Access the PALP database(s) of reflexive lattice polytopes¶
EXAMPLES:
sage: from sage.geometry.polyhedron.palp_database import PALPreader
sage: for lp in PALPreader(2): # needs sage.graphs
....: cone = Cone([(1,r[0],r[1]) for r in lp.vertices()])
....: fan = Fan([cone])
....: X = ToricVariety(fan)
....: ideal = X.affine_algebraic_patch(cone).defining_ideal()
....: print("{} {}".format(lp.n_vertices(), ideal.hilbert_series()))
3 (t^2 + 7*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + 6*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + 2*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 5*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 3*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 2*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 6*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 6*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 2*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
5 (t^2 + 3*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
5 (t^2 + 5*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
5 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
6 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
>>> from sage.all import *
>>> from sage.geometry.polyhedron.palp_database import PALPreader
>>> for lp in PALPreader(Integer(2)): # needs sage.graphs
... cone = Cone([(Integer(1),r[Integer(0)],r[Integer(1)]) for r in lp.vertices()])
... fan = Fan([cone])
... X = ToricVariety(fan)
... ideal = X.affine_algebraic_patch(cone).defining_ideal()
... print("{} {}".format(lp.n_vertices(), ideal.hilbert_series()))
3 (t^2 + 7*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + 6*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + 2*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 5*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 3*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 2*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 6*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 6*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 2*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
5 (t^2 + 3*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
5 (t^2 + 5*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
5 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
6 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
- class sage.geometry.polyhedron.palp_database.PALPreader(dim, data_basename=None, output='Polyhedron')[source]¶
Bases:
SageObject
Read PALP database of polytopes.
INPUT:
dim
– integer; the dimension of the polyhedradata_basename
– string orNone
(default). The directory and database base filename (PALP usually uses'zzdb'
) name containing the PALP database to read. Defaults to the built-in database location.output
– string. How to return the reflexive polyhedron data. Allowed values ='list'
,'Polyhedron'
(default),'pointcollection'
, and'PPL'
. Case is ignored.
EXAMPLES:
sage: from sage.geometry.polyhedron.palp_database import PALPreader sage: polygons = PALPreader(2) sage: [ (p.n_Vrepresentation(), len(p.integral_points())) for p in polygons ] [(3, 4), (3, 10), (3, 5), (3, 9), (3, 7), (4, 6), (4, 8), (4, 9), (4, 5), (4, 5), (4, 9), (4, 7), (5, 8), (5, 6), (5, 7), (6, 7)] sage: next(iter(PALPreader(2, output='list'))) [[1, 0], [0, 1], [-1, -1]] sage: type(_) <... 'list'> sage: next(iter(PALPreader(2, output='Polyhedron'))) A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices sage: type(_) <class 'sage.geometry.polyhedron.parent.Polyhedra_ZZ_ppl_with_category.element_class'> sage: next(iter(PALPreader(2, output='PPL'))) A 2-dimensional lattice polytope in ZZ^2 with 3 vertices sage: type(_) <class 'sage.geometry.polyhedron.ppl_lattice_polygon.LatticePolygon_PPL_class'> sage: next(iter(PALPreader(2, output='PointCollection'))) [ 1, 0], [ 0, 1], [-1, -1] in Ambient free module of rank 2 over the principal ideal domain Integer Ring sage: type(_) <class 'sage.geometry.point_collection.PointCollection'>
>>> from sage.all import * >>> from sage.geometry.polyhedron.palp_database import PALPreader >>> polygons = PALPreader(Integer(2)) >>> [ (p.n_Vrepresentation(), len(p.integral_points())) for p in polygons ] [(3, 4), (3, 10), (3, 5), (3, 9), (3, 7), (4, 6), (4, 8), (4, 9), (4, 5), (4, 5), (4, 9), (4, 7), (5, 8), (5, 6), (5, 7), (6, 7)] >>> next(iter(PALPreader(Integer(2), output='list'))) [[1, 0], [0, 1], [-1, -1]] >>> type(_) <... 'list'> >>> next(iter(PALPreader(Integer(2), output='Polyhedron'))) A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices >>> type(_) <class 'sage.geometry.polyhedron.parent.Polyhedra_ZZ_ppl_with_category.element_class'> >>> next(iter(PALPreader(Integer(2), output='PPL'))) A 2-dimensional lattice polytope in ZZ^2 with 3 vertices >>> type(_) <class 'sage.geometry.polyhedron.ppl_lattice_polygon.LatticePolygon_PPL_class'> >>> next(iter(PALPreader(Integer(2), output='PointCollection'))) [ 1, 0], [ 0, 1], [-1, -1] in Ambient free module of rank 2 over the principal ideal domain Integer Ring >>> type(_) <class 'sage.geometry.point_collection.PointCollection'>
- class sage.geometry.polyhedron.palp_database.Reflexive4dHodge(h11, h21, data_basename=None, **kwds)[source]¶
Bases:
PALPreader
Read the PALP database for Hodge numbers of 4d polytopes.
The database is very large and not installed by default. You can install it with the shell command
sage -i polytopes_db_4d
.INPUT:
h11
,h21
– integer; the Hodge numbers of the reflexive polytopes to list
Any additional keyword arguments are passed to
PALPreader
.EXAMPLES:
sage: from sage.geometry.polyhedron.palp_database import Reflexive4dHodge sage: ref = Reflexive4dHodge(1,101) # optional - polytopes_db_4d sage: next(iter(ref)).Vrepresentation() # optional - polytopes_db_4d (A vertex at (-1, -1, -1, -1), A vertex at (0, 0, 0, 1), A vertex at (0, 0, 1, 0), A vertex at (0, 1, 0, 0), A vertex at (1, 0, 0, 0))
>>> from sage.all import * >>> from sage.geometry.polyhedron.palp_database import Reflexive4dHodge >>> ref = Reflexive4dHodge(Integer(1),Integer(101)) # optional - polytopes_db_4d >>> next(iter(ref)).Vrepresentation() # optional - polytopes_db_4d (A vertex at (-1, -1, -1, -1), A vertex at (0, 0, 0, 1), A vertex at (0, 0, 1, 0), A vertex at (0, 1, 0, 0), A vertex at (1, 0, 0, 0))