Ring of Laurent Polynomials (base class)#

If \(R\) is a commutative ring, then the ring of Laurent polynomials in \(n\) variables over \(R\) is \(R[x_1^{\pm 1}, x_2^{\pm 1}, \ldots, x_n^{\pm 1}]\).

AUTHORS:

  • David Roe (2008-2-23): created

  • David Loeffler (2009-07-10): cleaned up docstrings

class sage.rings.polynomial.laurent_polynomial_ring_base.LaurentPolynomialRing_generic(R)[source]#

Bases: CommutativeRing, Parent

Laurent polynomial ring (base class).

EXAMPLES:

This base class inherits from CommutativeRing. Since Issue #11900, it is also initialised as such:

sage: R.<x1,x2> = LaurentPolynomialRing(QQ)
sage: R.category()
Join of Category of unique factorization domains
    and Category of commutative algebras
        over (number fields and quotient fields and metric spaces)
    and Category of infinite sets
sage: TestSuite(R).run()
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, names=('x1', 'x2',)); (x1, x2,) = R._first_ngens(2)
>>> R.category()
Join of Category of unique factorization domains
    and Category of commutative algebras
        over (number fields and quotient fields and metric spaces)
    and Category of infinite sets
>>> TestSuite(R).run()
change_ring(base_ring=None, names=None, sparse=False, order=None)[source]#

EXAMPLES:

sage: R = LaurentPolynomialRing(QQ, 2, 'x')
sage: R.change_ring(ZZ)
Multivariate Laurent Polynomial Ring in x0, x1 over Integer Ring
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, Integer(2), 'x')
>>> R.change_ring(ZZ)
Multivariate Laurent Polynomial Ring in x0, x1 over Integer Ring

Check that the distinction between a univariate ring and a multivariate ring with one generator is preserved:

sage: P.<x> = LaurentPolynomialRing(QQ, 1)
sage: P
Multivariate Laurent Polynomial Ring in x over Rational Field
sage: K.<i> = CyclotomicField(4)                                                        # needs sage.rings.number_field
sage: P.change_ring(K)                                                                  # needs sage.rings.number_field
Multivariate Laurent Polynomial Ring in x over
 Cyclotomic Field of order 4 and degree 2
>>> from sage.all import *
>>> P = LaurentPolynomialRing(QQ, Integer(1), names=('x',)); (x,) = P._first_ngens(1)
>>> P
Multivariate Laurent Polynomial Ring in x over Rational Field
>>> K = CyclotomicField(Integer(4), names=('i',)); (i,) = K._first_ngens(1)# needs sage.rings.number_field
>>> P.change_ring(K)                                                                  # needs sage.rings.number_field
Multivariate Laurent Polynomial Ring in x over
 Cyclotomic Field of order 4 and degree 2
characteristic()[source]#

Returns the characteristic of the base ring.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').characteristic()
0
sage: LaurentPolynomialRing(GF(3), 2, 'x').characteristic()
3
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').characteristic()
0
>>> LaurentPolynomialRing(GF(Integer(3)), Integer(2), 'x').characteristic()
3
completion(p=None, prec=20, extras=None)[source]#

Return the completion of self.

Currently only implemented for the ring of formal Laurent series. The prec variable controls the precision used in the Laurent series ring. If prec is \(\infty\), then this returns a LazyLaurentSeriesRing.

EXAMPLES:

sage: P.<x> = LaurentPolynomialRing(QQ); P
Univariate Laurent Polynomial Ring in x over Rational Field
sage: PP = P.completion(x); PP
Laurent Series Ring in x over Rational Field
sage: f = 1 - 1/x
sage: PP(f)
-x^-1 + 1
sage: g = 1 / PP(f); g
-x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^10 - x^11
 - x^12 - x^13 - x^14 - x^15 - x^16 - x^17 - x^18 - x^19 - x^20 + O(x^21)
sage: 1 / g
-x^-1 + 1 + O(x^19)

sage: # needs sage.combinat
sage: PP = P.completion(x, prec=oo); PP
Lazy Laurent Series Ring in x over Rational Field
sage: g = 1 / PP(f); g
-x - x^2 - x^3 + O(x^4)
sage: 1 / g == f
True
>>> from sage.all import *
>>> P = LaurentPolynomialRing(QQ, names=('x',)); (x,) = P._first_ngens(1); P
Univariate Laurent Polynomial Ring in x over Rational Field
>>> PP = P.completion(x); PP
Laurent Series Ring in x over Rational Field
>>> f = Integer(1) - Integer(1)/x
>>> PP(f)
-x^-1 + 1
>>> g = Integer(1) / PP(f); g
-x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^10 - x^11
 - x^12 - x^13 - x^14 - x^15 - x^16 - x^17 - x^18 - x^19 - x^20 + O(x^21)
>>> Integer(1) / g
-x^-1 + 1 + O(x^19)

>>> # needs sage.combinat
>>> PP = P.completion(x, prec=oo); PP
Lazy Laurent Series Ring in x over Rational Field
>>> g = Integer(1) / PP(f); g
-x - x^2 - x^3 + O(x^4)
>>> Integer(1) / g == f
True
construction()[source]#

Return the construction of self.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x,y').construction()
(LaurentPolynomialFunctor,
 Univariate Laurent Polynomial Ring in x over Rational Field)
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x,y').construction()
(LaurentPolynomialFunctor,
 Univariate Laurent Polynomial Ring in x over Rational Field)
fraction_field()[source]#

The fraction field is the same as the fraction field of the polynomial ring.

EXAMPLES:

sage: L.<x> = LaurentPolynomialRing(QQ)
sage: L.fraction_field()
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: (x^-1 + 2) / (x - 1)
(2*x + 1)/(x^2 - x)
>>> from sage.all import *
>>> L = LaurentPolynomialRing(QQ, names=('x',)); (x,) = L._first_ngens(1)
>>> L.fraction_field()
Fraction Field of Univariate Polynomial Ring in x over Rational Field
>>> (x**-Integer(1) + Integer(2)) / (x - Integer(1))
(2*x + 1)/(x^2 - x)
gen(i=0)[source]#

Returns the \(i^{th}\) generator of self. If i is not specified, then the first generator will be returned.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').gen()
x0
sage: LaurentPolynomialRing(QQ, 2, 'x').gen(0)
x0
sage: LaurentPolynomialRing(QQ, 2, 'x').gen(1)
x1
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').gen()
x0
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').gen(Integer(0))
x0
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').gen(Integer(1))
x1
ideal(*args, **kwds)[source]#

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').ideal([1])
Ideal (1) of Multivariate Laurent Polynomial Ring in x0, x1 over Rational Field
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').ideal([Integer(1)])
Ideal (1) of Multivariate Laurent Polynomial Ring in x0, x1 over Rational Field
is_exact()[source]#

Return True if the base ring is exact.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').is_exact()
True
sage: LaurentPolynomialRing(RDF, 2, 'x').is_exact()
False
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').is_exact()
True
>>> LaurentPolynomialRing(RDF, Integer(2), 'x').is_exact()
False
is_field(proof=True)[source]#

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').is_field()
False
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').is_field()
False
is_finite()[source]#

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').is_finite()
False
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').is_finite()
False
is_integral_domain(proof=True)[source]#

Return True if self is an integral domain.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').is_integral_domain()
True
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').is_integral_domain()
True

The following used to fail; see Issue #7530:

sage: L = LaurentPolynomialRing(ZZ, 'X')
sage: L['Y']
Univariate Polynomial Ring in Y over
 Univariate Laurent Polynomial Ring in X over Integer Ring
>>> from sage.all import *
>>> L = LaurentPolynomialRing(ZZ, 'X')
>>> L['Y']
Univariate Polynomial Ring in Y over
 Univariate Laurent Polynomial Ring in X over Integer Ring
is_noetherian()[source]#

Return True if self is Noetherian.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').is_noetherian()
True
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').is_noetherian()
True
krull_dimension()[source]#

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').krull_dimension()
Traceback (most recent call last):
...
NotImplementedError
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').krull_dimension()
Traceback (most recent call last):
...
NotImplementedError
ngens()[source]#

Return the number of generators of self.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').ngens()
2
sage: LaurentPolynomialRing(QQ, 1, 'x').ngens()
1
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').ngens()
2
>>> LaurentPolynomialRing(QQ, Integer(1), 'x').ngens()
1
polynomial_ring()[source]#

Returns the polynomial ring associated with self.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').polynomial_ring()
Multivariate Polynomial Ring in x0, x1 over Rational Field
sage: LaurentPolynomialRing(QQ, 1, 'x').polynomial_ring()
Multivariate Polynomial Ring in x over Rational Field
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').polynomial_ring()
Multivariate Polynomial Ring in x0, x1 over Rational Field
>>> LaurentPolynomialRing(QQ, Integer(1), 'x').polynomial_ring()
Multivariate Polynomial Ring in x over Rational Field
random_element(min_valuation=-2, max_degree=2, *args, **kwds)[source]#

Return a random polynomial with degree at most max_degree and lowest valuation at least min_valuation.

Uses the random sampling from the base polynomial ring then divides out by a monomial to ensure correct max_degree and min_valuation.

INPUT:

  • min_valuation – integer (default: -2); the minimal allowed valuation of the polynomial

  • max_degree – integer (default: 2); the maximal allowed degree of the polynomial

  • *args, **kwds – passed to the random element generator of the base polynomial ring and base ring itself

EXAMPLES:

sage: L.<x> = LaurentPolynomialRing(QQ)
sage: f = L.random_element()
sage: f.degree() <= 2
True
sage: f.valuation() >= -2
True
sage: f.parent() is L
True
>>> from sage.all import *
>>> L = LaurentPolynomialRing(QQ, names=('x',)); (x,) = L._first_ngens(1)
>>> f = L.random_element()
>>> f.degree() <= Integer(2)
True
>>> f.valuation() >= -Integer(2)
True
>>> f.parent() is L
True
sage: L = LaurentPolynomialRing(ZZ, 2, 'x')
sage: f = L.random_element(10, 20)
sage: f.degree() <= 20
True
sage: f.valuation() >= 10
True
sage: f.parent() is L
True
>>> from sage.all import *
>>> L = LaurentPolynomialRing(ZZ, Integer(2), 'x')
>>> f = L.random_element(Integer(10), Integer(20))
>>> f.degree() <= Integer(20)
True
>>> f.valuation() >= Integer(10)
True
>>> f.parent() is L
True
sage: L = LaurentPolynomialRing(GF(13), 3, 'x')
sage: f = L.random_element(-10, -1)
sage: f.degree() <= -1
True
sage: f.valuation() >= -10
True
sage: f.parent() is L
True
>>> from sage.all import *
>>> L = LaurentPolynomialRing(GF(Integer(13)), Integer(3), 'x')
>>> f = L.random_element(-Integer(10), -Integer(1))
>>> f.degree() <= -Integer(1)
True
>>> f.valuation() >= -Integer(10)
True
>>> f.parent() is L
True
sage: L.<x, y> = LaurentPolynomialRing(RR)
sage: f = L.random_element()
sage: f.degree() <= 2
True
sage: f.valuation() >= -2
True
sage: f.parent() is L
True
>>> from sage.all import *
>>> L = LaurentPolynomialRing(RR, names=('x', 'y',)); (x, y,) = L._first_ngens(2)
>>> f = L.random_element()
>>> f.degree() <= Integer(2)
True
>>> f.valuation() >= -Integer(2)
True
>>> f.parent() is L
True
sage: L = LaurentPolynomialRing(QQbar, 5, 'x')
sage: f = L.random_element(-1, 1)
sage: f = L.random_element(-1, 1)
sage: f.degree() <= 1
True
sage: f.valuation() >= -1
True
sage: f.parent() is L
True
>>> from sage.all import *
>>> L = LaurentPolynomialRing(QQbar, Integer(5), 'x')
>>> f = L.random_element(-Integer(1), Integer(1))
>>> f = L.random_element(-Integer(1), Integer(1))
>>> f.degree() <= Integer(1)
True
>>> f.valuation() >= -Integer(1)
True
>>> f.parent() is L
True
remove_var(var)[source]#

EXAMPLES:

sage: R = LaurentPolynomialRing(QQ,'x,y,z')
sage: R.remove_var('x')
Multivariate Laurent Polynomial Ring in y, z over Rational Field
sage: R.remove_var('x').remove_var('y')
Univariate Laurent Polynomial Ring in z over Rational Field
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ,'x,y,z')
>>> R.remove_var('x')
Multivariate Laurent Polynomial Ring in y, z over Rational Field
>>> R.remove_var('x').remove_var('y')
Univariate Laurent Polynomial Ring in z over Rational Field
term_order()[source]#

Returns the term order of self.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').term_order()
Degree reverse lexicographic term order
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').term_order()
Degree reverse lexicographic term order
variable_names_recursive(depth=+Infinity)[source]#

Return the list of variable names of this ring and its base rings, as if it were a single multi-variate Laurent polynomial.

INPUT:

OUTPUT:

A tuple of strings.

EXAMPLES:

sage: T = LaurentPolynomialRing(QQ, 'x')
sage: S = LaurentPolynomialRing(T, 'y')
sage: R = LaurentPolynomialRing(S, 'z')
sage: R.variable_names_recursive()
('x', 'y', 'z')
sage: R.variable_names_recursive(2)
('y', 'z')
>>> from sage.all import *
>>> T = LaurentPolynomialRing(QQ, 'x')
>>> S = LaurentPolynomialRing(T, 'y')
>>> R = LaurentPolynomialRing(S, 'z')
>>> R.variable_names_recursive()
('x', 'y', 'z')
>>> R.variable_names_recursive(Integer(2))
('y', 'z')