A triangulation¶
In Sage, the
PointConfiguration
and Triangulation
satisfy a parent/element relationship. In
particular, each triangulation refers back to its point
configuration. If you want to triangulate a point configuration, you
should construct a point configuration first and then use one of its
methods to triangulate it according to your requirements. You should
never have to construct a Triangulation
object directly.
EXAMPLES:
First, we select the internal implementation for enumerating triangulations:
sage: PointConfiguration.set_engine('internal') # to make doctests independent of TOPCOM
>>> from sage.all import *
>>> PointConfiguration.set_engine('internal') # to make doctests independent of TOPCOM
Here is a simple example of how to triangulate a point configuration:
sage: p = [[0,-1,-1],[0,0,1],[0,1,0], [1,-1,-1],[1,0,1],[1,1,0]]
sage: points = PointConfiguration(p)
sage: triang = points.triangulate(); triang
(<0,1,2,5>, <0,1,3,5>, <1,3,4,5>)
sage: triang.plot(axes=False) # needs sage.plot
Graphics3d Object
>>> from sage.all import *
>>> p = [[Integer(0),-Integer(1),-Integer(1)],[Integer(0),Integer(0),Integer(1)],[Integer(0),Integer(1),Integer(0)], [Integer(1),-Integer(1),-Integer(1)],[Integer(1),Integer(0),Integer(1)],[Integer(1),Integer(1),Integer(0)]]
>>> points = PointConfiguration(p)
>>> triang = points.triangulate(); triang
(<0,1,2,5>, <0,1,3,5>, <1,3,4,5>)
>>> triang.plot(axes=False) # needs sage.plot
Graphics3d Object
See sage.geometry.triangulation.point_configuration
for more details.
- class sage.geometry.triangulation.element.Triangulation(triangulation, parent, check=True)[source]¶
Bases:
Element
A triangulation of a
PointConfiguration
.Warning
You should never create
Triangulation
objects manually. Seetriangulate()
andtriangulations()
to triangulate point configurations.- adjacency_graph()[source]¶
Return a graph showing which simplices are adjacent in the triangulation.
OUTPUT:
A graph consisting of vertices referring to the simplices in the triangulation, and edges showing which simplices are adjacent to each other.
See also
To obtain the triangulation’s 1-skeleton, use
SimplicialComplex.graph()
throughMyTriangulation.simplicial_complex().graph()
.
AUTHORS:
Stephen Farley (2013-08-10): initial version
EXAMPLES:
sage: p = PointConfiguration([[1,0,0], [0,1,0], [0,0,1], [-1,0,1], ....: [1,0,-1], [-1,0,0], [0,-1,0], [0,0,-1]]) sage: t = p.triangulate() sage: t.adjacency_graph() # needs sage.graphs Graph on 8 vertices
>>> from sage.all import * >>> p = PointConfiguration([[Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(1)], [-Integer(1),Integer(0),Integer(1)], ... [Integer(1),Integer(0),-Integer(1)], [-Integer(1),Integer(0),Integer(0)], [Integer(0),-Integer(1),Integer(0)], [Integer(0),Integer(0),-Integer(1)]]) >>> t = p.triangulate() >>> t.adjacency_graph() # needs sage.graphs Graph on 8 vertices
- boundary()[source]¶
Return the boundary of the triangulation.
OUTPUT:
The outward-facing boundary simplices (of dimension \(d-1\)) of the \(d\)-dimensional triangulation as a set. Each boundary is returned by a tuple of point indices.
EXAMPLES:
sage: triangulation = polytopes.cube().triangulate(engine='internal') sage: triangulation (<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>) sage: triangulation.boundary() frozenset({(0, 1, 2), (0, 1, 5), (0, 2, 3), (0, 3, 4), (0, 4, 5), (1, 2, 7), (1, 5, 6), (1, 6, 7), (2, 3, 7), (3, 4, 7), (4, 5, 7), (5, 6, 7)}) sage: triangulation.interior_facets() frozenset({(0, 1, 7), (0, 2, 7), (0, 3, 7), (0, 4, 7), (0, 5, 7), (1, 5, 7)})
>>> from sage.all import * >>> triangulation = polytopes.cube().triangulate(engine='internal') >>> triangulation (<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>) >>> triangulation.boundary() frozenset({(0, 1, 2), (0, 1, 5), (0, 2, 3), (0, 3, 4), (0, 4, 5), (1, 2, 7), (1, 5, 6), (1, 6, 7), (2, 3, 7), (3, 4, 7), (4, 5, 7), (5, 6, 7)}) >>> triangulation.interior_facets() frozenset({(0, 1, 7), (0, 2, 7), (0, 3, 7), (0, 4, 7), (0, 5, 7), (1, 5, 7)})
- boundary_polyhedral_complex(**kwds)[source]¶
Return the boundary of
self
as aPolyhedralComplex
.OUTPUT:
A
PolyhedralComplex
whose maximal cells are the simplices of the boundary ofself
.EXAMPLES:
sage: P = polytopes.cube() sage: pc = PointConfiguration(P.vertices()) sage: T = pc.placing_triangulation(); T (<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>) sage: bd_C = T.boundary_polyhedral_complex(); bd_C # needs sage.graphs Polyhedral complex with 12 maximal cells sage: [P.vertices_list() for P in bd_C.maximal_cells_sorted()] # needs sage.graphs [[[-1, -1, -1], [-1, -1, 1], [-1, 1, 1]], [[-1, -1, -1], [-1, -1, 1], [1, -1, -1]], [[-1, -1, -1], [-1, 1, -1], [-1, 1, 1]], [[-1, -1, -1], [-1, 1, -1], [1, 1, -1]], [[-1, -1, -1], [1, -1, -1], [1, 1, -1]], [[-1, -1, 1], [-1, 1, 1], [1, -1, 1]], [[-1, -1, 1], [1, -1, -1], [1, -1, 1]], [[-1, 1, -1], [-1, 1, 1], [1, 1, -1]], [[-1, 1, 1], [1, -1, 1], [1, 1, 1]], [[-1, 1, 1], [1, 1, -1], [1, 1, 1]], [[1, -1, -1], [1, -1, 1], [1, 1, 1]], [[1, -1, -1], [1, 1, -1], [1, 1, 1]]]
>>> from sage.all import * >>> P = polytopes.cube() >>> pc = PointConfiguration(P.vertices()) >>> T = pc.placing_triangulation(); T (<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>) >>> bd_C = T.boundary_polyhedral_complex(); bd_C # needs sage.graphs Polyhedral complex with 12 maximal cells >>> [P.vertices_list() for P in bd_C.maximal_cells_sorted()] # needs sage.graphs [[[-1, -1, -1], [-1, -1, 1], [-1, 1, 1]], [[-1, -1, -1], [-1, -1, 1], [1, -1, -1]], [[-1, -1, -1], [-1, 1, -1], [-1, 1, 1]], [[-1, -1, -1], [-1, 1, -1], [1, 1, -1]], [[-1, -1, -1], [1, -1, -1], [1, 1, -1]], [[-1, -1, 1], [-1, 1, 1], [1, -1, 1]], [[-1, -1, 1], [1, -1, -1], [1, -1, 1]], [[-1, 1, -1], [-1, 1, 1], [1, 1, -1]], [[-1, 1, 1], [1, -1, 1], [1, 1, 1]], [[-1, 1, 1], [1, 1, -1], [1, 1, 1]], [[1, -1, -1], [1, -1, 1], [1, 1, 1]], [[1, -1, -1], [1, 1, -1], [1, 1, 1]]]
It is a subcomplex of
self
as apolyhedral_complex()
:sage: C = T.polyhedral_complex() # needs sage.graphs sage: bd_C.is_subcomplex(C) # needs sage.graphs True
>>> from sage.all import * >>> C = T.polyhedral_complex() # needs sage.graphs >>> bd_C.is_subcomplex(C) # needs sage.graphs True
- boundary_simplicial_complex()[source]¶
Return the boundary of
self
as an (abstract) simplicial complex.OUTPUT: a
SimplicialComplex
EXAMPLES:
sage: p = polytopes.cuboctahedron() sage: triangulation = p.triangulate(engine='internal') sage: bd_sc = triangulation.boundary_simplicial_complex(); bd_sc # needs sage.graphs Simplicial complex with 12 vertices and 20 facets
>>> from sage.all import * >>> p = polytopes.cuboctahedron() >>> triangulation = p.triangulate(engine='internal') >>> bd_sc = triangulation.boundary_simplicial_complex(); bd_sc # needs sage.graphs Simplicial complex with 12 vertices and 20 facets
The boundary of every convex set is a topological sphere, so it has spherical homology:
sage: bd_sc.homology() # needs sage.graphs {0: 0, 1: 0, 2: Z}
>>> from sage.all import * >>> bd_sc.homology() # needs sage.graphs {0: 0, 1: 0, 2: Z}
It is a subcomplex of
self
as asimplicial_complex()
:sage: sc = triangulation.simplicial_complex() # needs sage.graphs sage: all(f in sc for f in bd_sc.maximal_faces()) # needs sage.graphs True
>>> from sage.all import * >>> sc = triangulation.simplicial_complex() # needs sage.graphs >>> all(f in sc for f in bd_sc.maximal_faces()) # needs sage.graphs True
- enumerate_simplices()[source]¶
Return the enumerated simplices.
OUTPUT: a tuple of integers that uniquely specifies the triangulation
EXAMPLES:
sage: pc = PointConfiguration(matrix([ ....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0], ....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0], ....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1], ....: [ 0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1], ....: [ 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0] ....: ]).columns()) sage: triangulation = pc.lexicographic_triangulation() sage: triangulation.enumerate_simplices() (1678, 1688, 1769, 1779, 1895, 1905, 2112, 2143, 2234, 2360, 2555, 2580, 2610, 2626, 2650, 2652, 2654, 2661, 2663, 2667, 2685, 2755, 2757, 2759, 2766, 2768, 2772, 2811, 2881, 2883, 2885, 2892, 2894, 2898)
>>> from sage.all import * >>> pc = PointConfiguration(matrix([ ... [ Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(2), Integer(4),-Integer(1), Integer(1), Integer(1), Integer(0), Integer(0), Integer(1), Integer(0)], ... [ Integer(0), Integer(0), Integer(0), Integer(1), Integer(0), Integer(0),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)], ... [ Integer(0), Integer(2), Integer(0), Integer(0), Integer(0), Integer(0),-Integer(1), Integer(0), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(1)], ... [ Integer(0), Integer(1), Integer(1), Integer(0), Integer(0), Integer(1), Integer(0),-Integer(2), Integer(1), Integer(0), Integer(0),-Integer(1), Integer(1), Integer(1)], ... [ Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)] ... ]).columns()) >>> triangulation = pc.lexicographic_triangulation() >>> triangulation.enumerate_simplices() (1678, 1688, 1769, 1779, 1895, 1905, 2112, 2143, 2234, 2360, 2555, 2580, 2610, 2626, 2650, 2652, 2654, 2661, 2663, 2667, 2685, 2755, 2757, 2759, 2766, 2768, 2772, 2811, 2881, 2883, 2885, 2892, 2894, 2898)
You can recreate the triangulation from this list by passing it to the constructor:
sage: from sage.geometry.triangulation.point_configuration import Triangulation sage: Triangulation([1678, 1688, 1769, 1779, 1895, 1905, 2112, 2143, ....: 2234, 2360, 2555, 2580, 2610, 2626, 2650, 2652, 2654, 2661, 2663, ....: 2667, 2685, 2755, 2757, 2759, 2766, 2768, 2772, 2811, 2881, 2883, ....: 2885, 2892, 2894, 2898], pc) (<1,3,4,7,10,13>, <1,3,4,8,10,13>, <1,3,6,7,10,13>, <1,3,6,8,10,13>, <1,4,6,7,10,13>, <1,4,6,8,10,13>, <2,3,4,6,7,12>, <2,3,4,7,12,13>, <2,3,6,7,12,13>, <2,4,6,7,12,13>, <3,4,5,6,9,12>, <3,4,5,8,9,12>, <3,4,6,7,11,12>, <3,4,6,9,11,12>, <3,4,7,10,11,13>, <3,4,7,11,12,13>, <3,4,8,9,10,12>, <3,4,8,10,12,13>, <3,4,9,10,11,12>, <3,4,10,11,12,13>, <3,5,6,8,9,12>, <3,6,7,10,11,13>, <3,6,7,11,12,13>, <3,6,8,9,10,12>, <3,6,8,10,12,13>, <3,6,9,10,11,12>, <3,6,10,11,12,13>, <4,5,6,8,9,12>, <4,6,7,10,11,13>, <4,6,7,11,12,13>, <4,6,8,9,10,12>, <4,6,8,10,12,13>, <4,6,9,10,11,12>, <4,6,10,11,12,13>)
>>> from sage.all import * >>> from sage.geometry.triangulation.point_configuration import Triangulation >>> Triangulation([Integer(1678), Integer(1688), Integer(1769), Integer(1779), Integer(1895), Integer(1905), Integer(2112), Integer(2143), ... Integer(2234), Integer(2360), Integer(2555), Integer(2580), Integer(2610), Integer(2626), Integer(2650), Integer(2652), Integer(2654), Integer(2661), Integer(2663), ... Integer(2667), Integer(2685), Integer(2755), Integer(2757), Integer(2759), Integer(2766), Integer(2768), Integer(2772), Integer(2811), Integer(2881), Integer(2883), ... Integer(2885), Integer(2892), Integer(2894), Integer(2898)], pc) (<1,3,4,7,10,13>, <1,3,4,8,10,13>, <1,3,6,7,10,13>, <1,3,6,8,10,13>, <1,4,6,7,10,13>, <1,4,6,8,10,13>, <2,3,4,6,7,12>, <2,3,4,7,12,13>, <2,3,6,7,12,13>, <2,4,6,7,12,13>, <3,4,5,6,9,12>, <3,4,5,8,9,12>, <3,4,6,7,11,12>, <3,4,6,9,11,12>, <3,4,7,10,11,13>, <3,4,7,11,12,13>, <3,4,8,9,10,12>, <3,4,8,10,12,13>, <3,4,9,10,11,12>, <3,4,10,11,12,13>, <3,5,6,8,9,12>, <3,6,7,10,11,13>, <3,6,7,11,12,13>, <3,6,8,9,10,12>, <3,6,8,10,12,13>, <3,6,9,10,11,12>, <3,6,10,11,12,13>, <4,5,6,8,9,12>, <4,6,7,10,11,13>, <4,6,7,11,12,13>, <4,6,8,9,10,12>, <4,6,8,10,12,13>, <4,6,9,10,11,12>, <4,6,10,11,12,13>)
- fan(origin=None)[source]¶
Construct the fan of cones over the simplices of the triangulation.
INPUT:
origin
–None
(default) or coordinates of a point. The common apex of all cones of the fan. IfNone
, the triangulation must be a star triangulation and the distinguished central point is used as the origin.
OUTPUT:
A
RationalPolyhedralFan
. The coordinates of the points are shifted so that the apex of the fan is the origin of the coordinate system.Note
If the set of cones over the simplices is not a fan, a suitable exception is raised.
EXAMPLES:
sage: pc = PointConfiguration([(0,0), (1,0), (0,1), (-1,-1)], star=0, fine=True) sage: triangulation = pc.triangulate() sage: fan = triangulation.fan(); fan Rational polyhedral fan in 2-d lattice N sage: fan.is_equivalent(toric_varieties.P2().fan()) # needs palp sage.graphs True
>>> from sage.all import * >>> pc = PointConfiguration([(Integer(0),Integer(0)), (Integer(1),Integer(0)), (Integer(0),Integer(1)), (-Integer(1),-Integer(1))], star=Integer(0), fine=True) >>> triangulation = pc.triangulate() >>> fan = triangulation.fan(); fan Rational polyhedral fan in 2-d lattice N >>> fan.is_equivalent(toric_varieties.P2().fan()) # needs palp sage.graphs True
Toric diagrams (the \(\ZZ_5\) hyperconifold):
sage: vertices=[(0, 1, 0), (0, 3, 1), (0, 2, 3), (0, 0, 2)] sage: interior=[(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)] sage: points = vertices + interior sage: pc = PointConfiguration(points, fine=True) sage: triangulation = pc.triangulate() sage: fan = triangulation.fan((-1,0,0)); fan Rational polyhedral fan in 3-d lattice N sage: fan.rays() N(1, 1, 0), N(1, 3, 1), N(1, 2, 3), N(1, 0, 2), N(1, 1, 1), N(1, 1, 2), N(1, 2, 1), N(1, 2, 2) in 3-d lattice N
>>> from sage.all import * >>> vertices=[(Integer(0), Integer(1), Integer(0)), (Integer(0), Integer(3), Integer(1)), (Integer(0), Integer(2), Integer(3)), (Integer(0), Integer(0), Integer(2))] >>> interior=[(Integer(0), Integer(1), Integer(1)), (Integer(0), Integer(1), Integer(2)), (Integer(0), Integer(2), Integer(1)), (Integer(0), Integer(2), Integer(2))] >>> points = vertices + interior >>> pc = PointConfiguration(points, fine=True) >>> triangulation = pc.triangulate() >>> fan = triangulation.fan((-Integer(1),Integer(0),Integer(0))); fan Rational polyhedral fan in 3-d lattice N >>> fan.rays() N(1, 1, 0), N(1, 3, 1), N(1, 2, 3), N(1, 0, 2), N(1, 1, 1), N(1, 1, 2), N(1, 2, 1), N(1, 2, 2) in 3-d lattice N
- gkz_phi()[source]¶
Calculate the GKZ phi vector of the triangulation.
The phi vector is a vector of length equals to the number of points in the point configuration. For a fixed triangulation \(T\), the entry corresponding to the \(i\)-th point \(p_i\) is
\[\phi_T(p_i) = \sum_{t\in T, t\owns p_i} Vol(t)\]that is, the total volume of all simplices containing \(p_i\). See also [GKZ1994] page 220 equation 1.4.
OUTPUT: the phi vector of self
EXAMPLES:
sage: p = PointConfiguration([[0,0],[1,0],[2,1],[1,2],[0,1]]) sage: p.triangulate().gkz_phi() (3, 1, 5, 2, 4) sage: p.lexicographic_triangulation().gkz_phi() (1, 3, 4, 2, 5)
>>> from sage.all import * >>> p = PointConfiguration([[Integer(0),Integer(0)],[Integer(1),Integer(0)],[Integer(2),Integer(1)],[Integer(1),Integer(2)],[Integer(0),Integer(1)]]) >>> p.triangulate().gkz_phi() (3, 1, 5, 2, 4) >>> p.lexicographic_triangulation().gkz_phi() (1, 3, 4, 2, 5)
- interior_facets()[source]¶
Return the interior facets of the triangulation.
OUTPUT:
The inward-facing boundary simplices (of dimension \(d-1\)) of the \(d\)-dimensional triangulation as a set. Each boundary is returned by a tuple of point indices.
EXAMPLES:
sage: triangulation = polytopes.cube().triangulate(engine='internal') sage: triangulation (<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>) sage: triangulation.boundary() frozenset({(0, 1, 2), (0, 1, 5), (0, 2, 3), (0, 3, 4), (0, 4, 5), (1, 2, 7), (1, 5, 6), (1, 6, 7), (2, 3, 7), (3, 4, 7), (4, 5, 7), (5, 6, 7)}) sage: triangulation.interior_facets() frozenset({(0, 1, 7), (0, 2, 7), (0, 3, 7), (0, 4, 7), (0, 5, 7), (1, 5, 7)})
>>> from sage.all import * >>> triangulation = polytopes.cube().triangulate(engine='internal') >>> triangulation (<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>) >>> triangulation.boundary() frozenset({(0, 1, 2), (0, 1, 5), (0, 2, 3), (0, 3, 4), (0, 4, 5), (1, 2, 7), (1, 5, 6), (1, 6, 7), (2, 3, 7), (3, 4, 7), (4, 5, 7), (5, 6, 7)}) >>> triangulation.interior_facets() frozenset({(0, 1, 7), (0, 2, 7), (0, 3, 7), (0, 4, 7), (0, 5, 7), (1, 5, 7)})
- normal_cone()[source]¶
Return the (closure of the) normal cone of the triangulation.
Recall that a regular triangulation is one that equals the “crease lines” of a convex piecewise-linear function. This support function is not unique, for example, you can scale it by a positive constant. The set of all piecewise-linear functions with fixed creases forms an open cone. This cone can be interpreted as the cone of normal vectors at a point of the secondary polytope, which is why we call it normal cone. See [GKZ1994] Section 7.1 for details.
OUTPUT:
The closure of the normal cone. The \(i\)-th entry equals the value of the piecewise-linear function at the \(i\)-th point of the configuration.
For an irregular triangulation, the normal cone is empty. In this case, a single point (the origin) is returned.
EXAMPLES:
sage: triangulation = polytopes.hypercube(2).triangulate(engine='internal') sage: triangulation (<0,1,3>, <1,2,3>) sage: N = triangulation.normal_cone(); N 4-d cone in 4-d lattice sage: N.rays() ( 0, 0, 0, -1), ( 0, 0, 1, 1), ( 0, 0, -1, -1), ( 1, 0, 0, 1), (-1, 0, 0, -1), ( 0, 1, 0, -1), ( 0, -1, 0, 1) in Ambient free module of rank 4 over the principal ideal domain Integer Ring sage: N.dual().rays() (1, -1, 1, -1) in Ambient free module of rank 4 over the principal ideal domain Integer Ring
>>> from sage.all import * >>> triangulation = polytopes.hypercube(Integer(2)).triangulate(engine='internal') >>> triangulation (<0,1,3>, <1,2,3>) >>> N = triangulation.normal_cone(); N 4-d cone in 4-d lattice >>> N.rays() ( 0, 0, 0, -1), ( 0, 0, 1, 1), ( 0, 0, -1, -1), ( 1, 0, 0, 1), (-1, 0, 0, -1), ( 0, 1, 0, -1), ( 0, -1, 0, 1) in Ambient free module of rank 4 over the principal ideal domain Integer Ring >>> N.dual().rays() (1, -1, 1, -1) in Ambient free module of rank 4 over the principal ideal domain Integer Ring
- plot(**kwds)[source]¶
Produce a graphical representation of the triangulation.
EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: triangulation = p.triangulate() sage: triangulation (<1,3,4>, <2,3,4>) sage: triangulation.plot(axes=False) # needs sage.plot Graphics object consisting of 12 graphics primitives
>>> from sage.all import * >>> p = PointConfiguration([[Integer(0),Integer(0)],[Integer(0),Integer(1)],[Integer(1),Integer(0)],[Integer(1),Integer(1)],[-Integer(1),-Integer(1)]]) >>> triangulation = p.triangulate() >>> triangulation (<1,3,4>, <2,3,4>) >>> triangulation.plot(axes=False) # needs sage.plot Graphics object consisting of 12 graphics primitives
- point_configuration()[source]¶
Return the point configuration underlying the triangulation.
EXAMPLES:
sage: pconfig = PointConfiguration([[0,0],[0,1],[1,0]]) sage: pconfig A point configuration in affine 2-space over Integer Ring consisting of 3 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular. sage: triangulation = pconfig.triangulate() sage: triangulation (<0,1,2>) sage: triangulation.point_configuration() A point configuration in affine 2-space over Integer Ring consisting of 3 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular. sage: pconfig == triangulation.point_configuration() True
>>> from sage.all import * >>> pconfig = PointConfiguration([[Integer(0),Integer(0)],[Integer(0),Integer(1)],[Integer(1),Integer(0)]]) >>> pconfig A point configuration in affine 2-space over Integer Ring consisting of 3 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular. >>> triangulation = pconfig.triangulate() >>> triangulation (<0,1,2>) >>> triangulation.point_configuration() A point configuration in affine 2-space over Integer Ring consisting of 3 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular. >>> pconfig == triangulation.point_configuration() True
- polyhedral_complex(**kwds)[source]¶
Return
self
as aPolyhedralComplex
.OUTPUT:
A
PolyhedralComplex
whose maximal cells are the simplices of the triangulation.EXAMPLES:
sage: P = polytopes.cube() sage: pc = PointConfiguration(P.vertices()) sage: T = pc.placing_triangulation(); T (<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>) sage: C = T.polyhedral_complex(); C # needs sage.graphs Polyhedral complex with 6 maximal cells sage: [P.vertices_list() for P in C.maximal_cells_sorted()] # needs sage.graphs [[[-1, -1, -1], [-1, -1, 1], [-1, 1, 1], [1, -1, -1]], [[-1, -1, -1], [-1, 1, -1], [-1, 1, 1], [1, 1, -1]], [[-1, -1, -1], [-1, 1, 1], [1, -1, -1], [1, 1, -1]], [[-1, -1, 1], [-1, 1, 1], [1, -1, -1], [1, -1, 1]], [[-1, 1, 1], [1, -1, -1], [1, -1, 1], [1, 1, 1]], [[-1, 1, 1], [1, -1, -1], [1, 1, -1], [1, 1, 1]]]
>>> from sage.all import * >>> P = polytopes.cube() >>> pc = PointConfiguration(P.vertices()) >>> T = pc.placing_triangulation(); T (<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>) >>> C = T.polyhedral_complex(); C # needs sage.graphs Polyhedral complex with 6 maximal cells >>> [P.vertices_list() for P in C.maximal_cells_sorted()] # needs sage.graphs [[[-1, -1, -1], [-1, -1, 1], [-1, 1, 1], [1, -1, -1]], [[-1, -1, -1], [-1, 1, -1], [-1, 1, 1], [1, 1, -1]], [[-1, -1, -1], [-1, 1, 1], [1, -1, -1], [1, 1, -1]], [[-1, -1, 1], [-1, 1, 1], [1, -1, -1], [1, -1, 1]], [[-1, 1, 1], [1, -1, -1], [1, -1, 1], [1, 1, 1]], [[-1, 1, 1], [1, -1, -1], [1, 1, -1], [1, 1, 1]]]
- simplicial_complex()[source]¶
Return
self
as an (abstract) simplicial complex.OUTPUT: a
SimplicialComplex
EXAMPLES:
sage: p = polytopes.cuboctahedron() sage: sc = p.triangulate(engine='internal').simplicial_complex(); sc # needs sage.graphs Simplicial complex with 12 vertices and 16 facets
>>> from sage.all import * >>> p = polytopes.cuboctahedron() >>> sc = p.triangulate(engine='internal').simplicial_complex(); sc # needs sage.graphs Simplicial complex with 12 vertices and 16 facets
Any convex set is contractable, so its reduced homology groups vanish:
sage: sc.homology() # needs sage.graphs {0: 0, 1: 0, 2: 0, 3: 0}
>>> from sage.all import * >>> sc.homology() # needs sage.graphs {0: 0, 1: 0, 2: 0, 3: 0}
- sage.geometry.triangulation.element.triangulation_render_2d(triangulation, **kwds)[source]¶
Return a graphical representation of a 2-d triangulation.
INPUT:
triangulation
– aTriangulation
**kwds
– keywords that are passed on to the graphics primitives
OUTPUT: a 2-d graphics object
EXAMPLES:
sage: points = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: triang = points.triangulate() sage: triang.plot(axes=False, aspect_ratio=1) # indirect doctest # needs sage.plot Graphics object consisting of 12 graphics primitives
>>> from sage.all import * >>> points = PointConfiguration([[Integer(0),Integer(0)],[Integer(0),Integer(1)],[Integer(1),Integer(0)],[Integer(1),Integer(1)],[-Integer(1),-Integer(1)]]) >>> triang = points.triangulate() >>> triang.plot(axes=False, aspect_ratio=Integer(1)) # indirect doctest # needs sage.plot Graphics object consisting of 12 graphics primitives
- sage.geometry.triangulation.element.triangulation_render_3d(triangulation, **kwds)[source]¶
Return a graphical representation of a 3-d triangulation.
INPUT:
triangulation
– aTriangulation
**kwds
– keywords that are passed on to the graphics primitives
OUTPUT: a 3-d graphics object
EXAMPLES:
sage: p = [[0,-1,-1],[0,0,1],[0,1,0], [1,-1,-1],[1,0,1],[1,1,0]] sage: points = PointConfiguration(p) sage: triang = points.triangulate() sage: triang.plot(axes=False) # indirect doctest # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> p = [[Integer(0),-Integer(1),-Integer(1)],[Integer(0),Integer(0),Integer(1)],[Integer(0),Integer(1),Integer(0)], [Integer(1),-Integer(1),-Integer(1)],[Integer(1),Integer(0),Integer(1)],[Integer(1),Integer(1),Integer(0)]] >>> points = PointConfiguration(p) >>> triang = points.triangulate() >>> triang.plot(axes=False) # indirect doctest # needs sage.plot Graphics3d Object