>> PolyDict({}).derivative(PolyDict({(Integer(1), Integer(1)): Integer(1)})) Traceback (most recent call last): ... ValueError: x must be a generator
- derivative_i(i)[source]¶
Return the derivative of
self
with respect to thei
-th variable.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: PolyDict({(1, 1): 1}).derivative_i(0) PolyDict with representation {(0, 1): 1}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> PolyDict({(Integer(1), Integer(1)): Integer(1)}).derivative_i(Integer(0)) PolyDict with representation {(0, 1): 1}
- dict()[source]¶
Return a copy of the dict that defines
self
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.dict() {(1, 2): 3, (2, 1): 4, (2, 3): 2}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.dict() {(1, 2): 3, (2, 1): 4, (2, 3): 2}
- exponents()[source]¶
Return the exponents of
self
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: sorted(f.exponents()) [(1, 2), (2, 1), (2, 3)]
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> sorted(f.exponents()) [(1, 2), (2, 1), (2, 3)]
- get(e, default=None)[source]¶
Return the coefficient of the ETuple
e
if present anddefault
otherwise.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict, ETuple sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.get(ETuple([1,2])) 3 sage: f.get(ETuple([1,1]), 'hello') 'hello'
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict, ETuple >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.get(ETuple([Integer(1),Integer(2)])) 3 >>> f.get(ETuple([Integer(1),Integer(1)]), 'hello') 'hello'
- homogenize(var)[source]¶
Return the homogeneization of
self
by increasing the degree of the variablevar
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(0, 0): 1, (2, 1): 3, (1, 1): 5}) sage: f.homogenize(0) PolyDict with representation {(2, 1): 8, (3, 0): 1} sage: f.homogenize(1) PolyDict with representation {(0, 3): 1, (1, 2): 5, (2, 1): 3} sage: PolyDict({(0, 1): 1, (1, 1): -1}).homogenize(0) PolyDict with representation {(1, 1): 0}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(0), Integer(0)): Integer(1), (Integer(2), Integer(1)): Integer(3), (Integer(1), Integer(1)): Integer(5)}) >>> f.homogenize(Integer(0)) PolyDict with representation {(2, 1): 8, (3, 0): 1} >>> f.homogenize(Integer(1)) PolyDict with representation {(0, 3): 1, (1, 2): 5, (2, 1): 3} >>> PolyDict({(Integer(0), Integer(1)): Integer(1), (Integer(1), Integer(1)): -Integer(1)}).homogenize(Integer(0)) PolyDict with representation {(1, 1): 0}
- integral(x)[source]¶
Return the integral of
self
with respect tox
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.integral(PolyDict({(1, 0): 1})) PolyDict with representation {(2, 2): 3/2, (3, 1): 4/3, (3, 3): 2/3} sage: f.integral(PolyDict({(0, 1): 1})) PolyDict with representation {(1, 3): 1, (2, 2): 2, (2, 4): 1/2} sage: PolyDict({(-1,): 1}).integral(PolyDict({(1,): 1})) Traceback (most recent call last): ... ArithmeticError: integral of monomial with exponent -1 sage: PolyDict({(-2,): 1}).integral(PolyDict({(1,): 1})) PolyDict with representation {(-1,): -1} sage: PolyDict({}).integral(PolyDict({(1, 1): 1})) Traceback (most recent call last): ... ValueError: x must be a generator
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.integral(PolyDict({(Integer(1), Integer(0)): Integer(1)})) PolyDict with representation {(2, 2): 3/2, (3, 1): 4/3, (3, 3): 2/3} >>> f.integral(PolyDict({(Integer(0), Integer(1)): Integer(1)})) PolyDict with representation {(1, 3): 1, (2, 2): 2, (2, 4): 1/2} >>> PolyDict({(-Integer(1),): Integer(1)}).integral(PolyDict({(Integer(1),): Integer(1)})) Traceback (most recent call last): ... ArithmeticError: integral of monomial with exponent -1 >>> PolyDict({(-Integer(2),): Integer(1)}).integral(PolyDict({(Integer(1),): Integer(1)})) PolyDict with representation {(-1,): -1} >>> PolyDict({}).integral(PolyDict({(Integer(1), Integer(1)): Integer(1)})) Traceback (most recent call last): ... ValueError: x must be a generator
- integral_i(i)[source]¶
Return the derivative of
self
with respect to thei
-th variable.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: PolyDict({(1, 1): 1}).integral_i(0) PolyDict with representation {(2, 1): 1/2}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> PolyDict({(Integer(1), Integer(1)): Integer(1)}).integral_i(Integer(0)) PolyDict with representation {(2, 1): 1/2}
- is_constant()[source]¶
Return whether this polynomial is constant.
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.is_constant() False sage: g = PolyDict({(0, 0): 2}) sage: g.is_constant() True sage: h = PolyDict({}) sage: h.is_constant() True
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.is_constant() False >>> g = PolyDict({(Integer(0), Integer(0)): Integer(2)}) >>> g.is_constant() True >>> h = PolyDict({}) >>> h.is_constant() True
- is_homogeneous(w=None)[source]¶
Return whether this polynomial is homogeneous.
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: PolyDict({}).is_homogeneous() True sage: PolyDict({(1, 2): 1, (0, 3): -2}).is_homogeneous() True sage: PolyDict({(1, 0): 1, (1, 2): 3}).is_homogeneous() False
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> PolyDict({}).is_homogeneous() True >>> PolyDict({(Integer(1), Integer(2)): Integer(1), (Integer(0), Integer(3)): -Integer(2)}).is_homogeneous() True >>> PolyDict({(Integer(1), Integer(0)): Integer(1), (Integer(1), Integer(2)): Integer(3)}).is_homogeneous() False
- latex(vars, atomic_exponents=True, atomic_coefficients=True, sortkey=None)[source]¶
Return a nice polynomial latex representation of this PolyDict, where the vars are substituted in.
INPUT:
vars
– listatomic_exponents
– boolean (default:True
)atomic_coefficients
– boolean (default:True
)
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.latex(['a', 'WW']) '2 a^{2} WW^{3} + 4 a^{2} WW + 3 a WW^{2}'
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.latex(['a', 'WW']) '2 a^{2} WW^{3} + 4 a^{2} WW + 3 a WW^{2}'
- lcmt(greater_etuple)[source]¶
Provides functionality of lc, lm, and lt by calling the tuple compare function on the provided term order T.
INPUT:
greater_etuple
– a term order
- list()[source]¶
Return a list that defines
self
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: sorted(f.list()) [[2, [2, 3]], [3, [1, 2]], [4, [2, 1]]]
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> sorted(f.list()) [[2, [2, 3]], [3, [1, 2]], [4, [2, 1]]]
- max_exp()[source]¶
Return an ETuple containing the maximum exponents appearing. If there are no terms at all in the PolyDict, it returns None.
The nvars parameter is necessary because a PolyDict doesn’t know it from the data it has (and an empty PolyDict offers no clues).
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.max_exp() (2, 3) sage: PolyDict({}).max_exp() # returns None
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.max_exp() (2, 3) >>> PolyDict({}).max_exp() # returns None
- min_exp()[source]¶
Return an ETuple containing the minimum exponents appearing. If there are no terms at all in the PolyDict, it returns None.
The nvars parameter is necessary because a PolyDict doesn’t know it from the data it has (and an empty PolyDict offers no clues).
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.min_exp() (1, 1) sage: PolyDict({}).min_exp() # returns None
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.min_exp() (1, 1) >>> PolyDict({}).min_exp() # returns None
- monomial_coefficient(mon)[source]¶
Return the coefficient of the monomial
mon
.INPUT:
mon
– a PolyDict with a single key
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4}) sage: f.monomial_coefficient(PolyDict({(2,1):1}).dict()) doctest:warning ... DeprecationWarning: PolyDict.monomial_coefficient is deprecated; use PolyDict.get instead See https://github.com/sagemath/sage/issues/34000 for details. 4
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2),Integer(3)):Integer(2), (Integer(1),Integer(2)):Integer(3), (Integer(2),Integer(1)):Integer(4)}) >>> f.monomial_coefficient(PolyDict({(Integer(2),Integer(1)):Integer(1)}).dict()) doctest:warning ... DeprecationWarning: PolyDict.monomial_coefficient is deprecated; use PolyDict.get instead See https://github.com/sagemath/sage/issues/34000 for details. 4
- poly_repr(vars, atomic_exponents=True, atomic_coefficients=True, sortkey=None)[source]¶
Return a nice polynomial string representation of this PolyDict, where the vars are substituted in.
INPUT:
vars
– listatomic_exponents
– boolean (default:True
)atomic_coefficients
– boolean (default:True
)
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4}) sage: f.poly_repr(['a', 'WW']) '2*a^2*WW^3 + 4*a^2*WW + 3*a*WW^2'
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2),Integer(3)):Integer(2), (Integer(1),Integer(2)):Integer(3), (Integer(2),Integer(1)):Integer(4)}) >>> f.poly_repr(['a', 'WW']) '2*a^2*WW^3 + 4*a^2*WW + 3*a*WW^2'
We check to make sure that when we are in characteristic two, we don’t put negative signs on the generators.
sage: Integers(2)['x, y'].gens() (x, y)
>>> from sage.all import * >>> Integers(Integer(2))['x, y'].gens() (x, y)
We make sure that intervals are correctly represented.
sage: f = PolyDict({(2, 3): RIF(1/2,3/2), (1, 2): RIF(-1,1)}) # needs sage.rings.real_interval_field sage: f.poly_repr(['x', 'y']) # needs sage.rings.real_interval_field '1.?*x^2*y^3 + 0.?*x*y^2'
>>> from sage.all import * >>> f = PolyDict({(Integer(2), Integer(3)): RIF(Integer(1)/Integer(2),Integer(3)/Integer(2)), (Integer(1), Integer(2)): RIF(-Integer(1),Integer(1))}) # needs sage.rings.real_interval_field >>> f.poly_repr(['x', 'y']) # needs sage.rings.real_interval_field '1.?*x^2*y^3 + 0.?*x*y^2'
- polynomial_coefficient(degrees)[source]¶
Return a polydict that defines the coefficient in the current polynomial viewed as a tower of polynomial extensions.
INPUT:
degrees
– list of degree restrictions; list elements areNone
if the variable in that position should be unrestricted
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.polynomial_coefficient([2, None]) PolyDict with representation {(0, 1): 4, (0, 3): 2} sage: f = PolyDict({(0, 3): 2, (0, 2): 3, (2, 1): 4}) sage: f.polynomial_coefficient([0, None]) PolyDict with representation {(0, 2): 3, (0, 3): 2}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.polynomial_coefficient([Integer(2), None]) PolyDict with representation {(0, 1): 4, (0, 3): 2} >>> f = PolyDict({(Integer(0), Integer(3)): Integer(2), (Integer(0), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.polynomial_coefficient([Integer(0), None]) PolyDict with representation {(0, 2): 3, (0, 3): 2}
- remove_zeros(zero_test=None)[source]¶
Remove the entries with zero coefficients.
INPUT:
zero_test
– (optional) function that performs test to zero of a coefficient
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3):0}) sage: f PolyDict with representation {(2, 3): 0} sage: f.remove_zeros() sage: f PolyDict with representation {}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)):Integer(0)}) >>> f PolyDict with representation {(2, 3): 0} >>> f.remove_zeros() >>> f PolyDict with representation {}
The following example shows how to remove only exact zeros from a
PolyDict
containing univariate power series:sage: R.<t> = PowerSeriesRing(QQ) sage: f = PolyDict({(1, 1): O(t), (1, 0): R.zero()}) sage: f.remove_zeros(lambda s: s.is_zero() and s.prec() is Infinity) sage: f PolyDict with representation {(1, 1): O(t^1)}
>>> from sage.all import * >>> R = PowerSeriesRing(QQ, names=('t',)); (t,) = R._first_ngens(1) >>> f = PolyDict({(Integer(1), Integer(1)): O(t), (Integer(1), Integer(0)): R.zero()}) >>> f.remove_zeros(lambda s: s.is_zero() and s.prec() is Infinity) >>> f PolyDict with representation {(1, 1): O(t^1)}
- rich_compare(other, op, sortkey=None)[source]¶
Compare two \(PolyDict`s using a specified term ordering ``sortkey`\).
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: from sage.structure.richcmp import op_EQ, op_NE, op_LT sage: p1 = PolyDict({(0,): 1}) sage: p2 = PolyDict({(0,): 2}) sage: O = TermOrder() sage: p1.rich_compare(PolyDict({(0,): 1}), op_EQ, O.sortkey) True sage: p1.rich_compare(p2, op_EQ, O.sortkey) False sage: p1.rich_compare(p2, op_NE, O.sortkey) True sage: p1.rich_compare(p2, op_LT, O.sortkey) True sage: p3 = PolyDict({(3, 2, 4): 1, (3, 2, 5): 2}) sage: p4 = PolyDict({(3, 2, 4): 1, (3, 2, 3): 2}) sage: p3.rich_compare(p4, op_LT, O.sortkey) False
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> from sage.structure.richcmp import op_EQ, op_NE, op_LT >>> p1 = PolyDict({(Integer(0),): Integer(1)}) >>> p2 = PolyDict({(Integer(0),): Integer(2)}) >>> O = TermOrder() >>> p1.rich_compare(PolyDict({(Integer(0),): Integer(1)}), op_EQ, O.sortkey) True >>> p1.rich_compare(p2, op_EQ, O.sortkey) False >>> p1.rich_compare(p2, op_NE, O.sortkey) True >>> p1.rich_compare(p2, op_LT, O.sortkey) True >>> p3 = PolyDict({(Integer(3), Integer(2), Integer(4)): Integer(1), (Integer(3), Integer(2), Integer(5)): Integer(2)}) >>> p4 = PolyDict({(Integer(3), Integer(2), Integer(4)): Integer(1), (Integer(3), Integer(2), Integer(3)): Integer(2)}) >>> p3.rich_compare(p4, op_LT, O.sortkey) False
- scalar_lmult(s)[source]¶
Return the left scalar multiplication of
self
bys
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: x, y = FreeMonoid(2, 'x, y').gens() # a strange object to live in a polydict, but non-commutative! # needs sage.combinat sage: f = PolyDict({(2,3):x}) # needs sage.combinat sage: f.scalar_lmult(y) # needs sage.combinat PolyDict with representation {(2, 3): y*x} sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4}) sage: f.scalar_lmult(-2) PolyDict with representation {(1, 2): -6, (2, 1): -8, (2, 3): -4} sage: f.scalar_lmult(RIF(-1,1)) # needs sage.rings.real_interval_field PolyDict with representation {(1, 2): 0.?e1, (2, 1): 0.?e1, (2, 3): 0.?e1}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> x, y = FreeMonoid(Integer(2), 'x, y').gens() # a strange object to live in a polydict, but non-commutative! # needs sage.combinat >>> f = PolyDict({(Integer(2),Integer(3)):x}) # needs sage.combinat >>> f.scalar_lmult(y) # needs sage.combinat PolyDict with representation {(2, 3): y*x} >>> f = PolyDict({(Integer(2),Integer(3)):Integer(2), (Integer(1),Integer(2)):Integer(3), (Integer(2),Integer(1)):Integer(4)}) >>> f.scalar_lmult(-Integer(2)) PolyDict with representation {(1, 2): -6, (2, 1): -8, (2, 3): -4} >>> f.scalar_lmult(RIF(-Integer(1),Integer(1))) # needs sage.rings.real_interval_field PolyDict with representation {(1, 2): 0.?e1, (2, 1): 0.?e1, (2, 3): 0.?e1}
- scalar_rmult(s)[source]¶
Return the right scalar multiplication of
self
bys
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: x, y = FreeMonoid(2, 'x, y').gens() # a strange object to live in a polydict, but non-commutative! # needs sage.combinat sage: f = PolyDict({(2, 3): x}) # needs sage.combinat sage: f.scalar_rmult(y) # needs sage.combinat PolyDict with representation {(2, 3): x*y} sage: f = PolyDict({(2,3):2, (1, 2): 3, (2, 1): 4}) sage: f.scalar_rmult(-2) PolyDict with representation {(1, 2): -6, (2, 1): -8, (2, 3): -4} sage: f.scalar_rmult(RIF(-1,1)) # needs sage.rings.real_interval_field PolyDict with representation {(1, 2): 0.?e1, (2, 1): 0.?e1, (2, 3): 0.?e1}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> x, y = FreeMonoid(Integer(2), 'x, y').gens() # a strange object to live in a polydict, but non-commutative! # needs sage.combinat >>> f = PolyDict({(Integer(2), Integer(3)): x}) # needs sage.combinat >>> f.scalar_rmult(y) # needs sage.combinat PolyDict with representation {(2, 3): x*y} >>> f = PolyDict({(Integer(2),Integer(3)):Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.scalar_rmult(-Integer(2)) PolyDict with representation {(1, 2): -6, (2, 1): -8, (2, 3): -4} >>> f.scalar_rmult(RIF(-Integer(1),Integer(1))) # needs sage.rings.real_interval_field PolyDict with representation {(1, 2): 0.?e1, (2, 1): 0.?e1, (2, 3): 0.?e1}
- term_lmult(exponent, s)[source]¶
Return this element multiplied by
s
on the left and with exponents shifted byexponent
.INPUT:
exponent
– a ETuples
– a scalar
EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple, PolyDict sage: x, y = FreeMonoid(2, 'x, y').gens() # a strange object to live in a polydict, but non-commutative! # needs sage.combinat sage: f = PolyDict({(2, 3): x}) # needs sage.combinat sage: f.term_lmult(ETuple((1, 2)), y) # needs sage.combinat PolyDict with representation {(3, 5): y*x} sage: f = PolyDict({(2,3): 2, (1,2): 3, (2,1): 4}) sage: f.term_lmult(ETuple((1, 2)), -2) PolyDict with representation {(2, 4): -6, (3, 3): -8, (3, 5): -4}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple, PolyDict >>> x, y = FreeMonoid(Integer(2), 'x, y').gens() # a strange object to live in a polydict, but non-commutative! # needs sage.combinat >>> f = PolyDict({(Integer(2), Integer(3)): x}) # needs sage.combinat >>> f.term_lmult(ETuple((Integer(1), Integer(2))), y) # needs sage.combinat PolyDict with representation {(3, 5): y*x} >>> f = PolyDict({(Integer(2),Integer(3)): Integer(2), (Integer(1),Integer(2)): Integer(3), (Integer(2),Integer(1)): Integer(4)}) >>> f.term_lmult(ETuple((Integer(1), Integer(2))), -Integer(2)) PolyDict with representation {(2, 4): -6, (3, 3): -8, (3, 5): -4}
- term_rmult(exponent, s)[source]¶
Return this element multiplied by
s
on the right and with exponents shifted byexponent
.INPUT:
exponent
– a ETuples
– a scalar
EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple, PolyDict sage: x, y = FreeMonoid(2, 'x, y').gens() # a strange object to live in a polydict, but non-commutative! # needs sage.combinat sage: f = PolyDict({(2, 3): x}) # needs sage.combinat sage: f.term_rmult(ETuple((1, 2)), y) # needs sage.combinat PolyDict with representation {(3, 5): x*y} sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.term_rmult(ETuple((1, 2)), -2) PolyDict with representation {(2, 4): -6, (3, 3): -8, (3, 5): -4}
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import ETuple, PolyDict >>> x, y = FreeMonoid(Integer(2), 'x, y').gens() # a strange object to live in a polydict, but non-commutative! # needs sage.combinat >>> f = PolyDict({(Integer(2), Integer(3)): x}) # needs sage.combinat >>> f.term_rmult(ETuple((Integer(1), Integer(2))), y) # needs sage.combinat PolyDict with representation {(3, 5): x*y} >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.term_rmult(ETuple((Integer(1), Integer(2))), -Integer(2)) PolyDict with representation {(2, 4): -6, (3, 3): -8, (3, 5): -4}
- total_degree(w=None)[source]¶
Return the total degree.
INPUT:
w
– (optional) a tuple of weights
EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4}) sage: f.total_degree() 5 sage: f.total_degree((3, 1)) 9 sage: PolyDict({}).degree() -1
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict >>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)}) >>> f.total_degree() 5 >>> f.total_degree((Integer(3), Integer(1))) 9 >>> PolyDict({}).degree() -1
- sage.rings.polynomial.polydict.gen_index(x)[source]¶
Return the index of the variable represented by
x
or-1
ifx
is not a monomial of degree one.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict, gen_index sage: gen_index(PolyDict({(1, 0): 1})) 0 sage: gen_index(PolyDict({(0, 1): 1})) 1 sage: gen_index(PolyDict({})) -1
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict, gen_index >>> gen_index(PolyDict({(Integer(1), Integer(0)): Integer(1)})) 0 >>> gen_index(PolyDict({(Integer(0), Integer(1)): Integer(1)})) 1 >>> gen_index(PolyDict({})) -1
- sage.rings.polynomial.polydict.make_ETuple(data, length)[source]¶
Ensure support for pickled data from older sage versions.
- sage.rings.polynomial.polydict.make_PolyDict(data)[source]¶
Ensure support for pickled data from older sage versions.
- sage.rings.polynomial.polydict.monomial_exponent(p)[source]¶
Return the unique exponent of
p
if it is a monomial or raise aValueError
.EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict, monomial_exponent sage: monomial_exponent(PolyDict({(2, 3): 1})) (2, 3) sage: monomial_exponent(PolyDict({(2, 3): 3})) Traceback (most recent call last): ... ValueError: not a monomial sage: monomial_exponent(PolyDict({(1, 0): 1, (0, 1): 1})) Traceback (most recent call last): ... ValueError: not a monomial
>>> from sage.all import * >>> from sage.rings.polynomial.polydict import PolyDict, monomial_exponent >>> monomial_exponent(PolyDict({(Integer(2), Integer(3)): Integer(1)})) (2, 3) >>> monomial_exponent(PolyDict({(Integer(2), Integer(3)): Integer(3)})) Traceback (most recent call last): ... ValueError: not a monomial >>> monomial_exponent(PolyDict({(Integer(1), Integer(0)): Integer(1), (Integer(0), Integer(1)): Integer(1)})) Traceback (most recent call last): ... ValueError: not a monomial