Relative Interiors of Polyhedra and Cones#
- class sage.geometry.relative_interior.RelativeInterior(polyhedron)[source]#
Bases:
ConvexSet_relatively_open
The relative interior of a polyhedron or cone
This class should not be used directly. Use methods
relative_interior()
,interior()
,relative_interior()
,interior()
instead.EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: segment.relative_interior() Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)]) sage: octant.relative_interior() Relative interior of 3-d cone in 3-d lattice N
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> segment.relative_interior() Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> octant = Cone([(Integer(1),Integer(0),Integer(0)), (Integer(0),Integer(1),Integer(0)), (Integer(0),Integer(0),Integer(1))]) >>> octant.relative_interior() Relative interior of 3-d cone in 3-d lattice N
- ambient()[source]#
Return the ambient convex set or space.
EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: ri_segment.ambient() Vector space of dimension 2 over Rational Field
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> ri_segment.ambient() Vector space of dimension 2 over Rational Field
- ambient_dim()[source]#
Return the dimension of the ambient space.
EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: segment.ambient_dim() 2 sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: ri_segment.ambient_dim() 2
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> segment.ambient_dim() 2 >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> ri_segment.ambient_dim() 2
- ambient_vector_space(base_field=None)[source]#
Return the ambient vector space.
EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: ri_segment.ambient_vector_space() Vector space of dimension 2 over Rational Field
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> ri_segment.ambient_vector_space() Vector space of dimension 2 over Rational Field
- an_affine_basis()[source]#
Return points that form an affine basis for the affine hull.
The points are guaranteed to lie in the topological closure of
self
.EXAMPLES:
sage: segment = Polyhedron([[1, 0], [0, 1]]) sage: segment.relative_interior().an_affine_basis() [A vertex at (1, 0), A vertex at (0, 1)]
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(0)], [Integer(0), Integer(1)]]) >>> segment.relative_interior().an_affine_basis() [A vertex at (1, 0), A vertex at (0, 1)]
- closure()[source]#
Return the topological closure of
self
.EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: ri_segment.closure() is segment True
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> ri_segment.closure() is segment True
- dilation(scalar)[source]#
Return the dilated (uniformly stretched) set.
INPUT:
scalar
– A scalar
EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: A = ri_segment.dilation(2); A Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: A.closure().vertices() (A vertex at (2, 4), A vertex at (6, 8)) sage: B = ri_segment.dilation(-1/3); B Relative interior of a 1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices sage: B.closure().vertices() (A vertex at (-1, -4/3), A vertex at (-1/3, -2/3)) sage: C = ri_segment.dilation(0); C A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex sage: C.vertices() (A vertex at (0, 0),)
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> A = ri_segment.dilation(Integer(2)); A Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> A.closure().vertices() (A vertex at (2, 4), A vertex at (6, 8)) >>> B = ri_segment.dilation(-Integer(1)/Integer(3)); B Relative interior of a 1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices >>> B.closure().vertices() (A vertex at (-1, -4/3), A vertex at (-1/3, -2/3)) >>> C = ri_segment.dilation(Integer(0)); C A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex >>> C.vertices() (A vertex at (0, 0),)
- dim()[source]#
Return the dimension of
self
.EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: segment.dim() 1 sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: ri_segment.dim() 1
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> segment.dim() 1 >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> ri_segment.dim() 1
- interior()[source]#
Return the interior of
self
.EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: ri_segment.interior() The empty polyhedron in ZZ^2 sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)]) sage: ri_octant = octant.relative_interior(); ri_octant Relative interior of 3-d cone in 3-d lattice N sage: ri_octant.interior() is ri_octant True
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> ri_segment.interior() The empty polyhedron in ZZ^2 >>> octant = Cone([(Integer(1),Integer(0),Integer(0)), (Integer(0),Integer(1),Integer(0)), (Integer(0),Integer(0),Integer(1))]) >>> ri_octant = octant.relative_interior(); ri_octant Relative interior of 3-d cone in 3-d lattice N >>> ri_octant.interior() is ri_octant True
- is_closed()[source]#
Return whether
self
is closed.OUTPUT:
Boolean.
EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: ri_segment.is_closed() False
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> ri_segment.is_closed() False
- is_universe()[source]#
Return whether
self
is the whole ambient spaceOUTPUT:
Boolean.
EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: ri_segment.is_universe() False
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> ri_segment.is_universe() False
- linear_transformation(linear_transf, **kwds)[source]#
Return the linear transformation of
self
.By [Roc1970], Theorem 6.6, the linear transformation of a relative interior is the relative interior of the linear transformation.
INPUT:
linear_transf
– a matrix**kwds
– passed to thelinear_transformation()
method of the closure ofself
.
EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: T = matrix([[1, 1]]) sage: A = ri_segment.linear_transformation(T); A Relative interior of a 1-dimensional polyhedron in ZZ^1 defined as the convex hull of 2 vertices sage: A.closure().vertices() (A vertex at (3), A vertex at (7))
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> T = matrix([[Integer(1), Integer(1)]]) >>> A = ri_segment.linear_transformation(T); A Relative interior of a 1-dimensional polyhedron in ZZ^1 defined as the convex hull of 2 vertices >>> A.closure().vertices() (A vertex at (3), A vertex at (7))
- relative_interior()[source]#
Return the relative interior of
self
.As
self
is already relatively open, this method just returnsself
.EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: ri_segment.relative_interior() is ri_segment True
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> ri_segment.relative_interior() is ri_segment True
- representative_point()[source]#
Return a “generic” point of
self
.OUTPUT:
A point in
self
(thus, in the relative interior ofself
) as a coordinate vector.EXAMPLES:
sage: C = Cone([[1, 2, 0], [2, 1, 0]]) sage: C.relative_interior().representative_point() (1, 1, 0)
>>> from sage.all import * >>> C = Cone([[Integer(1), Integer(2), Integer(0)], [Integer(2), Integer(1), Integer(0)]]) >>> C.relative_interior().representative_point() (1, 1, 0)
- translation(displacement)[source]#
Return the translation of
self
by adisplacement
vector.INPUT:
displacement
– a displacement vector or a list/tuple of coordinates that determines a displacement vector
EXAMPLES:
sage: segment = Polyhedron([[1, 2], [3, 4]]) sage: ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: t = vector([100, 100]) sage: ri_segment.translation(t) Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: ri_segment.closure().vertices() (A vertex at (1, 2), A vertex at (3, 4))
>>> from sage.all import * >>> segment = Polyhedron([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]) >>> ri_segment = segment.relative_interior(); ri_segment Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> t = vector([Integer(100), Integer(100)]) >>> ri_segment.translation(t) Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices >>> ri_segment.closure().vertices() (A vertex at (1, 2), A vertex at (3, 4))