Linear Expressions¶
A linear expression is just a linear polynomial in some (fixed) variables (allowing a nonzero constant term). This class only implements linear expressions for others to use.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ); L
Module of linear expressions in variables x, y, z over Rational Field
sage: x + 2*y + 3*z + 4
x + 2*y + 3*z + 4
sage: L(4)
0*x + 0*y + 0*z + 4
>>> from sage.all import *
>>> from sage.geometry.linear_expression import LinearExpressionModule
>>> L = LinearExpressionModule(QQ, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3); L
Module of linear expressions in variables x, y, z over Rational Field
>>> x + Integer(2)*y + Integer(3)*z + Integer(4)
x + 2*y + 3*z + 4
>>> L(Integer(4))
0*x + 0*y + 0*z + 4
You can also pass coefficients and a constant term to construct linear expressions:
sage: L([1, 2, 3], 4)
x + 2*y + 3*z + 4
sage: L([(1, 2, 3), 4])
x + 2*y + 3*z + 4
sage: L([4, 1, 2, 3]) # note: constant is first in single-tuple notation
x + 2*y + 3*z + 4
>>> from sage.all import *
>>> L([Integer(1), Integer(2), Integer(3)], Integer(4))
x + 2*y + 3*z + 4
>>> L([(Integer(1), Integer(2), Integer(3)), Integer(4)])
x + 2*y + 3*z + 4
>>> L([Integer(4), Integer(1), Integer(2), Integer(3)]) # note: constant is first in single-tuple notation
x + 2*y + 3*z + 4
The linear expressions are a module over the base ring, so you can add them and multiply them with scalars:
sage: m = x + 2*y + 3*z + 4
sage: 2*m
2*x + 4*y + 6*z + 8
sage: m+m
2*x + 4*y + 6*z + 8
sage: m-m
0*x + 0*y + 0*z + 0
>>> from sage.all import *
>>> m = x + Integer(2)*y + Integer(3)*z + Integer(4)
>>> Integer(2)*m
2*x + 4*y + 6*z + 8
>>> m+m
2*x + 4*y + 6*z + 8
>>> m-m
0*x + 0*y + 0*z + 0
- class sage.geometry.linear_expression.LinearExpression(parent, coefficients, constant, check=True)[source]¶
Bases:
ModuleElement
A linear expression.
A linear expression is just a linear polynomial in some (fixed) variables.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: m = L([1, 2, 3], 4); m x + 2*y + 3*z + 4 sage: m2 = L([(1, 2, 3), 4]); m2 x + 2*y + 3*z + 4 sage: m3 = L([4, 1, 2, 3]); m3 # note: constant is first in single-tuple notation x + 2*y + 3*z + 4 sage: m == m2 True sage: m2 == m3 True sage: L.zero() 0*x + 0*y + 0*z + 0 sage: a = L([12, 2/3, -1], -2) sage: a - m 11*x - 4/3*y - 4*z - 6 sage: LZ.<x,y,z> = LinearExpressionModule(ZZ) sage: a - LZ([2, -1, 3], 1) 10*x + 5/3*y - 4*z - 3
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3) >>> m = L([Integer(1), Integer(2), Integer(3)], Integer(4)); m x + 2*y + 3*z + 4 >>> m2 = L([(Integer(1), Integer(2), Integer(3)), Integer(4)]); m2 x + 2*y + 3*z + 4 >>> m3 = L([Integer(4), Integer(1), Integer(2), Integer(3)]); m3 # note: constant is first in single-tuple notation x + 2*y + 3*z + 4 >>> m == m2 True >>> m2 == m3 True >>> L.zero() 0*x + 0*y + 0*z + 0 >>> a = L([Integer(12), Integer(2)/Integer(3), -Integer(1)], -Integer(2)) >>> a - m 11*x - 4/3*y - 4*z - 6 >>> LZ = LinearExpressionModule(ZZ, names=('x', 'y', 'z',)); (x, y, z,) = LZ._first_ngens(3) >>> a - LZ([Integer(2), -Integer(1), Integer(3)], Integer(1)) 10*x + 5/3*y - 4*z - 3
- A()[source]¶
Return the coefficient vector.
OUTPUT: the coefficient vector of the linear expression
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4); linear x + 2*y + 3*z + 4 sage: linear.A() (1, 2, 3) sage: linear.b() 4
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3) >>> linear = L([Integer(1), Integer(2), Integer(3)], Integer(4)); linear x + 2*y + 3*z + 4 >>> linear.A() (1, 2, 3) >>> linear.b() 4
- b()[source]¶
Return the constant term.
OUTPUT: the constant term of the linear expression
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4); linear x + 2*y + 3*z + 4 sage: linear.A() (1, 2, 3) sage: linear.b() 4
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3) >>> linear = L([Integer(1), Integer(2), Integer(3)], Integer(4)); linear x + 2*y + 3*z + 4 >>> linear.A() (1, 2, 3) >>> linear.b() 4
- change_ring(base_ring)[source]¶
Change the base ring of this linear expression.
INPUT:
base_ring
– a ring; the new base ring
OUTPUT: a new linear expression over the new base ring
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: a = x + 2*y + 3*z + 4; a x + 2*y + 3*z + 4 sage: a.change_ring(RDF) 1.0*x + 2.0*y + 3.0*z + 4.0
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3) >>> a = x + Integer(2)*y + Integer(3)*z + Integer(4); a x + 2*y + 3*z + 4 >>> a.change_ring(RDF) 1.0*x + 2.0*y + 3.0*z + 4.0
- coefficients()[source]¶
Return all coefficients.
OUTPUT:
The constant (as first entry) and coefficients of the linear terms (as subsequent entries) in a list.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4); linear x + 2*y + 3*z + 4 sage: linear.coefficients() [4, 1, 2, 3]
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3) >>> linear = L([Integer(1), Integer(2), Integer(3)], Integer(4)); linear x + 2*y + 3*z + 4 >>> linear.coefficients() [4, 1, 2, 3]
- constant_term()[source]¶
Return the constant term.
OUTPUT: the constant term of the linear expression
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4); linear x + 2*y + 3*z + 4 sage: linear.A() (1, 2, 3) sage: linear.b() 4
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3) >>> linear = L([Integer(1), Integer(2), Integer(3)], Integer(4)); linear x + 2*y + 3*z + 4 >>> linear.A() (1, 2, 3) >>> linear.b() 4
- dense_coefficient_list()[source]¶
Return all coefficients.
OUTPUT:
The constant (as first entry) and coefficients of the linear terms (as subsequent entries) in a list.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4); linear x + 2*y + 3*z + 4 sage: linear.coefficients() [4, 1, 2, 3]
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3) >>> linear = L([Integer(1), Integer(2), Integer(3)], Integer(4)); linear x + 2*y + 3*z + 4 >>> linear.coefficients() [4, 1, 2, 3]
- evaluate(point)[source]¶
Evaluate the linear expression.
INPUT:
point
– list/tuple/iterable of coordinates; the coordinates of a point
OUTPUT: the linear expression \(Ax + b\) evaluated at the point \(x\)
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y> = LinearExpressionModule(QQ) sage: ex = 2*x + 3* y + 4 sage: ex.evaluate([1,1]) 9 sage: ex([1,1]) # syntactic sugar 9 sage: ex([pi, e]) # needs sage.symbolic 2*pi + 3*e + 4
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, names=('x', 'y',)); (x, y,) = L._first_ngens(2) >>> ex = Integer(2)*x + Integer(3)* y + Integer(4) >>> ex.evaluate([Integer(1),Integer(1)]) 9 >>> ex([Integer(1),Integer(1)]) # syntactic sugar 9 >>> ex([pi, e]) # needs sage.symbolic 2*pi + 3*e + 4
- monomial_coefficients(copy=True)[source]¶
Return a dictionary whose keys are indices of basis elements in the support of
self
and whose values are the corresponding coefficients.INPUT:
copy
– ignored
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4) sage: sorted(linear.monomial_coefficients().items(), key=lambda x: str(x[0])) [(0, 1), (1, 2), (2, 3), ('b', 4)]
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3) >>> linear = L([Integer(1), Integer(2), Integer(3)], Integer(4)) >>> sorted(linear.monomial_coefficients().items(), key=lambda x: str(x[Integer(0)])) [(0, 1), (1, 2), (2, 3), ('b', 4)]
- class sage.geometry.linear_expression.LinearExpressionModule(base_ring, names=())[source]¶
Bases:
Parent
,UniqueRepresentation
The module of linear expressions.
This is the module of linear polynomials which is the parent for linear expressions.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L Module of linear expressions in variables x, y, z over Rational Field sage: L.an_element() x + 0*y + 0*z + 0
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, ('x', 'y', 'z')) >>> L Module of linear expressions in variables x, y, z over Rational Field >>> L.an_element() x + 0*y + 0*z + 0
- Element[source]¶
alias of
LinearExpression
- ambient_module()[source]¶
Return the ambient module.
See also
OUTPUT:
The domain of the linear expressions as a free module over the base ring.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.ambient_module() Vector space of dimension 3 over Rational Field sage: M = LinearExpressionModule(ZZ, ('r', 's')) sage: M.ambient_module() Ambient free module of rank 2 over the principal ideal domain Integer Ring sage: M.ambient_vector_space() Vector space of dimension 2 over Rational Field
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, ('x', 'y', 'z')) >>> L.ambient_module() Vector space of dimension 3 over Rational Field >>> M = LinearExpressionModule(ZZ, ('r', 's')) >>> M.ambient_module() Ambient free module of rank 2 over the principal ideal domain Integer Ring >>> M.ambient_vector_space() Vector space of dimension 2 over Rational Field
- ambient_vector_space()[source]¶
Return the ambient vector space.
See also
OUTPUT:
The vector space (over the fraction field of the base ring) where the linear expressions live.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.ambient_vector_space() Vector space of dimension 3 over Rational Field sage: M = LinearExpressionModule(ZZ, ('r', 's')) sage: M.ambient_module() Ambient free module of rank 2 over the principal ideal domain Integer Ring sage: M.ambient_vector_space() Vector space of dimension 2 over Rational Field
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, ('x', 'y', 'z')) >>> L.ambient_vector_space() Vector space of dimension 3 over Rational Field >>> M = LinearExpressionModule(ZZ, ('r', 's')) >>> M.ambient_module() Ambient free module of rank 2 over the principal ideal domain Integer Ring >>> M.ambient_vector_space() Vector space of dimension 2 over Rational Field
- basis()[source]¶
Return a basis of
self
.EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: list(L.basis()) [x + 0*y + 0*z + 0, 0*x + y + 0*z + 0, 0*x + 0*y + z + 0, 0*x + 0*y + 0*z + 1]
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, ('x', 'y', 'z')) >>> list(L.basis()) [x + 0*y + 0*z + 0, 0*x + y + 0*z + 0, 0*x + 0*y + z + 0, 0*x + 0*y + 0*z + 1]
- change_ring(base_ring)[source]¶
Return a new module with a changed base ring.
INPUT:
base_ring
– a ring; the new base ring
OUTPUT: a new linear expression over the new base ring
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: M.<y> = LinearExpressionModule(ZZ) sage: L = M.change_ring(QQ); L Module of linear expressions in variable y over Rational Field
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> M = LinearExpressionModule(ZZ, names=('y',)); (y,) = M._first_ngens(1) >>> L = M.change_ring(QQ); L Module of linear expressions in variable y over Rational Field
- gen(i)[source]¶
Return the \(i\)-th generator.
INPUT:
i
– integer
OUTPUT: a linear expression
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.gen(0) x + 0*y + 0*z + 0
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, ('x', 'y', 'z')) >>> L.gen(Integer(0)) x + 0*y + 0*z + 0
- gens()[source]¶
Return the generators of
self
.OUTPUT: a tuple of linear expressions, one for each linear variable
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.gens() (x + 0*y + 0*z + 0, 0*x + y + 0*z + 0, 0*x + 0*y + z + 0)
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, ('x', 'y', 'z')) >>> L.gens() (x + 0*y + 0*z + 0, 0*x + y + 0*z + 0, 0*x + 0*y + z + 0)
- ngens()[source]¶
Return the number of linear variables.
OUTPUT: integer
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.ngens() 3
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, ('x', 'y', 'z')) >>> L.ngens() 3
- random_element()[source]¶
Return a random element.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: L.random_element() in L True
>>> from sage.all import * >>> from sage.geometry.linear_expression import LinearExpressionModule >>> L = LinearExpressionModule(QQ, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3) >>> L.random_element() in L True