Bipartite graphs#

This module implements bipartite graphs.

AUTHORS:

  • Robert L. Miller (2008-01-20): initial version

  • Ryan W. Hinton (2010-03-04): overrides for adding and deleting vertices and edges

  • Enjeck M. Cleopatra (2022): fixes incorrect partite sets and adds graph creation from graph6 string

class sage.graphs.bipartite_graph.BipartiteGraph(data=None, partition=None, check=True, hash_labels=None, *args, **kwds)#

Bases: Graph

Bipartite graph.

INPUT:

  • data – can be any of the following:

    1. Empty or None (creates an empty graph).

    2. An arbitrary graph.

    3. A reduced adjacency matrix.

      A reduced adjacency matrix contains only the non-redundant portion of the full adjacency matrix for the bipartite graph. Specifically, for zero matrices of the appropriate size, for the reduced adjacency matrix H, the full adjacency matrix is [[0, H'], [H, 0]]. The columns correspond to vertices on the left, and the rows correspond to vertices on the right.

    4. A file in alist format.

      The alist file format is described at http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

    5. A graph6 string (see documentation of graph6_string()).

    6. From a NetworkX bipartite graph.

  • partition – (default: None); a tuple defining vertices of the left and right partition of the graph. Partitions will be determined automatically if partition is None.

  • check – boolean (default: True); if True, an invalid input partition raises an exception. In the other case offending edges simply won’t be included.

  • loops – ignored; bipartite graphs cannot have loops

  • multiedges – boolean (default: None); whether to allow multiple edges

  • weighted – boolean (default: None); whether graph thinks of itself as weighted or not. See self.weighted()

  • hash_labels – boolean (default: None); whether to include edge labels during hashing. This parameter defaults to True if the graph is weighted. This parameter is ignored if the graph is mutable. Beware that trying to hash unhashable labels will raise an error.

Note

All remaining arguments are passed to the Graph constructor

EXAMPLES:

  1. No inputs or None for the input creates an empty graph:

    sage: B = BipartiteGraph()
    sage: type(B)
    <class 'sage.graphs.bipartite_graph.BipartiteGraph'>
    sage: B.order()
    0
    sage: B == BipartiteGraph(None)
    True
    
  2. From a graph: without any more information, finds a bipartition:

    sage: B = BipartiteGraph(graphs.CycleGraph(4))
    sage: B = BipartiteGraph(graphs.CycleGraph(5))
    Traceback (most recent call last):
    ...
    ValueError: input graph is not bipartite
    sage: G = Graph({0: [5, 6], 1: [4, 5], 2: [4, 6], 3: [4, 5, 6]})
    sage: B = BipartiteGraph(G)
    sage: B == G
    True
    sage: B.left
    {0, 1, 2, 3}
    sage: B.right
    {4, 5, 6}
    sage: B = BipartiteGraph({0: [5, 6], 1: [4, 5], 2: [4, 6], 3: [4, 5, 6]})
    sage: B == G
    True
    sage: B.left
    {0, 1, 2, 3}
    sage: B.right
    {4, 5, 6}
    
  3. If a Graph or DiGraph is used as data, you can specify a partition using partition argument. Note that if such graph is not bipartite, then Sage will raise an error. However, if one specifies check=False, the offending edges are simply deleted (along with those vertices not appearing in either list). We also lump creating one bipartite graph from another into this category:

    sage: P = graphs.PetersenGraph()
    sage: partition = [list(range(5)), list(range(5, 10))]
    sage: B = BipartiteGraph(P, partition)
    Traceback (most recent call last):
    ...
    TypeError: input graph is not bipartite with respect to the given partition
    
    sage: B = BipartiteGraph(P, partition, check=False)
    sage: B.left
    {0, 1, 2, 3, 4}
    sage: B.show()                                                                  # needs sage.plot
    
    sage: G = Graph({0: [5, 6], 1: [4, 5], 2: [4, 6], 3: [4, 5, 6]})
    sage: B = BipartiteGraph(G)
    sage: B2 = BipartiteGraph(B)
    sage: B == B2
    True
    sage: B3 = BipartiteGraph(G, [list(range(4)), list(range(4, 7))])
    sage: B3
    Bipartite graph on 7 vertices
    sage: B3 == B2
    True
    
    sage: G = Graph({0: [], 1: [], 2: []})
    sage: part = (list(range(2)), [2])
    sage: B = BipartiteGraph(G, part)
    sage: B2 = BipartiteGraph(B)
    sage: B == B2
    True
    
    sage: d = DiGraph(6)
    sage: d.add_edge(0, 1)
    sage: part=[[1, 2, 3], [0, 4, 5]]
    sage: b = BipartiteGraph(d, part)
    sage: b.left
    {1, 2, 3}
    sage: b.right
    {0, 4, 5}
    
  4. From a reduced adjacency matrix:

    sage: # needs sage.modules
    sage: M = Matrix([(1,1,1,0,0,0,0), (1,0,0,1,1,0,0),
    ....:             (0,1,0,1,0,1,0), (1,1,0,1,0,0,1)])
    sage: M
    [1 1 1 0 0 0 0]
    [1 0 0 1 1 0 0]
    [0 1 0 1 0 1 0]
    [1 1 0 1 0 0 1]
    sage: H = BipartiteGraph(M); H
    Bipartite graph on 11 vertices
    sage: H.edges(sort=True)
    [(0, 7, None),
     (0, 8, None),
     (0, 10, None),
     (1, 7, None),
     (1, 9, None),
     (1, 10, None),
     (2, 7, None),
     (3, 8, None),
     (3, 9, None),
     (3, 10, None),
     (4, 8, None),
     (5, 9, None),
     (6, 10, None)]
    
    sage: M = Matrix([(1, 1, 2, 0, 0), (0, 2, 1, 1, 1), (0, 1, 2, 1, 1)])           # needs sage.modules
    sage: B = BipartiteGraph(M, multiedges=True, sparse=True)                       # needs sage.modules
    sage: B.edges(sort=True)                                                        # needs sage.modules
    [(0, 5, None),
     (1, 5, None),
     (1, 6, None),
     (1, 6, None),
     (1, 7, None),
     (2, 5, None),
     (2, 5, None),
     (2, 6, None),
     (2, 7, None),
     (2, 7, None),
     (3, 6, None),
     (3, 7, None),
     (4, 6, None),
     (4, 7, None)]
    
    sage: # needs sage.modules sage.rings.finite_rings
    sage: F.<a> = GF(4)
    sage: MS = MatrixSpace(F, 2, 3)
    sage: M = MS.matrix([[0, 1, a + 1], [a, 1, 1]])
    sage: B = BipartiteGraph(M, weighted=True, sparse=True)
    sage: B.edges(sort=True)
    [(0, 4, a), (1, 3, 1), (1, 4, 1), (2, 3, a + 1), (2, 4, 1)]
    sage: B.weighted()
    True
    
  5. From an alist file:

    sage: import tempfile
    sage: with tempfile.NamedTemporaryFile(mode="w+t") as f:
    ....:     _ = f.write("7 4 \n 3 4 \n 3 3 1 3 1 1 1 \n\
    ....:                  3 3 3 4 \n 1 2 4 \n 1 3 4 \n 1 0 0 \n\
    ....:                  2 3 4 \n 2 0 0 \n 3 0 0 \n 4 0 0 \n\
    ....:                  1 2 3 0 \n 1 4 5 0 \n 2 4 6 0 \n\
    ....:                  1 2 4 7 \n")
    ....:     f.flush()
    ....:     B = BipartiteGraph(f.name)
    sage: B.is_isomorphic(H)                                                       # needs sage.modules
    True
    
  6. From a graph6 string:

    sage: B = BipartiteGraph('Bo')
    sage: B
    Bipartite graph on 3 vertices
    sage: B.left
    {0}
    sage: B.right
    {1, 2}
    
    sage: B = BipartiteGraph('F?^T_\n', format='graph6')
    sage: B.vertices(sort=True)
    [0, 1, 2, 3, 4, 5, 6]
    sage: B.edges(sort=True)
    [(0, 5, None), (0, 6, None), (1, 4, None), (1, 5, None), (2, 4, None),
     (2, 6, None), (3, 4, None), (3, 5, None), (3, 6, None)]
    sage: B.left
    {0, 1, 2, 3}
    sage: B.right
    {4, 5, 6}
    
    ::

    sage: B = BipartiteGraph(‘Bo’, partition=[[0], [1, 2]]) sage: B.left {0} sage: B.right {1, 2}

    sage: B = BipartiteGraph('F?^T_\n', partition=[[0, 1, 2], [3, 4, 5, 6]])
    Traceback (most recent call last):
    ...
    TypeError: input graph is not bipartite with respect to the given partition
    
    sage: B = BipartiteGraph('F?^T_\n', partition=[[0, 1, 2], [3, 4, 5, 6]], check=False)
    sage: B.left
    {0, 1, 2}
    sage: B.show()                                                                 # needs sage.plot
    
  7. From a NetworkX bipartite graph:

    sage: # needs networkx
    sage: import networkx
    sage: G = graphs.OctahedralGraph()
    sage: N = networkx.make_clique_bipartite(G.networkx_graph())
    sage: B = BipartiteGraph(N)
    
add_edge(u, v=None, label=None)#

Add an edge from \(u\) to \(v\).

INPUT:

  • u – the tail of an edge.

  • v – (default: None); the head of an edge. If v=None, then attempt to understand u as a edge tuple.

  • label – (default: None); the label of the edge (u, v).

The following forms are all accepted:

  • G.add_edge(1, 2)

  • G.add_edge((1, 2))

  • G.add_edges([(1, 2)])

  • G.add_edge(1, 2, 'label')

  • G.add_edge((1, 2, 'label'))

  • G.add_edges([(1, 2, 'label')])

See add_edge() for more detail.

This method simply checks that the edge endpoints are in different partitions. If a new vertex is to be created, it will be added to the proper partition. If both vertices are created, the first one will be added to the left partition, the second to the right partition. If both vertices are in the same partition but different connected components, one of the components will be “flipped”, i.e. each vertex will be put into whichever partition it’s not currently in. This will allow for the graph to remain bipartite, without changing the edges or vertices.

add_edges(edges, loops=True)#

Add edges from an iterable container.

INPUT:

  • edges – an iterable of edges, given either as (u, v) or (u, v, label).

  • loops – ignored

See add_edges() for more detail.

This method simply checks that the edge endpoints are in different partitions. If a new vertex is to be created, it will be added to the proper partition. If both vertices are created, the first one will be added to the left partition, the second to the right partition. If both vertices are in the same partition but different connected components, one of the components will be “flipped”, i.e. each vertex will be put into whichever partition it’s not currently in. This will allow for the graph to remain bipartite, without changing the edges or vertices.

EXAMPLES:

sage: bg = BipartiteGraph()
sage: bg.add_vertices([0, 1, 2], left=[True, False, True])
sage: bg.add_edges([(0, 1), (2, 1)])
sage: bg.add_edges([[0, 2]])
Traceback (most recent call last):
...
ValueError: the specified set of edges cannot be added while still preserving the bipartition property
sage: G = BipartiteGraph()
sage: G.add_edges([(0, 1), (3, 2), (1, 2)])
sage: G.bipartition()
({0, 2}, {1, 3})

Loops will raise an error:

sage: bg.add_edges([[0, 3], [3, 3]])
Traceback (most recent call last):
...
ValueError: the specified set of edges cannot be added while still preserving the bipartition property

Adding edges is fine as long as there exists a valid bipartition. Otherwise an error is raised without modifyiong the graph:

sage: G = BipartiteGraph()
sage: G.add_edges([(0, 1), (2, 3)])
sage: G.bipartition()
({0, 2}, {1, 3})
sage: G.add_edges([(0,2), (0,3)])
Traceback (most recent call last):
...
ValueError: the specified set of edges cannot be added while still preserving the bipartition property
sage: G.bipartition()
({0, 2}, {1, 3})
sage: G.edges(labels=False, sort=True)
[(0, 1), (2, 3)]
add_vertex(name=None, left=False, right=False)#

Create an isolated vertex. If the vertex already exists, then nothing is done.

INPUT:

  • name – (default: None); name of the new vertex. If no name is specified, then the vertex will be represented by the least non-negative integer not already representing a vertex. Name must be an immutable object and cannot be None.

  • left – boolean (default: False); if True, puts the new vertex in the left partition.

  • right – boolean (default: False); if True, puts the new vertex in the right partition.

Obviously, left and right are mutually exclusive.

As it is implemented now, if a graph \(G\) has a large number of vertices with numeric labels, then G.add_vertex() could potentially be slow, if name is None.

OUTPUT:

  • If name is None, the new vertex name is returned. None otherwise.

EXAMPLES:

sage: G = BipartiteGraph()
sage: G.add_vertex(left=True)
0
sage: G.add_vertex(right=True)
1
sage: G.vertices(sort=True)
[0, 1]
sage: G.left
{0}
sage: G.right
{1}
add_vertices(vertices, left=False, right=False)#

Add vertices to the bipartite graph from an iterable container of vertices.

Vertices that already exist in the graph will not be added again.

INPUT:

  • vertices – sequence of vertices to add.

  • left – (default: False); either True or sequence of same length as vertices with True/False elements.

  • right – (default: False); either True or sequence of the same length as vertices with True/False elements.

Only one of left and right keywords should be provided. See the examples below.

EXAMPLES:

sage: bg = BipartiteGraph()
sage: bg.add_vertices([0, 1, 2], left=True)
sage: bg.add_vertices([3, 4, 5], left=[True, False, True])
sage: bg.add_vertices([6, 7, 8], right=[True, False, True])
sage: bg.add_vertices([9, 10, 11], right=True)
sage: bg.left
{0, 1, 2, 3, 5, 7}
sage: bg.right
{4, 6, 8, 9, 10, 11}
allow_loops(new, check=True)#

Change whether loops are permitted in the (di)graph

Note

This method overwrite the allow_loops() method to ensure that loops are forbidden in BipartiteGraph.

INPUT:

  • new – boolean

EXAMPLES:

sage: B = BipartiteGraph()
sage: B.allow_loops(True)
Traceback (most recent call last):
...
ValueError: loops are not allowed in bipartite graphs
bipartition()#

Return the underlying bipartition of the bipartite graph.

EXAMPLES:

sage: B = BipartiteGraph(graphs.CycleGraph(4))
sage: B.bipartition()
({0, 2}, {1, 3})
canonical_label(partition=None, certificate=False, edge_labels=False, algorithm=None, return_graph=True)#

Return the canonical graph.

A canonical graph is the representative graph of an isomorphism class by some canonization function \(c\). If \(G\) and \(H\) are graphs, then \(G \cong c(G)\), and \(c(G) == c(H)\) if and only if \(G \cong H\).

See the Wikipedia article Graph_canonization for more information.

INPUT:

  • partition – if given, the canonical label with respect to this set partition will be computed. The default is the unit set partition.

  • certificate – boolean (default: False). When set to True, a dictionary mapping from the vertices of the (di)graph to its canonical label will also be returned.

  • edge_labels – boolean (default: False). When set to True, allows only permutations respecting edge labels.

  • algorithm – a string (default: None). The algorithm to use; currently available:

    • 'bliss': use the optional package bliss (http://www.tcs.tkk.fi/Software/bliss/index.html);

    • 'sage': always use Sage’s implementation.

    • None (default): use bliss when available and possible

      Note

      Make sure you always compare canonical forms obtained by the same algorithm.

  • return_graph – boolean (default: True). When set to False, returns the list of edges of the canonical graph instead of the canonical graph; only available when 'bliss' is explicitly set as algorithm.

EXAMPLES:

sage: B = BipartiteGraph( [(0, 4), (0, 5), (0, 6), (0, 8), (1, 5),
....:                      (1, 7), (1, 8), (2, 6), (2, 7), (2, 8),
....:                      (3, 4), (3, 7), (3, 8), (4, 9), (5, 9),
....:                      (6, 9), (7, 9)] )
sage: C = B.canonical_label(partition=(B.left,B.right), algorithm='sage')
sage: C
Bipartite graph on 10 vertices
sage: C.left
{0, 1, 2, 3, 4}
sage: C.right
{5, 6, 7, 8, 9}
sage: B = BipartiteGraph( [(0, 4), (0, 5), (0, 6), (0, 8), (1, 5),
....:                      (1, 7), (1, 8), (2, 6), (2, 7), (2, 8),
....:                      (3, 4), (3, 7), (3, 8), (4, 9), (5, 9),
....:                      (6, 9), (7, 9)] )
sage: C, cert = B.canonical_label(partition=(B.left,B.right), certificate=True, algorithm='sage')
sage: C
Bipartite graph on 10 vertices
sage: C.left
{0, 1, 2, 3, 4}
sage: C.right
{5, 6, 7, 8, 9}
sage: cert == {0: 3, 1: 0, 2: 1, 3: 2, 4: 5, 5: 7, 6: 6, 7: 8, 8: 9, 9: 4}
True
sage: G = Graph({0: [5, 6], 1: [4, 5], 2: [4, 6], 3: [4, 5, 6]})
sage: B = BipartiteGraph(G)
sage: C = B.canonical_label(partition=(B.left,B.right), edge_labels=True, algorithm='sage')
sage: C.left
{0, 1, 2, 3}
sage: C.right
{4, 5, 6}
complement()#

Return a complement of this graph.

Given a simple BipartiteGraph \(G = (L, R, E)\) with vertex set \(L\cup R\) and edge set \(E\), this method returns a Graph \(H = (V, F)\), where \(V = L\cup R\) and \(F\) is the set of edges of a complete graph of order \(|V|\) minus the edges in \(E\).

Warning

This method returns the complement of a bipartite graph \(G = (V = L \cup R, E)\) with respect the complete graph of order \(|V|\). If looking for the complement with respect the complete bipartite graph \(K = (L, R, L\times R)\), use method complement_bipartite().

EXAMPLES:

sage: B = BipartiteGraph({1: [2, 4], 3: [4, 5]})
sage: G = B.complement(); G
Graph on 5 vertices
sage: G.edges(sort=True, labels=False)
[(1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5)]
sage: B.size() + G.size() == graphs.CompleteGraph(B.order()).size()
True
complement_bipartite()#

Return the bipartite complement of this bipartite graph.

Given a simple BipartiteGraph \(G = (L, R, E)\) with vertex set \(L\cup R\) and edge set \(E\), this method returns a BipartiteGraph \(H = (L\cup R, F)\), where \(F\) is the set of edges of a complete bipartite graph between vertex sets \(L\) and \(R\) minus the edges in \(E\).

See also

complement()

EXAMPLES:

sage: B = BipartiteGraph({0: [1, 2, 3]}) sage: C = B.complement_bipartite() sage: C Bipartite graph on 4 vertices sage: C.is_bipartite() True sage: B.left == C.left and B.right == C.right True sage: C.size() == len(B.left)*len(B.right) - B.size() True sage: G = B.complement() sage: G.is_bipartite() False

delete_vertex(vertex, in_order=False)#

Delete vertex, removing all incident edges.

Deleting a non-existent vertex will raise an exception.

INPUT:

  • vertex – a vertex to delete.

  • in_order – boolean (default False); if True, deletes the \(i\)-th vertex in the sorted list of vertices, i.e. G.vertices(sort=True)[i].

EXAMPLES:

sage: B = BipartiteGraph(graphs.CycleGraph(4))
sage: B
Bipartite cycle graph: graph on 4 vertices
sage: B.delete_vertex(0)
sage: B
Bipartite cycle graph: graph on 3 vertices
sage: B.left
{2}
sage: B.edges(sort=True)
[(1, 2, None), (2, 3, None)]
sage: B.delete_vertex(3)
sage: B.right
{1}
sage: B.edges(sort=True)
[(1, 2, None)]
sage: B.delete_vertex(0)
Traceback (most recent call last):
...
ValueError: vertex (0) not in the graph
sage: g = Graph({'a': ['b'], 'c': ['b']})
sage: bg = BipartiteGraph(g)  # finds bipartition
sage: bg.vertices(sort=True)
['a', 'b', 'c']
sage: bg.delete_vertex('a')
sage: bg.edges(sort=True)
[('b', 'c', None)]
sage: bg.vertices(sort=True)
['b', 'c']
sage: bg2 = BipartiteGraph(g)
sage: bg2.delete_vertex(0, in_order=True)
sage: bg2 == bg
True
delete_vertices(vertices)#

Remove vertices from the bipartite graph taken from an iterable sequence of vertices.

Deleting a non-existent vertex will raise an exception.

INPUT:

  • vertices – a sequence of vertices to remove

EXAMPLES:

sage: B = BipartiteGraph(graphs.CycleGraph(4))
sage: B
Bipartite cycle graph: graph on 4 vertices
sage: B.delete_vertices([0, 3])
sage: B
Bipartite cycle graph: graph on 2 vertices
sage: B.left
{2}
sage: B.right
{1}
sage: B.edges(sort=True)
[(1, 2, None)]
sage: B.delete_vertices([0])
Traceback (most recent call last):
...
ValueError: vertex (0) not in the graph
is_bipartite(certificate=False)#

Check whether the graph is bipartite.

This method always returns True as first value, plus a certificate when certificate == True.

INPUT:

  • certificate – boolean (default: False); whether to return a certificate. If set to True, the certificate returned is a proper 2-coloring of the vertices.

See also

is_bipartite()

EXAMPLES:

sage: g = BipartiteGraph(graphs.RandomBipartite(3, 3, .5))                  # needs numpy
sage: g.is_bipartite()                                                      # needs numpy
True
sage: g.is_bipartite(certificate=True)  # random                            # needs numpy
(True, {(0, 0): 0, (0, 1): 0, (0, 2): 0, (1, 0): 1, (1, 1): 1, (1, 2): 1})
load_afile(fname)#

Load into the current object the bipartite graph specified in the given file name.

This file should follow David MacKay’s alist format, see http://www.inference.phy.cam.ac.uk/mackay/codes/data.html for examples and definition of the format.

EXAMPLES:

sage: import tempfile
sage: with tempfile.NamedTemporaryFile(mode="w+t") as f:
....:     _ = f.write("7 4 \n 3 4 \n 3 3 1 3 1 1 1 \n\
....:                 3 3 3 4 \n 1 2 4 \n 1 3 4 \n\
....:                 1 0 0 \n 2 3 4 \n 2 0 0 \n 3 0 0 \n\
....:                 4 0 0 \n 1 2 3 0 \n 1 4 5 0 \n\
....:                 2 4 6 0 \n 1 2 4 7 \n")
....:     f.flush()
....:     B = BipartiteGraph()
....:     B2 = BipartiteGraph(f.name)
....:     B.load_afile(f.name)
Bipartite graph on 11 vertices
sage: B.edges(sort=True)
[(0, 7, None),
 (0, 8, None),
 (0, 10, None),
 (1, 7, None),
 (1, 9, None),
 (1, 10, None),
 (2, 7, None),
 (3, 8, None),
 (3, 9, None),
 (3, 10, None),
 (4, 8, None),
 (5, 9, None),
 (6, 10, None)]
 sage: B2 == B
 True
matching(value_only, algorithm=False, use_edge_labels=None, solver=False, verbose=None, integrality_tolerance=0)#

Return a maximum matching of the graph represented by the list of its edges.

Given a graph \(G\) such that each edge \(e\) has a weight \(w_e\), a maximum matching is a subset \(S\) of the edges of \(G\) of maximum weight such that no two edges of \(S\) are incident with each other.

INPUT:

  • value_only – boolean (default: False); when set to True, only the cardinal (or the weight) of the matching is returned

  • algorithm – string (default: "Hopcroft-Karp" if use_edge_labels==False, otherwise "Edmonds"); algorithm to use among:

    • "Hopcroft-Karp" selects the default bipartite graph algorithm as implemented in NetworkX

    • "Eppstein" selects Eppstein’s algorithm as implemented in NetworkX

    • "Edmonds" selects Edmonds’ algorithm as implemented in NetworkX

    • "LP" uses a Linear Program formulation of the matching problem

  • use_edge_labels – boolean (default: False)

    • when set to True, computes a weighted matching where each edge is weighted by its label (if an edge has no label, \(1\) is assumed); only if algorithm is "Edmonds", "LP"

    • when set to False, each edge has weight \(1\)

  • solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

  • verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

  • integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:

Maximum matching in a cycle graph:

sage: G = BipartiteGraph(graphs.CycleGraph(10))
sage: G.matching()                                                          # needs networkx
[(0, 1, None), (2, 3, None), (4, 5, None), (6, 7, None), (8, 9, None)]

The size of a maximum matching in a complete bipartite graph using Eppstein:

sage: G = BipartiteGraph(graphs.CompleteBipartiteGraph(4,5))
sage: G.matching(algorithm="Eppstein", value_only=True)                     # needs networkx
4
matching_polynomial(algorithm='Godsil', name=None)#

Compute the matching polynomial.

The matching polynomial is defined as in [God1993], where \(p(G, k)\) denotes the number of \(k\)-matchings (matchings with \(k\) edges) in \(G\) :

\[\mu(x)=\sum_{k \geq 0} (-1)^k p(G,k) x^{n-2k}\]

INPUT:

  • algorithm – string (default: "Godsil"); either “Godsil” or “rook”; “rook” is usually faster for larger graphs

  • name – string (default: None); name of the variable in the polynomial, set to \(x\) when name is None

EXAMPLES:

sage: BipartiteGraph(graphs.CubeGraph(3)).matching_polynomial()             # needs sage.libs.flint
x^8 - 12*x^6 + 42*x^4 - 44*x^2 + 9
sage: x = polygen(QQ)
sage: g = BipartiteGraph(graphs.CompleteBipartiteGraph(16, 16))
sage: bool(factorial(16) * laguerre(16, x^2)                                # needs sage.symbolic
....:       == g.matching_polynomial(algorithm='rook'))
True

Compute the matching polynomial of a line with \(60\) vertices:

sage: from sage.functions.orthogonal_polys import chebyshev_U               # needs sage.symbolic
sage: g = next(graphs.trees(60))
sage: (chebyshev_U(60, x/2)                                                 # needs sage.symbolic
....:   == BipartiteGraph(g).matching_polynomial(algorithm='rook'))
True

The matching polynomial of a tree is equal to its characteristic polynomial:

sage: g = graphs.RandomTree(20)
sage: p = g.characteristic_polynomial()                                     # needs sage.modules
sage: p == BipartiteGraph(g).matching_polynomial(algorithm='rook')          # needs sage.modules
True
perfect_matchings(labels=False)#

Return an iterator over all perfect matchings of the bipartite graph.

ALGORITHM:

Choose a vertex \(v\) in the right set of vertices, then recurse through all edges incident to \(v\), removing one edge at a time whenever an edge is added to a matching.

INPUT:

  • labels – boolean (default: False); when True, the edges in each perfect matching are triples (containing the label as the third element), otherwise the edges are pairs.

EXAMPLES:

sage: B = BipartiteGraph({0: [5, 7], 1: [4, 6, 7], 2: [4, 5, 8], 3: [4, 5, 6], 6: [9], 8: [9]})
sage: len(list(B.perfect_matchings()))
6
sage: G = Graph(B.edges(sort=False))
sage: len(list(G.perfect_matchings()))
6

The algorithm ensures that for any edge of a perfect matching, the first vertex is on the left set of vertices and the second vertex in the right set:

sage: B = BipartiteGraph({0: [5, 7], 1: [4, 6, 7], 2: [4, 5, 8], 3: [4, 5, 6], 6: [9], 8: [9]})
sage: m = next(B.perfect_matchings(labels=False))
sage: B.left
{0, 1, 2, 3, 9}
sage: B.right
{4, 5, 6, 7, 8}
sage: sorted(m)
[(0, 7), (1, 4), (2, 5), (3, 6), (9, 8)]
sage: all((u in B.left and v in B.right) for u, v in m)
True

Multiple edges are taken into account:

sage: B = BipartiteGraph({0: [5, 7], 1: [4, 6, 7], 2: [4, 5, 8], 3: [4, 5, 6], 6: [9], 8: [9]})
sage: B.allow_multiple_edges(True)
sage: B.add_edge(0, 7)
sage: len(list(B.perfect_matchings()))
10

Empty graph:

sage: list(BipartiteGraph().perfect_matchings())
[[]]

Bipartite graph without perfect matching:

sage: B = BipartiteGraph(graphs.CompleteBipartiteGraph(3, 4))
sage: list(B.perfect_matchings())
[]

Check that the number of perfect matchings of a complete bipartite graph is consistent with the matching polynomial:

sage: B = BipartiteGraph(graphs.CompleteBipartiteGraph(4, 4))
sage: len(list(B.perfect_matchings()))
24
sage: B.matching_polynomial(algorithm='rook')(0)                            # needs sage.modules
24
plot(*args, **kwds)#

Override Graph’s plot function, to illustrate the bipartite nature.

EXAMPLES:

sage: B = BipartiteGraph(graphs.CycleGraph(20))
sage: B.plot()                                                              # needs sage.plot
Graphics object consisting of 41 graphics primitives
project_left()#

Project self onto left vertices. Edges are 2-paths in the original.

EXAMPLES:

sage: B = BipartiteGraph(graphs.CycleGraph(20))
sage: G = B.project_left()
sage: G.order(), G.size()
(10, 10)
project_right()#

Project self onto right vertices. Edges are 2-paths in the original.

EXAMPLES:

sage: B = BipartiteGraph(graphs.CycleGraph(20))
sage: G = B.project_right()
sage: G.order(), G.size()
(10, 10)
reduced_adjacency_matrix(sparse, base_ring=True, **kwds)#

Return the reduced adjacency matrix for the given graph.

A reduced adjacency matrix contains only the non-redundant portion of the full adjacency matrix for the bipartite graph. Specifically, for zero matrices of the appropriate size, for the reduced adjacency matrix H, the full adjacency matrix is [[0, H'], [H, 0]].

By default, the matrix returned is over the integers.

INPUT:

  • sparse – boolean (default: True); whether to return a sparse matrix

  • base_ring – a ring (default: None); the base ring of the matrix space to use. By default, the base ring is ZZ if the graph is not weighted and otherwise the same ring as the (first) weights.

  • **kwds – other keywords to pass to matrix()

EXAMPLES:

Bipartite graphs that are not weighted will return a matrix over ZZ, unless a base ring is specified:

sage: # needs sage.modules
sage: M = Matrix([(1,1,1,0,0,0,0), (1,0,0,1,1,0,0),
....:             (0,1,0,1,0,1,0), (1,1,0,1,0,0,1)])
sage: B = BipartiteGraph(M)
sage: N = B.reduced_adjacency_matrix(); N
[1 1 1 0 0 0 0]
[1 0 0 1 1 0 0]
[0 1 0 1 0 1 0]
[1 1 0 1 0 0 1]
sage: N == M
True
sage: N[0,0].parent()
Integer Ring
sage: N2 = B.reduced_adjacency_matrix(base_ring=RDF); N2
[1.0 1.0 1.0 0.0 0.0 0.0 0.0]
[1.0 0.0 0.0 1.0 1.0 0.0 0.0]
[0.0 1.0 0.0 1.0 0.0 1.0 0.0]
[1.0 1.0 0.0 1.0 0.0 0.0 1.0]
sage: N2[0, 0].parent()
Real Double Field

Multi-edge graphs also return a matrix over ZZ, unless a base ring is specified:

sage: # needs sage.modules
sage: M = Matrix([(1,1,2,0,0), (0,2,1,1,1), (0,1,2,1,1)])
sage: B = BipartiteGraph(M, multiedges=True, sparse=True)
sage: N = B.reduced_adjacency_matrix()
sage: N == M
True
sage: N[0,0].parent()
Integer Ring
sage: N2 = B.reduced_adjacency_matrix(base_ring=RDF)
sage: N2[0, 0].parent()
Real Double Field

Weighted graphs will return a matrix over the ring given by their (first) weights, unless a base ring is specified:

sage: # needs sage.modules sage.rings.finite_rings
sage: F.<a> = GF(4)
sage: MS = MatrixSpace(F, 2, 3)
sage: M = MS.matrix([[0, 1, a+1], [a, 1, 1]])
sage: B = BipartiteGraph(M, weighted=True, sparse=True)
sage: N = B.reduced_adjacency_matrix(sparse=False)
sage: N == M
True
sage: N[0,0].parent()
Finite Field in a of size 2^2
sage: N2 = B.reduced_adjacency_matrix(base_ring=F)
sage: N2[0, 0].parent()
Finite Field in a of size 2^2
save_afile(fname)#

Save the graph to file in alist format.

Saves this graph to file in David MacKay’s alist format, see http://www.inference.phy.cam.ac.uk/mackay/codes/data.html for examples and definition of the format.

EXAMPLES:

sage: # needs sage.modules
sage: M = Matrix([(1,1,1,0,0,0,0), (1,0,0,1,1,0,0),
....:             (0,1,0,1,0,1,0), (1,1,0,1,0,0,1)])
sage: M
[1 1 1 0 0 0 0]
[1 0 0 1 1 0 0]
[0 1 0 1 0 1 0]
[1 1 0 1 0 0 1]
sage: b = BipartiteGraph(M)
sage: import tempfile
sage: with tempfile.NamedTemporaryFile() as f:
....:     b.save_afile(f.name)
....:     b2 = BipartiteGraph(f.name)
sage: b.is_isomorphic(b2)
True
to_undirected()#

Return an undirected Graph (without bipartite constraint) of the given object.

EXAMPLES:

sage: BipartiteGraph(graphs.CycleGraph(6)).to_undirected()
Cycle graph: Graph on 6 vertices
vertex_cover(algorithm, value_only='Konig', reduction_rules=False, solver=True, verbose=None, integrality_tolerance=0)#

Return a minimum vertex cover of self represented by a set of vertices.

A minimum vertex cover of a graph is a set \(S\) of vertices such that each edge is incident to at least one element of \(S\), and such that \(S\) is of minimum cardinality. For more information, see Wikipedia article Vertex_cover.

Equivalently, a vertex cover is defined as the complement of an independent set.

As an optimization problem, it can be expressed as follows:

\[\begin{split}\mbox{Minimize : }&\sum_{v\in G} b_v\\ \mbox{Such that : }&\forall (u,v) \in G.edges(sort=True), b_u+b_v\geq 1\\ &\forall x\in G, b_x\mbox{ is a binary variable}\end{split}\]

INPUT:

  • algorithm – string (default: "Konig"); algorithm to use among:

  • value_only – boolean (default: False); if set to True, only the size of a minimum vertex cover is returned. Otherwise, a minimum vertex cover is returned as a list of vertices.

  • reduction_rules – (default: True); specify if the reductions rules from kernelization must be applied as pre-processing or not. See [ACFLSS04] for more details. Note that depending on the instance, it might be faster to disable reduction rules. This parameter is currently ignored when algorithm == "Konig".

  • solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

  • verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

  • integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:

On the Cycle Graph:

sage: B = BipartiteGraph(graphs.CycleGraph(6))
sage: len(B.vertex_cover())                                                 # needs networkx
3
sage: B.vertex_cover(value_only=True)                                       # needs networkx
3

The two algorithms should return the same result:

sage: # needs networkx numpy
sage: g = BipartiteGraph(graphs.RandomBipartite(10, 10, .5))
sage: vc1 = g.vertex_cover(algorithm="Konig")
sage: vc2 = g.vertex_cover(algorithm="Cliquer")
sage: len(vc1) == len(vc2)
True