Schemes#
- class sage.categories.schemes.AbelianVarieties(base)[source]#
Bases:
Schemes_over_base
The category of abelian varieties over a given field.
EXAMPLES:
sage: AbelianVarieties(QQ) Category of abelian varieties over Rational Field sage: AbelianVarieties(ZZ) Traceback (most recent call last): ... ValueError: category of abelian varieties is only defined over fields
>>> from sage.all import * >>> AbelianVarieties(QQ) Category of abelian varieties over Rational Field >>> AbelianVarieties(ZZ) Traceback (most recent call last): ... ValueError: category of abelian varieties is only defined over fields
- class Homsets(category, *args)[source]#
Bases:
HomsetsCategory
Overloaded
Homsets
class to register the homset as an additive abelian group.EXAMPLES:
sage: AbelianVarieties(QQ).Homsets().is_subcategory(CommutativeAdditiveGroups()) True
>>> from sage.all import * >>> AbelianVarieties(QQ).Homsets().is_subcategory(CommutativeAdditiveGroups()) True
- class Endset(base_category)[source]#
Bases:
CategoryWithAxiom
Overloaded
Endset
class to register the endset as a ring.sage: AbelianVarieties(QQ).Endsets().is_subcategory(Rings()) True
- extra_super_categories()[source]#
Register the homset as an additive abelian group.
EXAMPLES:
sage: Hom(EllipticCurve(j=1), EllipticCurve(j=2)) in CommutativeAdditiveGroups() True
>>> from sage.all import * >>> Hom(EllipticCurve(j=Integer(1)), EllipticCurve(j=Integer(2))) in CommutativeAdditiveGroups() True
- base_scheme()[source]#
EXAMPLES:
sage: Schemes(Spec(ZZ)).base_scheme() Spectrum of Integer Ring
>>> from sage.all import * >>> Schemes(Spec(ZZ)).base_scheme() Spectrum of Integer Ring
- super_categories()[source]#
EXAMPLES:
sage: AbelianVarieties(QQ).super_categories() [Category of schemes over Rational Field, Category of commutative additive groups]
>>> from sage.all import * >>> AbelianVarieties(QQ).super_categories() [Category of schemes over Rational Field, Category of commutative additive groups]
- class sage.categories.schemes.Jacobians(base)[source]#
Bases:
Schemes_over_base
The category of Jacobians attached to curves or function fields.
EXAMPLES:
sage: Jacobians(QQ) Category of Jacobians over Rational Field
>>> from sage.all import * >>> Jacobians(QQ) Category of Jacobians over Rational Field
- class ParentMethods[source]#
Bases:
object
- base_curve()[source]#
Return the curve to which this Jacobian is attached.
EXAMPLES:
sage: # needs sage.rings.function_field sage: K.<x> = FunctionField(GF(2)) sage: J = K.jacobian() sage: J.base_curve() Rational function field in x over Finite Field of size 2
>>> from sage.all import * >>> # needs sage.rings.function_field >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> J = K.jacobian() >>> J.base_curve() Rational function field in x over Finite Field of size 2
- base_scheme()[source]#
Return the base scheme of this Jacobians category.
EXAMPLES:
sage: Jacobians(QQ).base_scheme() Spectrum of Rational Field
>>> from sage.all import * >>> Jacobians(QQ).base_scheme() Spectrum of Rational Field
- super_categories()[source]#
Return the super categories of this Jacobians category.
EXAMPLES:
sage: Jacobians(QQ).super_categories() [Category of abelian varieties over Rational Field]
>>> from sage.all import * >>> Jacobians(QQ).super_categories() [Category of abelian varieties over Rational Field]
- class sage.categories.schemes.Schemes[source]#
Bases:
Category
The category of all schemes.
EXAMPLES:
sage: Schemes() Category of schemes
>>> from sage.all import * >>> Schemes() Category of schemes
Schemes
can also be used to construct the category of schemes over a given base:sage: Schemes(Spec(ZZ)) Category of schemes over Integer Ring sage: Schemes(ZZ) Category of schemes over Integer Ring
>>> from sage.all import * >>> Schemes(Spec(ZZ)) Category of schemes over Integer Ring >>> Schemes(ZZ) Category of schemes over Integer Ring
Todo
Make
Schemes()
a singleton category (and removeSchemes
from the workaround incategory_types.Category_over_base._test_category_over_bases()
).This is currently incompatible with the dispatching below.
- class sage.categories.schemes.Schemes_over_base(base, name=None)[source]#
Bases:
Category_over_base
The category of schemes over a given base scheme.
EXAMPLES:
sage: Schemes(Spec(ZZ)) Category of schemes over Integer Ring
>>> from sage.all import * >>> Schemes(Spec(ZZ)) Category of schemes over Integer Ring