Toric lattices¶
This module was designed as a part of the framework for toric varieties
(variety,
fano_variety).
All toric lattices are isomorphic to \(\ZZ^n\) for some \(n\), but will prevent you from doing “wrong” operations with objects from different lattices.
AUTHORS:
- Andrey Novoseltsev (2010-05-27): initial version. 
- Andrey Novoseltsev (2010-07-30): sublattices and quotients. 
EXAMPLES:
The simplest way to create a toric lattice is to specify its dimension only:
sage: N = ToricLattice(3)
sage: N
3-d lattice N
>>> from sage.all import *
>>> N = ToricLattice(Integer(3))
>>> N
3-d lattice N
While our lattice N is called exactly “N” it is a coincidence: all
lattices are called “N” by default:
sage: another_name = ToricLattice(3)
sage: another_name
3-d lattice N
>>> from sage.all import *
>>> another_name = ToricLattice(Integer(3))
>>> another_name
3-d lattice N
If fact, the above lattice is exactly the same as before as an object in memory:
sage: N is another_name
True
>>> from sage.all import *
>>> N is another_name
True
There are actually four names associated to a toric lattice and they all must be the same for two lattices to coincide:
sage: N, N.dual(), latex(N), latex(N.dual())
(3-d lattice N, 3-d lattice M, N, M)
>>> from sage.all import *
>>> N, N.dual(), latex(N), latex(N.dual())
(3-d lattice N, 3-d lattice M, N, M)
Notice that the lattice dual to N is called “M” which is standard in toric
geometry. This happens only if you allow completely automatic handling of
names:
sage: another_N = ToricLattice(3, "N")
sage: another_N.dual()
3-d lattice N*
sage: N is another_N
False
>>> from sage.all import *
>>> another_N = ToricLattice(Integer(3), "N")
>>> another_N.dual()
3-d lattice N*
>>> N is another_N
False
What can you do with toric lattices? Well, their main purpose is to allow creation of elements of toric lattices:
sage: n = N([1,2,3])
sage: n
N(1, 2, 3)
sage: M = N.dual()
sage: m = M(1,2,3)
sage: m
M(1, 2, 3)
>>> from sage.all import *
>>> n = N([Integer(1),Integer(2),Integer(3)])
>>> n
N(1, 2, 3)
>>> M = N.dual()
>>> m = M(Integer(1),Integer(2),Integer(3))
>>> m
M(1, 2, 3)
Dual lattices can act on each other:
sage: n * m
14
sage: m * n
14
>>> from sage.all import *
>>> n * m
14
>>> m * n
14
You can also add elements of the same lattice or scale them:
sage: 2 * n
N(2, 4, 6)
sage: n * 2
N(2, 4, 6)
sage: n + n
N(2, 4, 6)
>>> from sage.all import *
>>> Integer(2) * n
N(2, 4, 6)
>>> n * Integer(2)
N(2, 4, 6)
>>> n + n
N(2, 4, 6)
However, you cannot “mix wrong lattices” in your expressions:
sage: n + m
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +:
'3-d lattice N' and '3-d lattice M'
sage: n * n
Traceback (most recent call last):
...
TypeError: elements of the same toric lattice cannot be multiplied!
sage: n == m
False
>>> from sage.all import *
>>> n + m
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +:
'3-d lattice N' and '3-d lattice M'
>>> n * n
Traceback (most recent call last):
...
TypeError: elements of the same toric lattice cannot be multiplied!
>>> n == m
False
Note that n and m are not equal to each other even though they are
both “just (1,2,3).” Moreover, you cannot easily convert elements between
toric lattices:
sage: M(n)
Traceback (most recent call last):
...
TypeError: N(1, 2, 3) cannot be converted to 3-d lattice M!
>>> from sage.all import *
>>> M(n)
Traceback (most recent call last):
...
TypeError: N(1, 2, 3) cannot be converted to 3-d lattice M!
If you really need to consider elements of one lattice as elements of another, you can either use intermediate conversion to “just a vector”:
sage: ZZ3 = ZZ^3
sage: n_in_M = M(ZZ3(n))
sage: n_in_M
M(1, 2, 3)
sage: n == n_in_M
False
sage: n_in_M == m
True
>>> from sage.all import *
>>> ZZ3 = ZZ**Integer(3)
>>> n_in_M = M(ZZ3(n))
>>> n_in_M
M(1, 2, 3)
>>> n == n_in_M
False
>>> n_in_M == m
True
Or you can create a homomorphism from one lattice to any other:
sage: h = N.hom(identity_matrix(3), M)
sage: h(n)
M(1, 2, 3)
>>> from sage.all import *
>>> h = N.hom(identity_matrix(Integer(3)), M)
>>> h(n)
M(1, 2, 3)
Warning
While integer vectors (elements of \(\ZZ^n\)) are printed as (1,2,3),
in the code (1,2,3) is a tuple, which has nothing to do
neither with vectors, nor with toric lattices, so the following is
probably not what you want while working with toric geometry objects:
sage: (1,2,3) + (1,2,3)
(1, 2, 3, 1, 2, 3)
>>> from sage.all import *
>>> (Integer(1),Integer(2),Integer(3)) + (Integer(1),Integer(2),Integer(3))
(1, 2, 3, 1, 2, 3)
Instead, use syntax like
sage: N(1,2,3) + N(1,2,3)
N(2, 4, 6)
>>> from sage.all import *
>>> N(Integer(1),Integer(2),Integer(3)) + N(Integer(1),Integer(2),Integer(3))
N(2, 4, 6)
- class sage.geometry.toric_lattice.ToricLatticeFactory[source]¶
- Bases: - UniqueFactory- Create a lattice for toric geometry objects. - INPUT: - rank– nonnegative integer; the only mandatory parameter
- name– string
- dual_name– string
- latex_name– string
- latex_dual_name– string
 - OUTPUT: lattice - A toric lattice is uniquely determined by its rank and associated names. There are four such “associated names” whose meaning should be clear from the names of the corresponding parameters, but the choice of default values is a little bit involved. So here is the full description of the “naming algorithm”: - If no names were given at all, then this lattice will be called “N” and the dual one “M”. These are the standard choices in toric geometry. 
- If - namewas given and- dual_namewas not, then- dual_namewill be- namefollowed by “*”.
- If LaTeX names were not given, they will coincide with the “usual” names, but if - dual_namewas constructed automatically, the trailing star will be typeset as a superscript.
 - EXAMPLES: - Let’s start with no names at all and see how automatic names are given: - sage: L1 = ToricLattice(3) sage: L1 3-d lattice N sage: L1.dual() 3-d lattice M - >>> from sage.all import * >>> L1 = ToricLattice(Integer(3)) >>> L1 3-d lattice N >>> L1.dual() 3-d lattice M - If we give the name “N” explicitly, the dual lattice will be called “N*”: - sage: L2 = ToricLattice(3, "N") sage: L2 3-d lattice N sage: L2.dual() 3-d lattice N* - >>> from sage.all import * >>> L2 = ToricLattice(Integer(3), "N") >>> L2 3-d lattice N >>> L2.dual() 3-d lattice N* - However, we can give an explicit name for it too: - sage: L3 = ToricLattice(3, "N", "M") sage: L3 3-d lattice N sage: L3.dual() 3-d lattice M - >>> from sage.all import * >>> L3 = ToricLattice(Integer(3), "N", "M") >>> L3 3-d lattice N >>> L3.dual() 3-d lattice M - If you want, you may also give explicit LaTeX names: - sage: L4 = ToricLattice(3, "N", "M", r"\mathbb{N}", r"\mathbb{M}") sage: latex(L4) \mathbb{N} sage: latex(L4.dual()) \mathbb{M} - >>> from sage.all import * >>> L4 = ToricLattice(Integer(3), "N", "M", r"\mathbb{N}", r"\mathbb{M}") >>> latex(L4) \mathbb{N} >>> latex(L4.dual()) \mathbb{M} - While all four lattices above are called “N”, only two of them are equal (and are actually the same): - sage: L1 == L2 False sage: L1 == L3 True sage: L1 is L3 True sage: L1 == L4 False - >>> from sage.all import * >>> L1 == L2 False >>> L1 == L3 True >>> L1 is L3 True >>> L1 == L4 False - The reason for this is that - L2and- L4have different names either for dual lattices or for LaTeX typesetting.- create_key(rank, name=None, dual_name=None, latex_name=None, latex_dual_name=None)[source]¶
- Create a key that uniquely identifies this toric lattice. - See - ToricLatticefor documentation.- Warning - You probably should not use this function directly. 
 - create_object(version, key)[source]¶
- Create the toric lattice described by - key.- See - ToricLatticefor documentation.- Warning - You probably should not use this function directly. 
 
- class sage.geometry.toric_lattice.ToricLattice_ambient(rank, name, dual_name, latex_name, latex_dual_name)[source]¶
- Bases: - ToricLattice_generic,- FreeModule_ambient_pid- Create a toric lattice. - See - ToricLatticefor documentation.- Warning - There should be only one toric lattice with the given rank and associated names. Using this class directly to create toric lattices may lead to unexpected results. Please, use - ToricLatticeto create toric lattices.- ambient_module()[source]¶
- Return the ambient module of - self.- OUTPUT: - toric lattice- Note - For any ambient toric lattice its ambient module is the lattice itself. - EXAMPLES: - sage: N = ToricLattice(3) sage: N.ambient_module() 3-d lattice N sage: N.ambient_module() is N True - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> N.ambient_module() 3-d lattice N >>> N.ambient_module() is N True 
 - dual()[source]¶
- Return the lattice dual to - self.- OUTPUT: - toric lattice- EXAMPLES: - sage: N = ToricLattice(3) sage: N 3-d lattice N sage: M = N.dual() sage: M 3-d lattice M sage: M.dual() is N True - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> N 3-d lattice N >>> M = N.dual() >>> M 3-d lattice M >>> M.dual() is N True - Elements of dual lattices can act on each other: - sage: n = N(1,2,3) sage: m = M(4,5,6) sage: n * m 32 sage: m * n 32 - >>> from sage.all import * >>> n = N(Integer(1),Integer(2),Integer(3)) >>> m = M(Integer(4),Integer(5),Integer(6)) >>> n * m 32 >>> m * n 32 
 - plot(**options)[source]¶
- Plot - self.- INPUT: - any options for toric plots (see - toric_plotter.options), none are mandatory.
 - OUTPUT: a plot - EXAMPLES: - sage: N = ToricLattice(3) sage: N.plot() # needs sage.plot Graphics3d Object - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> N.plot() # needs sage.plot Graphics3d Object 
 
- class sage.geometry.toric_lattice.ToricLattice_generic(base_ring, rank, degree, sparse=False, coordinate_ring=None, category=None)[source]¶
- Bases: - FreeModule_generic_pid- Abstract base class for toric lattices. - construction()[source]¶
- Return the functorial construction of - self.- OUTPUT: - None, we do not think of toric lattices as constructed from simpler objects since we do not want to perform arithmetic involving different lattices.
 - direct_sum(other)[source]¶
- Return the direct sum with - other.- INPUT: - other– a toric lattice or more general module
 - OUTPUT: - The direct sum of - selfand- otheras \(\ZZ\)-modules. If- otheris a- ToricLattice, another toric lattice will be returned.- EXAMPLES: - sage: K = ToricLattice(3, 'K') sage: L = ToricLattice(3, 'L') sage: N = K.direct_sum(L); N 6-d lattice K+L sage: N, N.dual(), latex(N), latex(N.dual()) (6-d lattice K+L, 6-d lattice K*+L*, K \oplus L, K^* \oplus L^*) - >>> from sage.all import * >>> K = ToricLattice(Integer(3), 'K') >>> L = ToricLattice(Integer(3), 'L') >>> N = K.direct_sum(L); N 6-d lattice K+L >>> N, N.dual(), latex(N), latex(N.dual()) (6-d lattice K+L, 6-d lattice K*+L*, K \oplus L, K^* \oplus L^*) - With default names: - sage: N = ToricLattice(3).direct_sum(ToricLattice(2)) sage: N, N.dual(), latex(N), latex(N.dual()) (5-d lattice N+N, 5-d lattice M+M, N \oplus N, M \oplus M) - >>> from sage.all import * >>> N = ToricLattice(Integer(3)).direct_sum(ToricLattice(Integer(2))) >>> N, N.dual(), latex(N), latex(N.dual()) (5-d lattice N+N, 5-d lattice M+M, N \oplus N, M \oplus M) - If - otheris not a- ToricLattice, fall back to sum of modules:- sage: ToricLattice(3).direct_sum(ZZ^2) Free module of degree 5 and rank 5 over Integer Ring Echelon basis matrix: [1 0 0 0 0] [0 1 0 0 0] [0 0 1 0 0] [0 0 0 1 0] [0 0 0 0 1] - >>> from sage.all import * >>> ToricLattice(Integer(3)).direct_sum(ZZ**Integer(2)) Free module of degree 5 and rank 5 over Integer Ring Echelon basis matrix: [1 0 0 0 0] [0 1 0 0 0] [0 0 1 0 0] [0 0 0 1 0] [0 0 0 0 1] 
 - intersection(other)[source]¶
- Return the intersection of - selfand- other.- INPUT: - other– a toric (sub)lattice.dual
 - OUTPUT: - a toric (sub)lattice. 
 - EXAMPLES: - sage: N = ToricLattice(3) sage: Ns1 = N.submodule([N(2,4,0), N(9,12,0)]) sage: Ns2 = N.submodule([N(1,4,9), N(9,2,0)]) sage: Ns1.intersection(Ns2) Sublattice <N(54, 12, 0)> - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns1 = N.submodule([N(Integer(2),Integer(4),Integer(0)), N(Integer(9),Integer(12),Integer(0))]) >>> Ns2 = N.submodule([N(Integer(1),Integer(4),Integer(9)), N(Integer(9),Integer(2),Integer(0))]) >>> Ns1.intersection(Ns2) Sublattice <N(54, 12, 0)> - Note that if one of the intersecting sublattices is a sublattice of another, no new lattices will be constructed: - sage: N.intersection(N) is N True sage: Ns1.intersection(N) is Ns1 True sage: N.intersection(Ns1) is Ns1 True - >>> from sage.all import * >>> N.intersection(N) is N True >>> Ns1.intersection(N) is Ns1 True >>> N.intersection(Ns1) is Ns1 True 
 - quotient(sub, check=True, positive_point=None, positive_dual_point=None, **kwds)[source]¶
- Return the quotient of - selfby the given sublattice- sub.- INPUT: - sub– sublattice of self
- check– boolean (default:- True); whether or not to check that- subis a valid sublattice
 - If the quotient is one-dimensional and torsion free, the following two mutually exclusive keyword arguments are also allowed. They decide the sign choice for the (single) generator of the quotient lattice: - positive_point– a lattice point of- selfnot in the sublattice- sub(that is, not zero in the quotient lattice). The quotient generator will be in the same direction as- positive_point.
- positive_dual_point– a dual lattice point. The quotient generator will be chosen such that its lift has a positive product with- positive_dual_point. Note: if- positive_dual_pointis not zero on the sublattice- sub, then the notion of positivity will depend on the choice of lift!
 - Further named arguments are passed to the constructor of a toric lattice quotient. - EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.submodule([N(2,4,0), N(9,12,0)]) sage: Q = N/Ns sage: Q Quotient with torsion of 3-d lattice N by Sublattice <N(1, 8, 0), N(0, 12, 0)> - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.submodule([N(Integer(2),Integer(4),Integer(0)), N(Integer(9),Integer(12),Integer(0))]) >>> Q = N/Ns >>> Q Quotient with torsion of 3-d lattice N by Sublattice <N(1, 8, 0), N(0, 12, 0)> - Attempting to quotient one lattice by a sublattice of another will result in a - ValueError:- sage: N = ToricLattice(3) sage: M = ToricLattice(3, name='M') sage: Ms = M.submodule([M(2,4,0), M(9,12,0)]) sage: N.quotient(Ms) Traceback (most recent call last): ... ValueError: M(1, 8, 0) cannot generate a sublattice of 3-d lattice N - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> M = ToricLattice(Integer(3), name='M') >>> Ms = M.submodule([M(Integer(2),Integer(4),Integer(0)), M(Integer(9),Integer(12),Integer(0))]) >>> N.quotient(Ms) Traceback (most recent call last): ... ValueError: M(1, 8, 0) cannot generate a sublattice of 3-d lattice N - However, if we forget the sublattice structure, then it is possible to quotient by vector spaces or modules constructed from any sublattice: - sage: N = ToricLattice(3) sage: M = ToricLattice(3, name='M') sage: Ms = M.submodule([M(2,4,0), M(9,12,0)]) sage: N.quotient(Ms.vector_space()) Quotient with torsion of 3-d lattice N by Sublattice <N(1, 8, 0), N(0, 12, 0)> sage: N.quotient(Ms.sparse_module()) Quotient with torsion of 3-d lattice N by Sublattice <N(1, 8, 0), N(0, 12, 0)> - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> M = ToricLattice(Integer(3), name='M') >>> Ms = M.submodule([M(Integer(2),Integer(4),Integer(0)), M(Integer(9),Integer(12),Integer(0))]) >>> N.quotient(Ms.vector_space()) Quotient with torsion of 3-d lattice N by Sublattice <N(1, 8, 0), N(0, 12, 0)> >>> N.quotient(Ms.sparse_module()) Quotient with torsion of 3-d lattice N by Sublattice <N(1, 8, 0), N(0, 12, 0)> - See - ToricLattice_quotientfor more examples.
 - saturation()[source]¶
- Return the saturation of - self.- OUTPUT: a - toric lattice- EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.submodule([(1,2,3), (4,5,6)]) sage: Ns Sublattice <N(1, 2, 3), N(0, 3, 6)> sage: Ns_sat = Ns.saturation() sage: Ns_sat Sublattice <N(1, 0, -1), N(0, 1, 2)> sage: Ns_sat is Ns_sat.saturation() True - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.submodule([(Integer(1),Integer(2),Integer(3)), (Integer(4),Integer(5),Integer(6))]) >>> Ns Sublattice <N(1, 2, 3), N(0, 3, 6)> >>> Ns_sat = Ns.saturation() >>> Ns_sat Sublattice <N(1, 0, -1), N(0, 1, 2)> >>> Ns_sat is Ns_sat.saturation() True 
 - span(gens, base_ring=Integer Ring, *args, **kwds)[source]¶
- Return the span of the given generators. - INPUT: - gens– list of elements of the ambient vector space of- self
- base_ring– (default: \(\ZZ\)) base ring for the generated module
 - OUTPUT: submodule spanned by - gens- Note - The output need not be a submodule of - self, nor even of the ambient space. It must, however, be contained in the ambient vector space.- See also - span_of_basis(),- submodule(), and- submodule_with_basis(),- EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.submodule([N.gen(0)]) sage: Ns.span([N.gen(1)]) Sublattice <N(0, 1, 0)> sage: Ns.submodule([N.gen(1)]) Traceback (most recent call last): ... ArithmeticError: argument gens (= [N(0, 1, 0)]) does not generate a submodule of self - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.submodule([N.gen(Integer(0))]) >>> Ns.span([N.gen(Integer(1))]) Sublattice <N(0, 1, 0)> >>> Ns.submodule([N.gen(Integer(1))]) Traceback (most recent call last): ... ArithmeticError: argument gens (= [N(0, 1, 0)]) does not generate a submodule of self 
 - span_of_basis(basis, base_ring=Integer Ring, *args, **kwds)[source]¶
- Return the submodule with the given - basis.- INPUT: - basis– list of elements of the ambient vector space of- self
- base_ring– (default: \(\ZZ\)) base ring for the generated module
 - OUTPUT: submodule spanned by - basis- Note - The output need not be a submodule of - self, nor even of the ambient space. It must, however, be contained in the ambient vector space.- See also - span(),- submodule(), and- submodule_with_basis(),- EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.span_of_basis([(1,2,3)]) sage: Ns.span_of_basis([(2,4,0)]) Sublattice <N(2, 4, 0)> sage: Ns.span_of_basis([(1/5,2/5,0), (1/7,1/7,0)]) Free module of degree 3 and rank 2 over Integer Ring User basis matrix: [1/5 2/5 0] [1/7 1/7 0] - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.span_of_basis([(Integer(1),Integer(2),Integer(3))]) >>> Ns.span_of_basis([(Integer(2),Integer(4),Integer(0))]) Sublattice <N(2, 4, 0)> >>> Ns.span_of_basis([(Integer(1)/Integer(5),Integer(2)/Integer(5),Integer(0)), (Integer(1)/Integer(7),Integer(1)/Integer(7),Integer(0))]) Free module of degree 3 and rank 2 over Integer Ring User basis matrix: [1/5 2/5 0] [1/7 1/7 0] - Of course the input basis vectors must be linearly independent: - sage: Ns.span_of_basis([(1,2,0), (2,4,0)]) Traceback (most recent call last): ... ValueError: The given basis vectors must be linearly independent. - >>> from sage.all import * >>> Ns.span_of_basis([(Integer(1),Integer(2),Integer(0)), (Integer(2),Integer(4),Integer(0))]) Traceback (most recent call last): ... ValueError: The given basis vectors must be linearly independent. 
 
- class sage.geometry.toric_lattice.ToricLattice_quotient(V, W, check=True, positive_point=None, positive_dual_point=None, **kwds)[source]¶
- Bases: - FGP_Module_class- Construct the quotient of a toric lattice - Vby its sublattice- W.- INPUT: - V– ambient toric lattice
- W– sublattice of- V
- check– boolean (default:- True); whether to check correctness of input or not
 - If the quotient is one-dimensional and torsion free, the following two mutually exclusive keyword arguments are also allowed. They decide the sign choice for the (single) generator of the quotient lattice: - positive_point– a lattice point of- selfnot in the sublattice- sub(that is, not zero in the quotient lattice). The quotient generator will be in the same direction as- positive_point.
- positive_dual_point– a dual lattice point. The quotient generator will be chosen such that its lift has a positive product with- positive_dual_point. Note: if- positive_dual_pointis not zero on the sublattice- sub, then the notion of positivity will depend on the choice of lift!
 - Further given named arguments are passed to the constructor of an FGP module. - OUTPUT: quotient of - Vby- W- EXAMPLES: - The intended way to get objects of this class is to use - quotient()method of toric lattices:- sage: N = ToricLattice(3) sage: sublattice = N.submodule([(1,1,0), (3,2,1)]) sage: Q = N/sublattice sage: Q 1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)> sage: Q.gens() (N[1, 0, 0],) - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> sublattice = N.submodule([(Integer(1),Integer(1),Integer(0)), (Integer(3),Integer(2),Integer(1))]) >>> Q = N/sublattice >>> Q 1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)> >>> Q.gens() (N[1, 0, 0],) - Here, - sublatticehappens to be of codimension one in- N. If you want to prescribe the sign of the quotient generator, you can do either:- sage: Q = N.quotient(sublattice, positive_point=N(0,0,-1)); Q 1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)> sage: Q.gens() (N[1, 0, 0],) - >>> from sage.all import * >>> Q = N.quotient(sublattice, positive_point=N(Integer(0),Integer(0),-Integer(1))); Q 1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)> >>> Q.gens() (N[1, 0, 0],) - or: - sage: M = N.dual() sage: Q = N.quotient(sublattice, positive_dual_point=M(1,0,0)); Q 1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)> sage: Q.gens() (N[1, 0, 0],) - >>> from sage.all import * >>> M = N.dual() >>> Q = N.quotient(sublattice, positive_dual_point=M(Integer(1),Integer(0),Integer(0))); Q 1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)> >>> Q.gens() (N[1, 0, 0],) - Element[source]¶
- alias of - ToricLattice_quotient_element
 - base_extend(R)[source]¶
- Return the base change of - selfto the ring- R.- INPUT: - R– either \(\ZZ\) or \(\QQ\)
 - OUTPUT: - selfif \(R=\ZZ\), quotient of the base extension of the ambient lattice by the base extension of the sublattice if \(R=\QQ\)- EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.submodule([N(2,4,0), N(9,12,0)]) sage: Q = N/Ns sage: Q.base_extend(ZZ) is Q True sage: Q.base_extend(QQ) Vector space quotient V/W of dimension 1 over Rational Field where V: Vector space of dimension 3 over Rational Field W: Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [1 0 0] [0 1 0] - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.submodule([N(Integer(2),Integer(4),Integer(0)), N(Integer(9),Integer(12),Integer(0))]) >>> Q = N/Ns >>> Q.base_extend(ZZ) is Q True >>> Q.base_extend(QQ) Vector space quotient V/W of dimension 1 over Rational Field where V: Vector space of dimension 3 over Rational Field W: Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [1 0 0] [0 1 0] 
 - coordinate_vector(x, reduce=False)[source]¶
- Return coordinates of - xwith respect to the optimized representation of- self.- INPUT: - x– element of- selfor convertible to- self
- reduce– (default:- False) if- True, reduce coefficients modulo invariants
 - OUTPUT: the coordinates as a vector - EXAMPLES: - sage: N = ToricLattice(3) sage: Q = N.quotient(N.span([N(1,2,3), N(0,2,1)]), positive_point=N(0,-1,0)) sage: q = Q.gen(0); q N[0, -1, 0] sage: q.vector() # indirect test (1) sage: Q.coordinate_vector(q) (1) - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Q = N.quotient(N.span([N(Integer(1),Integer(2),Integer(3)), N(Integer(0),Integer(2),Integer(1))]), positive_point=N(Integer(0),-Integer(1),Integer(0))) >>> q = Q.gen(Integer(0)); q N[0, -1, 0] >>> q.vector() # indirect test (1) >>> Q.coordinate_vector(q) (1) 
 - dimension()[source]¶
- Return the rank of - self.- OUTPUT: integer; the dimension of the free part of the quotient - EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.submodule([N(2,4,0), N(9,12,0)]) sage: Q = N/Ns sage: Q.ngens() 2 sage: Q.rank() 1 sage: Ns = N.submodule([N(1,4,0)]) sage: Q = N/Ns sage: Q.ngens() 2 sage: Q.rank() 2 - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.submodule([N(Integer(2),Integer(4),Integer(0)), N(Integer(9),Integer(12),Integer(0))]) >>> Q = N/Ns >>> Q.ngens() 2 >>> Q.rank() 1 >>> Ns = N.submodule([N(Integer(1),Integer(4),Integer(0))]) >>> Q = N/Ns >>> Q.ngens() 2 >>> Q.rank() 2 
 - dual()[source]¶
- Return the lattice dual to - self.- OUTPUT: a - toric lattice quotient- EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.submodule([(1, -1, -1)]) sage: Q = N / Ns sage: Q.dual() Sublattice <M(1, 0, 1), M(0, 1, -1)> - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.submodule([(Integer(1), -Integer(1), -Integer(1))]) >>> Q = N / Ns >>> Q.dual() Sublattice <M(1, 0, 1), M(0, 1, -1)> 
 - gens()[source]¶
- Return the generators of the quotient. - OUTPUT: - A tuple of - ToricLattice_quotient_elementgenerating the quotient.- EXAMPLES: - sage: N = ToricLattice(3) sage: Q = N.quotient(N.span([N(1,2,3), N(0,2,1)]), positive_point=N(0,-1,0)) sage: Q.gens() (N[0, -1, 0],) - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Q = N.quotient(N.span([N(Integer(1),Integer(2),Integer(3)), N(Integer(0),Integer(2),Integer(1))]), positive_point=N(Integer(0),-Integer(1),Integer(0))) >>> Q.gens() (N[0, -1, 0],) 
 - is_torsion_free()[source]¶
- Check if - selfis torsion-free.- OUTPUT: - Trueif- selfhas no torsion and- Falseotherwise- EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.submodule([N(2,4,0), N(9,12,0)]) sage: Q = N/Ns sage: Q.is_torsion_free() False sage: Ns = N.submodule([N(1,4,0)]) sage: Q = N/Ns sage: Q.is_torsion_free() True - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.submodule([N(Integer(2),Integer(4),Integer(0)), N(Integer(9),Integer(12),Integer(0))]) >>> Q = N/Ns >>> Q.is_torsion_free() False >>> Ns = N.submodule([N(Integer(1),Integer(4),Integer(0))]) >>> Q = N/Ns >>> Q.is_torsion_free() True 
 - rank()[source]¶
- Return the rank of - self.- OUTPUT: integer; the dimension of the free part of the quotient - EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.submodule([N(2,4,0), N(9,12,0)]) sage: Q = N/Ns sage: Q.ngens() 2 sage: Q.rank() 1 sage: Ns = N.submodule([N(1,4,0)]) sage: Q = N/Ns sage: Q.ngens() 2 sage: Q.rank() 2 - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.submodule([N(Integer(2),Integer(4),Integer(0)), N(Integer(9),Integer(12),Integer(0))]) >>> Q = N/Ns >>> Q.ngens() 2 >>> Q.rank() 1 >>> Ns = N.submodule([N(Integer(1),Integer(4),Integer(0))]) >>> Q = N/Ns >>> Q.ngens() 2 >>> Q.rank() 2 
 
- class sage.geometry.toric_lattice.ToricLattice_quotient_element(parent, x, check=True)[source]¶
- Bases: - FGP_Element- Create an element of a toric lattice quotient. - Warning - You probably should not construct such elements explicitly. - INPUT: - same as for - FGP_Element.
 - OUTPUT: element of a toric lattice quotient - set_immutable()[source]¶
- Make - selfimmutable.- OUTPUT: none - Note - Elements of toric lattice quotients are always immutable, so this method does nothing, it is introduced for compatibility purposes only. - EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.submodule([N(2,4,0), N(9,12,0)]) sage: Q = N/Ns sage: Q.0.set_immutable() - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.submodule([N(Integer(2),Integer(4),Integer(0)), N(Integer(9),Integer(12),Integer(0))]) >>> Q = N/Ns >>> Q.gen(0).set_immutable() 
 
- class sage.geometry.toric_lattice.ToricLattice_sublattice(ambient, gens, check=True, already_echelonized=False, category=None)[source]¶
- Bases: - ToricLattice_sublattice_with_basis,- FreeModule_submodule_pid- Construct the sublattice of - ambienttoric lattice generated by- gens.- INPUT (same as for - FreeModule_submodule_pid):- ambient– ambient- toric latticefor this sublattice
- gens– list of elements of- ambientgenerating the constructed sublattice
- see the base class for other available options 
 - OUTPUT: sublattice of a toric lattice with an automatically chosen basis - See also - ToricLattice_sublattice_with_basisif you want to specify an explicit basis.- EXAMPLES: - The intended way to get objects of this class is to use - submodule()method of toric lattices:- sage: N = ToricLattice(3) sage: sublattice = N.submodule([(1,1,0), (3,2,1)]) sage: sublattice.has_user_basis() False sage: sublattice.basis() [N(1, 0, 1), N(0, 1, -1)] - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> sublattice = N.submodule([(Integer(1),Integer(1),Integer(0)), (Integer(3),Integer(2),Integer(1))]) >>> sublattice.has_user_basis() False >>> sublattice.basis() [N(1, 0, 1), N(0, 1, -1)] - For sublattices without user-specified basis, the basis obtained above is the same as the “standard” one: - sage: sublattice.echelonized_basis() [N(1, 0, 1), N(0, 1, -1)] - >>> from sage.all import * >>> sublattice.echelonized_basis() [N(1, 0, 1), N(0, 1, -1)] 
- class sage.geometry.toric_lattice.ToricLattice_sublattice_with_basis(ambient, basis, check=True, echelonize=False, echelonized_basis=None, already_echelonized=False, category=None)[source]¶
- Bases: - ToricLattice_generic,- FreeModule_submodule_with_basis_pid- Construct the sublattice of - ambienttoric lattice with given- basis.- INPUT (same as for - FreeModule_submodule_with_basis_pid):- ambient– ambient- toric latticefor this sublattice
- basis– list of linearly independent elements of- ambient, these elements will be used as the default basis of the constructed sublattice
- see the base class for other available options 
 - OUTPUT: sublattice of a toric lattice with a user-specified basis - See also - ToricLattice_sublatticeif you do not want to specify an explicit basis.- EXAMPLES: - The intended way to get objects of this class is to use - submodule_with_basis()method of toric lattices:- sage: N = ToricLattice(3) sage: sublattice = N.submodule_with_basis([(1,1,0), (3,2,1)]) sage: sublattice.has_user_basis() True sage: sublattice.basis() [N(1, 1, 0), N(3, 2, 1)] - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> sublattice = N.submodule_with_basis([(Integer(1),Integer(1),Integer(0)), (Integer(3),Integer(2),Integer(1))]) >>> sublattice.has_user_basis() True >>> sublattice.basis() [N(1, 1, 0), N(3, 2, 1)] - Even if you have provided your own basis, you still can access the “standard” one: - sage: sublattice.echelonized_basis() [N(1, 0, 1), N(0, 1, -1)] - >>> from sage.all import * >>> sublattice.echelonized_basis() [N(1, 0, 1), N(0, 1, -1)] - dual()[source]¶
- Return the lattice dual to - self.- OUTPUT: a - toric lattice quotient- EXAMPLES: - sage: N = ToricLattice(3) sage: Ns = N.submodule([(1,1,0), (3,2,1)]) sage: Ns.dual() 2-d lattice, quotient of 3-d lattice M by Sublattice <M(1, -1, -1)> - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> Ns = N.submodule([(Integer(1),Integer(1),Integer(0)), (Integer(3),Integer(2),Integer(1))]) >>> Ns.dual() 2-d lattice, quotient of 3-d lattice M by Sublattice <M(1, -1, -1)> 
 - plot(**options)[source]¶
- Plot - self.- INPUT: - any options for toric plots (see - toric_plotter.options), none are mandatory.
 - OUTPUT: a plot - EXAMPLES: - sage: N = ToricLattice(3) sage: sublattice = N.submodule_with_basis([(1,1,0), (3,2,1)]) sage: sublattice.plot() # needs sage.plot Graphics3d Object - >>> from sage.all import * >>> N = ToricLattice(Integer(3)) >>> sublattice = N.submodule_with_basis([(Integer(1),Integer(1),Integer(0)), (Integer(3),Integer(2),Integer(1))]) >>> sublattice.plot() # needs sage.plot Graphics3d Object - Now we plot both the ambient lattice and its sublattice: - sage: N.plot() + sublattice.plot(point_color='red') # needs sage.plot Graphics3d Object - >>> from sage.all import * >>> N.plot() + sublattice.plot(point_color='red') # needs sage.plot Graphics3d Object 
 
- sage.geometry.toric_lattice.is_ToricLattice(x)[source]¶
- Check if - xis a toric lattice.- INPUT: - x– anything
 - OUTPUT: - Trueif- xis a toric lattice and- Falseotherwise- EXAMPLES: - sage: from sage.geometry.toric_lattice import ( ....: is_ToricLattice) sage: is_ToricLattice(1) doctest:warning... DeprecationWarning: The function is_ToricLattice is deprecated; use 'isinstance(..., ToricLattice_generic)' instead. See https://github.com/sagemath/sage/issues/38126 for details. False sage: N = ToricLattice(3) sage: N 3-d lattice N sage: is_ToricLattice(N) True - >>> from sage.all import * >>> from sage.geometry.toric_lattice import ( ... is_ToricLattice) >>> is_ToricLattice(Integer(1)) doctest:warning... DeprecationWarning: The function is_ToricLattice is deprecated; use 'isinstance(..., ToricLattice_generic)' instead. See https://github.com/sagemath/sage/issues/38126 for details. False >>> N = ToricLattice(Integer(3)) >>> N 3-d lattice N >>> is_ToricLattice(N) True 
- sage.geometry.toric_lattice.is_ToricLatticeQuotient(x)[source]¶
- Check if - xis a toric lattice quotient.- INPUT: - x– anything
 - OUTPUT: - Trueif- xis a toric lattice quotient and- Falseotherwise- EXAMPLES: - sage: from sage.geometry.toric_lattice import ( ....: is_ToricLatticeQuotient) sage: is_ToricLatticeQuotient(1) doctest:warning... DeprecationWarning: The function is_ToricLatticeQuotient is deprecated; use 'isinstance(..., ToricLattice_quotient)' instead. See https://github.com/sagemath/sage/issues/38126 for details. False sage: N = ToricLattice(3) sage: N 3-d lattice N sage: is_ToricLatticeQuotient(N) False sage: Q = N / N.submodule([(1,2,3), (3,2,1)]) sage: Q Quotient with torsion of 3-d lattice N by Sublattice <N(1, 2, 3), N(0, 4, 8)> sage: is_ToricLatticeQuotient(Q) True - >>> from sage.all import * >>> from sage.geometry.toric_lattice import ( ... is_ToricLatticeQuotient) >>> is_ToricLatticeQuotient(Integer(1)) doctest:warning... DeprecationWarning: The function is_ToricLatticeQuotient is deprecated; use 'isinstance(..., ToricLattice_quotient)' instead. See https://github.com/sagemath/sage/issues/38126 for details. False >>> N = ToricLattice(Integer(3)) >>> N 3-d lattice N >>> is_ToricLatticeQuotient(N) False >>> Q = N / N.submodule([(Integer(1),Integer(2),Integer(3)), (Integer(3),Integer(2),Integer(1))]) >>> Q Quotient with torsion of 3-d lattice N by Sublattice <N(1, 2, 3), N(0, 4, 8)> >>> is_ToricLatticeQuotient(Q) True