Database of strongly regular graphs¶
This module manages a database associating to a set of four integers \((v,k,\lambda,\mu)\) a strongly regular graphs with these parameters, when one exists.
Using Andries Brouwer’s database of strongly regular graphs, it can also return non-existence results. Note that some constructions are missing, and that some strongly regular graphs that exist in the database cannot be automatically built by Sage. Help us if you know any. An outline of the implementation can be found in [CP2016].
Note
Any missing/incorrect information in the database must be reported to Andries E. Brouwer directly, in order to have a unique and updated source of information.
REFERENCES:
Functions¶
- sage.graphs.strongly_regular_db.SRG_100_44_18_20()[source]¶
Return a \((100, 44, 18, 20)\)-strongly regular graph.
This graph is built as a Cayley graph, using the construction for \(\Delta_1\) with group \(H_3\) presented in Table 8.1 of [JK2003]
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_100_44_18_20 sage: G = SRG_100_44_18_20() # long time # needs sage.groups sage: G.is_strongly_regular(parameters=True) # long time # needs sage.groups (100, 44, 18, 20)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_100_44_18_20 >>> G = SRG_100_44_18_20() # long time # needs sage.groups >>> G.is_strongly_regular(parameters=True) # long time # needs sage.groups (100, 44, 18, 20)
- sage.graphs.strongly_regular_db.SRG_100_45_20_20()[source]¶
Return a \((100, 45, 20, 20)\)-strongly regular graph.
This graph is built as a Cayley graph, using the construction for \(\Gamma_3\) with group \(H_3\) presented in Table 8.1 of [JK2003].
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_100_45_20_20 sage: G = SRG_100_45_20_20() # long time # needs sage.groups sage: G.is_strongly_regular(parameters=True) # long time # needs sage.groups (100, 45, 20, 20)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_100_45_20_20 >>> G = SRG_100_45_20_20() # long time # needs sage.groups >>> G.is_strongly_regular(parameters=True) # long time # needs sage.groups (100, 45, 20, 20)
- sage.graphs.strongly_regular_db.SRG_105_32_4_12()[source]¶
Return a \((105, 32, 4, 12)\)-strongly regular graph.
The vertices are the flags of the projective plane of order 4. Two flags \((a,A)\) and \((b,B)\) are adjacent if the point \(a\) is on the line \(B\) or the point \(b\) is on the line \(A\), and \(a \neq b\), \(A \neq B\). See Theorem 2.7 in [GS1970], and [Coo2006].
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_105_32_4_12 sage: G = SRG_105_32_4_12(); G # needs sage.rings.finite_rings Aut L(3,4) on flags: Graph on 105 vertices sage: G.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings (105, 32, 4, 12)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_105_32_4_12 >>> G = SRG_105_32_4_12(); G # needs sage.rings.finite_rings Aut L(3,4) on flags: Graph on 105 vertices >>> G.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings (105, 32, 4, 12)
- sage.graphs.strongly_regular_db.SRG_120_63_30_36()[source]¶
Return a \((120,63,30,36)\)-strongly regular graph.
It is the distance-2 graph of
JohnsonGraph(10,3)
.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_120_63_30_36 sage: G = SRG_120_63_30_36() sage: G.is_strongly_regular(parameters=True) (120, 63, 30, 36)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_120_63_30_36 >>> G = SRG_120_63_30_36() >>> G.is_strongly_regular(parameters=True) (120, 63, 30, 36)
- sage.graphs.strongly_regular_db.SRG_120_77_52_44()[source]¶
Return a \((120,77,52,44)\)-strongly regular graph.
To build this graph, we first build a \(2-(21,7,12)\) design, by removing two points from the
WittDesign()
on 23 points. We then build the intersection graph of blocks with intersection size 3.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_120_77_52_44 sage: G = SRG_120_77_52_44() # optional - gap_package_design sage: G.is_strongly_regular(parameters=True) # optional - gap_package_design (120, 77, 52, 44)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_120_77_52_44 >>> G = SRG_120_77_52_44() # optional - gap_package_design >>> G.is_strongly_regular(parameters=True) # optional - gap_package_design (120, 77, 52, 44)
- sage.graphs.strongly_regular_db.SRG_126_25_8_4()[source]¶
Return a \((126,25,8,4)\)-strongly regular graph.
It is the distance-(1 or 4) graph of
JohnsonGraph(9,4)
.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_126_25_8_4 sage: G = SRG_126_25_8_4() sage: G.is_strongly_regular(parameters=True) (126, 25, 8, 4)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_126_25_8_4 >>> G = SRG_126_25_8_4() >>> G.is_strongly_regular(parameters=True) (126, 25, 8, 4)
- sage.graphs.strongly_regular_db.SRG_126_50_13_24()[source]¶
Return a \((126,50,13,24)\)-strongly regular graph.
This graph is a subgraph of
SRG_175_72_20_36()
. This construction, due to Goethals, is given in §10B.(vii) of [BL1984].EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_126_50_13_24 sage: G = SRG_126_50_13_24(); G Goethals graph: Graph on 126 vertices sage: G.is_strongly_regular(parameters=True) (126, 50, 13, 24)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_126_50_13_24 >>> G = SRG_126_50_13_24(); G Goethals graph: Graph on 126 vertices >>> G.is_strongly_regular(parameters=True) (126, 50, 13, 24)
- sage.graphs.strongly_regular_db.SRG_1288_792_476_504()[source]¶
Return a \((1288, 792, 476, 504)\)-strongly regular graph.
This graph is built on the words of weight 12 in the
BinaryGolayCode()
. Two of them are then made adjacent if their symmetric difference has weight 12 (cf [BE1992]).See also
strongly_regular_from_two_weight_code()
– build a strongly regular graph from a two-weight code.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_1288_792_476_504 sage: G = SRG_1288_792_476_504() # long time # needs sage.rings.finite_rings sage: G.is_strongly_regular(parameters=True) # long time # needs sage.rings.finite_rings (1288, 792, 476, 504)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_1288_792_476_504 >>> G = SRG_1288_792_476_504() # long time # needs sage.rings.finite_rings >>> G.is_strongly_regular(parameters=True) # long time # needs sage.rings.finite_rings (1288, 792, 476, 504)
- sage.graphs.strongly_regular_db.SRG_144_39_6_12()[source]¶
Return a \((144,39,6,12)\)-strongly regular graph.
This graph is obtained as an orbit of length 2808 on sets of cardinality 2 (among 2 such orbits) of the group \(PGL_3(3)\) acting on the (right) cosets of a subgroup of order 39.
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_144_39_6_12 sage: G = SRG_144_39_6_12() # needs sage.libs.gap sage: G.is_strongly_regular(parameters=True) # needs sage.libs.gap (144, 39, 6, 12)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_144_39_6_12 >>> G = SRG_144_39_6_12() # needs sage.libs.gap >>> G.is_strongly_regular(parameters=True) # needs sage.libs.gap (144, 39, 6, 12)
- sage.graphs.strongly_regular_db.SRG_175_72_20_36()[source]¶
Return a \((175,72,20,36)\)-strongly regular graph.
This graph is obtained from the line graph of
HoffmanSingletonGraph()
. Setting two vertices to be adjacent if their distance in the line graph is exactly 2 yields the graph. For more information, see 10.B.(iv) in [BL1984] and https://www.win.tue.nl/~aeb/graphs/McL.html.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_175_72_20_36 sage: G = SRG_175_72_20_36() sage: G.is_strongly_regular(parameters=True) (175, 72, 20, 36)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_175_72_20_36 >>> G = SRG_175_72_20_36() >>> G.is_strongly_regular(parameters=True) (175, 72, 20, 36)
- sage.graphs.strongly_regular_db.SRG_176_105_68_54()[source]¶
Return a \((176, 105, 68, 54)\)-strongly regular graph.
To build this graph, we first build a \(2-(22,7,16)\) design, by removing one point from the
WittDesign()
on 23 points. We then build the intersection graph of blocks with intersection size 3. Known as S.7 in [Hub1975].EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_176_105_68_54 sage: G = SRG_176_105_68_54() # optional - gap_package_design sage: G.is_strongly_regular(parameters=True) # optional - gap_package_design (176, 105, 68, 54)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_176_105_68_54 >>> G = SRG_176_105_68_54() # optional - gap_package_design >>> G.is_strongly_regular(parameters=True) # optional - gap_package_design (176, 105, 68, 54)
- sage.graphs.strongly_regular_db.SRG_176_49_12_14()[source]¶
Return a \((176,49,12,14)\)-strongly regular graph.
This graph is built from the symmetric Higman-Sims design. In [Bro1982], it is explained that there exists an involution \(\sigma\) exchanging the points and blocks of the Higman-Sims design, such that each point is mapped on a block that contains it (i.e. \(\sigma\) is a ‘polarity with all universal points’). The graph is then built by making two vertices \(u,v\) adjacent whenever \(v\in \sigma(u)\).
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_176_49_12_14 sage: G = SRG_176_49_12_14() # long time, optional - gap_package_design sage: G.is_strongly_regular(parameters=True) # long time, optional - gap_package_design (176, 49, 12, 14)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_176_49_12_14 >>> G = SRG_176_49_12_14() # long time, optional - gap_package_design >>> G.is_strongly_regular(parameters=True) # long time, optional - gap_package_design (176, 49, 12, 14)
- sage.graphs.strongly_regular_db.SRG_176_90_38_54()[source]¶
Return a \((176,90,38,54)\)-strongly regular graph.
This graph is obtained from
SRG_175_72_20_36()
by attaching a isolated vertex and doing Seidel switching with respect to disjoint union of 18 maximum cliques, following a construction by W.Haemers given in Sect.10.B.(vi) of [BL1984].EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_176_90_38_54 sage: G = SRG_176_90_38_54(); G a Seidel switching of Distance graph for distance 2 in : Graph on 176 vertices sage: G.is_strongly_regular(parameters=True) (176, 90, 38, 54)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_176_90_38_54 >>> G = SRG_176_90_38_54(); G a Seidel switching of Distance graph for distance 2 in : Graph on 176 vertices >>> G.is_strongly_regular(parameters=True) (176, 90, 38, 54)
- sage.graphs.strongly_regular_db.SRG_196_91_42_42()[source]¶
Return a \((196,91,42,42)\)-strongly regular graph.
This strongly regular graph is built following the construction provided in Corollary 8.2.27 of [IS2006].
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_196_91_42_42 sage: G = SRG_196_91_42_42() sage: G.is_strongly_regular(parameters=True) (196, 91, 42, 42)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_196_91_42_42 >>> G = SRG_196_91_42_42() >>> G.is_strongly_regular(parameters=True) (196, 91, 42, 42)
- sage.graphs.strongly_regular_db.SRG_210_99_48_45()[source]¶
Return a strongly regular graph with parameters \((210, 99, 48, 45)\).
This graph is from Example 4.2 in [KPRWZ2010]. One considers the action of the symmetric group \(S_7\) on the 210 digraphs isomorphic to the disjoint union of \(K_1\) and the circulant 6-vertex digraph
digraphs.Circulant(6,[1,4])
. It has 16 orbitals; the package [FK1991] found a megring of them, explicitly described in [KPRWZ2010], resulting in this graph.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_210_99_48_45 sage: g = SRG_210_99_48_45() # needs sage.libs.gap sage: g.is_strongly_regular(parameters=True) # needs sage.libs.gap (210, 99, 48, 45)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_210_99_48_45 >>> g = SRG_210_99_48_45() # needs sage.libs.gap >>> g.is_strongly_regular(parameters=True) # needs sage.libs.gap (210, 99, 48, 45)
- sage.graphs.strongly_regular_db.SRG_220_84_38_28()[source]¶
Return a \((220, 84, 38, 28)\)-strongly regular graph.
This graph is obtained from the
intersection_graph()
of aBIBD_45_9_8()
. This construction appears in VII.11.2 from [DesignHandbook]EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_220_84_38_28 sage: g = SRG_220_84_38_28() sage: g.is_strongly_regular(parameters=True) (220, 84, 38, 28)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_220_84_38_28 >>> g = SRG_220_84_38_28() >>> g.is_strongly_regular(parameters=True) (220, 84, 38, 28)
- sage.graphs.strongly_regular_db.SRG_243_110_37_60()[source]¶
Return a \((243, 110, 37, 60)\)-strongly regular graph.
Consider the orthogonal complement of the
TernaryGolayCode()
, which has 243 words. On them we define a graph, in which two words are adjacent whenever their Hamming distance is 9. This construction appears in [GS1975].Note
A strongly regular graph with the same parameters is also obtained from the database of 2-weight codes.
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_243_110_37_60 sage: G = SRG_243_110_37_60() # needs sage.modules sage.rings.finite_rings sage: G.is_strongly_regular(parameters=True) # needs sage.modules sage.rings.finite_rings (243, 110, 37, 60)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_243_110_37_60 >>> G = SRG_243_110_37_60() # needs sage.modules sage.rings.finite_rings >>> G.is_strongly_regular(parameters=True) # needs sage.modules sage.rings.finite_rings (243, 110, 37, 60)
- sage.graphs.strongly_regular_db.SRG_253_140_87_65()[source]¶
Return a \((253, 140, 87, 65)\)-strongly regular graph.
To build this graph, we first build the
WittDesign()
on 23 points which is a \(2-(23,7,21)\) design. We then build the intersection graph of blocks with intersection size 3. Known as S.6 in [Hub1975].EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_253_140_87_65 sage: G = SRG_253_140_87_65() # optional - gap_package_design sage: G.is_strongly_regular(parameters=True) # optional - gap_package_design (253, 140, 87, 65)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_253_140_87_65 >>> G = SRG_253_140_87_65() # optional - gap_package_design >>> G.is_strongly_regular(parameters=True) # optional - gap_package_design (253, 140, 87, 65)
- sage.graphs.strongly_regular_db.SRG_276_140_58_84()[source]¶
Return a \((276, 140, 58, 84)\)-strongly regular graph.
The graph is built from
McLaughlinGraph()
, with an added isolated vertex. We then perform aseidel_switching()
on a set of 28 disjoint 5-cliques, which exist by cf. [HT1996].EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_276_140_58_84 sage: g = SRG_276_140_58_84() # long time, optional - gap_package_design sage: g.is_strongly_regular(parameters=True) # long time, optional - gap_package_design (276, 140, 58, 84)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_276_140_58_84 >>> g = SRG_276_140_58_84() # long time, optional - gap_package_design >>> g.is_strongly_regular(parameters=True) # long time, optional - gap_package_design (276, 140, 58, 84)
- sage.graphs.strongly_regular_db.SRG_280_117_44_52()[source]¶
Return a strongly regular graph with parameters \((280, 117, 44, 52)\).
This graph is built according to a very pretty construction of Mathon and Rosa [MR1985]:
The vertices of the graph \(G\) are all partitions of a set of 9 elements into \(\{\{a,b,c\},\{d,e,f\},\{g,h,i\}\}\). The cross-intersection of two such partitions \(P=\{P_1,P_2,P_3\}\) and \(P'=\{P'_1,P'_2,P'_3\}\) being defined as \(\{P_i \cap P'_j: 1\leq i,j\leq 3\}\), two vertices of \(G\) are set to be adjacent if the cross-intersection of their respective partitions does not contain exactly 7 nonempty sets.
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_280_117_44_52 sage: g=SRG_280_117_44_52() sage: g.is_strongly_regular(parameters=True) (280, 117, 44, 52)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_280_117_44_52 >>> g=SRG_280_117_44_52() >>> g.is_strongly_regular(parameters=True) (280, 117, 44, 52)
- sage.graphs.strongly_regular_db.SRG_280_135_70_60()[source]¶
Return a strongly regular graph with parameters \((280, 135, 70, 60)\).
This graph is built from the action of \(J_2\) on the cosets of a \(3.PGL(2,9)\)-subgroup.
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_280_135_70_60 sage: g=SRG_280_135_70_60() # long time, optional - internet sage: g.is_strongly_regular(parameters=True) # long time, optional - internet (280, 135, 70, 60)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_280_135_70_60 >>> g=SRG_280_135_70_60() # long time, optional - internet >>> g.is_strongly_regular(parameters=True) # long time, optional - internet (280, 135, 70, 60)
- sage.graphs.strongly_regular_db.SRG_416_100_36_20()[source]¶
Return a \((416,100,36,20)\)-strongly regular graph.
This graph is obtained as an orbit on sets of cardinality 2 (among 2 that exists) of the group \(G_2(4)\). This graph is isomorphic to the subgraph of the from
Suzuki Graph
induced on the neighbors of a vertex. Known as S.14 in [Hub1975].EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_416_100_36_20 sage: g = SRG_416_100_36_20() # long time, optional - internet, needs sage.libs.gap sage: g.is_strongly_regular(parameters=True) # long time, optional - internet, needs sage.libs.gap (416, 100, 36, 20)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_416_100_36_20 >>> g = SRG_416_100_36_20() # long time, optional - internet, needs sage.libs.gap >>> g.is_strongly_regular(parameters=True) # long time, optional - internet, needs sage.libs.gap (416, 100, 36, 20)
- sage.graphs.strongly_regular_db.SRG_560_208_72_80()[source]¶
Return a \((560,208,72,80)\)-strongly regular graph.
This graph is obtained as the union of 4 orbits of sets of cardinality 2 (among the 13 that exist) of the group \(Sz(8)\).
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_560_208_72_80 sage: g = SRG_560_208_72_80() # not tested (~2s) # needs sage.libs.gap sage: g.is_strongly_regular(parameters=True) # not tested (~2s) # needs sage.libs.gap (560, 208, 72, 80)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_560_208_72_80 >>> g = SRG_560_208_72_80() # not tested (~2s) # needs sage.libs.gap >>> g.is_strongly_regular(parameters=True) # not tested (~2s) # needs sage.libs.gap (560, 208, 72, 80)
- sage.graphs.strongly_regular_db.SRG_630_85_20_10()[source]¶
Return a \((630,85,20,10)\)-strongly regular graph.
This graph is the line graph of \(pg(5,18,2)\); its point graph is
SRG_175_72_20_36()
. One selects a subset of 630 maximum cliques in the latter following a construction by W.Haemers given in Sect.10.B.(v) of [BL1984].EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_630_85_20_10 sage: G = SRG_630_85_20_10() # long time # needs sage.groups sage: G.is_strongly_regular(parameters=True) # long time # needs sage.groups (630, 85, 20, 10)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_630_85_20_10 >>> G = SRG_630_85_20_10() # long time # needs sage.groups >>> G.is_strongly_regular(parameters=True) # long time # needs sage.groups (630, 85, 20, 10)
- sage.graphs.strongly_regular_db.SRG_from_RSHCD(v, k, l, mu, existence=False, check=True)[source]¶
Return a \((v,k,l,mu)\)-strongly regular graph from a RSHCD.
This construction appears in 8.D of [BL1984]. For more information, see
regular_symmetric_hadamard_matrix_with_constant_diagonal()
.INPUT:
v
,k
,l
,mu
– integersexistence
– boolean; whether to return a graph or to test if Sage can build such a graphcheck
– boolean (default:True
); whether to check that output is correct before returning it. As this is expected to be useless, you may want to disable it whenever you want speed.
EXAMPLES:
some graphs
sage: from sage.graphs.strongly_regular_db import SRG_from_RSHCD sage: SRG_from_RSHCD(784, 0, 14, 38, existence=True) # needs sage.combinat sage.modules False sage: SRG_from_RSHCD(784, 377, 180, 182, existence=True) # needs sage.combinat sage.modules True sage: SRG_from_RSHCD(144, 65, 28, 30) # needs sage.combinat sage.modules Graph on 144 vertices
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import SRG_from_RSHCD >>> SRG_from_RSHCD(Integer(784), Integer(0), Integer(14), Integer(38), existence=True) # needs sage.combinat sage.modules False >>> SRG_from_RSHCD(Integer(784), Integer(377), Integer(180), Integer(182), existence=True) # needs sage.combinat sage.modules True >>> SRG_from_RSHCD(Integer(144), Integer(65), Integer(28), Integer(30)) # needs sage.combinat sage.modules Graph on 144 vertices
an example with vertex-transitive automorphism group, found during the implementation of the case \(v=324\)
sage: # long time, needs sage.combinat sage.modules sage: G = SRG_from_RSHCD(324,152,70,72) sage: a = G.automorphism_group() sage: a.order() 2592 sage: len(a.orbits()) 1
>>> from sage.all import * >>> # long time, needs sage.combinat sage.modules >>> G = SRG_from_RSHCD(Integer(324),Integer(152),Integer(70),Integer(72)) >>> a = G.automorphism_group() >>> a.order() 2592 >>> len(a.orbits()) 1
- sage.graphs.strongly_regular_db.apparently_feasible_parameters(n)[source]¶
Return a list of a priori feasible parameters \((v,k,\lambda,\mu)\), with \(0<\mu<k\).
Note that some of those that it returns may also be infeasible for more involved reasons. The condition \(0<\mu<k\) makes sure we skip trivial cases of complete multipartite graphs and their complements.
INPUT:
n
– integer; return all a-priori feasible tuples \((v,k,\lambda,\mu)\) for \(v<n\)
EXAMPLES:
All sets of parameters with \(v<20\) which pass basic arithmetic tests are feasible:
sage: from sage.graphs.strongly_regular_db import apparently_feasible_parameters sage: small_feasible = apparently_feasible_parameters(20); small_feasible {(5, 2, 0, 1), (9, 4, 1, 2), (10, 3, 0, 1), (10, 6, 3, 4), (13, 6, 2, 3), (15, 6, 1, 3), (15, 8, 4, 4), (16, 5, 0, 2), (16, 6, 2, 2), (16, 9, 4, 6), (16, 10, 6, 6), (17, 8, 3, 4)} sage: all(graphs.strongly_regular_graph(*x,existence=True) is True # needs sage.libs.pari ....: for x in small_feasible) True
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import apparently_feasible_parameters >>> small_feasible = apparently_feasible_parameters(Integer(20)); small_feasible {(5, 2, 0, 1), (9, 4, 1, 2), (10, 3, 0, 1), (10, 6, 3, 4), (13, 6, 2, 3), (15, 6, 1, 3), (15, 8, 4, 4), (16, 5, 0, 2), (16, 6, 2, 2), (16, 9, 4, 6), (16, 10, 6, 6), (17, 8, 3, 4)} >>> all(graphs.strongly_regular_graph(*x,existence=True) is True # needs sage.libs.pari ... for x in small_feasible) True
But that becomes wrong for \(v<60\) (because of the non-existence of a \((49,16,3,6)\)-strongly regular graph):
sage: small_feasible = apparently_feasible_parameters(60) sage: all(graphs.strongly_regular_graph(*x,existence=True) is True # needs sage.libs.pari ....: for x in small_feasible) False
>>> from sage.all import * >>> small_feasible = apparently_feasible_parameters(Integer(60)) >>> all(graphs.strongly_regular_graph(*x,existence=True) is True # needs sage.libs.pari ... for x in small_feasible) False
- sage.graphs.strongly_regular_db.eigenmatrix(v, k, l, mu)[source]¶
Return the first eigenmatrix of a \((v,k,l,mu)\)-strongly regular graph.
The adjacency matrix \(A\) of an s.r.g. commutes with the adjacency matrix \(A'=J-A-I\) of its complement (here \(J\) is all-1 matrix, and \(I\) the identity matrix). Thus, they can be simultaneously diagonalized and so \(A\) and \(A'\) share eigenspaces.
The eigenvalues of \(J\) are \(v\) with multiplicity 1, and 0 with multiplicity \(v-1\). Thus the eigenvalue of \(A'\) corresponding to the 1-dimension \(k\)-eigenspace of \(A\) is \(v-k-1\). Respectively, the eigenvalues of \(A'\) corresponding to \(t\)-eigenspace of \(A\), with \(t\) unequal to \(k\), equals \(-t-1\). The 1st eigenmatrix \(P\) of the C-algebra \(C[A]\) generated by \(A\) encodes this eigenvalue information in its three columns; the 2nd (resp. 3rd) column contains distinct eigenvalues of \(A\) (resp. of \(A'\)), and the 1st column contains the corresponding eigenvalues of \(I\). The matrix \(vP^{-1}\) is called the 2nd eigenvalue matrix of \(C[A]\).
The most interesting feature of \(vP^{-1}\) is that it is the 1st eigenmatrix of the dual of \(C[A]\) if the dual is generated by the adjacency matrix of a strongly regular graph. See [BH2012] and [BI1984] for details.
If the set of parameters is not feasible, or if they correspond to a conference graph, the function returns
None
. Its output is stable, assuming that the eigenvalues r,s used satisfy r>s; this holds for the current implementation of eigenvalues().INPUT:
v
,k
,l
,mu
– integers
EXAMPLES:
Petersen’s graph’s C-algebra does not have a dual coming from an s.r.g.:
sage: from sage.graphs.strongly_regular_db import eigenmatrix sage: P = eigenmatrix(10,3,0,1); P # needs sage.modules [ 1 3 6] [ 1 1 -2] [ 1 -2 1] sage: 10*P^-1 # needs sage.modules [ 1 5 4] [ 1 5/3 -8/3] [ 1 -5/3 2/3]
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import eigenmatrix >>> P = eigenmatrix(Integer(10),Integer(3),Integer(0),Integer(1)); P # needs sage.modules [ 1 3 6] [ 1 1 -2] [ 1 -2 1] >>> Integer(10)*P**-Integer(1) # needs sage.modules [ 1 5 4] [ 1 5/3 -8/3] [ 1 -5/3 2/3]
The line graph of \(K_{3,3}\) is self-dual:
sage: P = eigenmatrix(9,4,1,2); P # needs sage.modules [ 1 4 4] [ 1 1 -2] [ 1 -2 1] sage: 9*P^-1 # needs sage.modules [ 1 4 4] [ 1 1 -2] [ 1 -2 1]
>>> from sage.all import * >>> P = eigenmatrix(Integer(9),Integer(4),Integer(1),Integer(2)); P # needs sage.modules [ 1 4 4] [ 1 1 -2] [ 1 -2 1] >>> Integer(9)*P**-Integer(1) # needs sage.modules [ 1 4 4] [ 1 1 -2] [ 1 -2 1]
A strongly regular graph with a non-isomorphic dual coming from another strongly regular graph:
sage: # needs sage.modules sage: graphs.strongly_regular_graph(243,220,199,200, existence=True) # needs sage.combinat True sage: graphs.strongly_regular_graph(243,110,37,60, existence=True) # needs sage.combinat True sage: P = eigenmatrix(243,220,199,200); P [ 1 220 22] [ 1 4 -5] [ 1 -5 4] sage: 243*P^-1 [ 1 110 132] [ 1 2 -3] [ 1 -25 24] sage: 243*P^-1==eigenmatrix(243,110,37,60) True
>>> from sage.all import * >>> # needs sage.modules >>> graphs.strongly_regular_graph(Integer(243),Integer(220),Integer(199),Integer(200), existence=True) # needs sage.combinat True >>> graphs.strongly_regular_graph(Integer(243),Integer(110),Integer(37),Integer(60), existence=True) # needs sage.combinat True >>> P = eigenmatrix(Integer(243),Integer(220),Integer(199),Integer(200)); P [ 1 220 22] [ 1 4 -5] [ 1 -5 4] >>> Integer(243)*P**-Integer(1) [ 1 110 132] [ 1 2 -3] [ 1 -25 24] >>> Integer(243)*P**-Integer(1)==eigenmatrix(Integer(243),Integer(110),Integer(37),Integer(60)) True
- sage.graphs.strongly_regular_db.is_GQqmqp(k, l, mu)[source]¶
Test whether some \(GQ(q-1,q+1)\) or \(GQ(q+1,q-1)\)-graph is \((v,k,\lambda,\mu)\)-srg.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: # needs sage.libs.pari sage: from sage.graphs.strongly_regular_db import is_GQqmqp sage: t = is_GQqmqp(27,10,1,5); t (<function AhrensSzekeresGeneralizedQuadrangleGraph at ...>, 3, False) sage: g = t[0](*t[1:]); g AS(3); GQ(2, 4): Graph on 27 vertices sage: t = is_GQqmqp(45,12,3,3); t (<function AhrensSzekeresGeneralizedQuadrangleGraph at ...>, 3, True) sage: g = t[0](*t[1:]); g AS(3)*; GQ(4, 2): Graph on 45 vertices sage: g.is_strongly_regular(parameters=True) (45, 12, 3, 3) sage: t = is_GQqmqp(16,6,2,2); t (<function T2starGeneralizedQuadrangleGraph at ...>, 2, True) sage: g = t[0](*t[1:]); g T2*(O,2)*; GQ(3, 1): Graph on 16 vertices sage: g.is_strongly_regular(parameters=True) (16, 6, 2, 2) sage: t = is_GQqmqp(64,18,2,6); t (<function T2starGeneralizedQuadrangleGraph at ...>, 4, False) sage: g = t[0](*t[1:]); g T2*(O,4); GQ(3, 5): Graph on 64 vertices sage: g.is_strongly_regular(parameters=True) (64, 18, 2, 6)
>>> from sage.all import * >>> # needs sage.libs.pari >>> from sage.graphs.strongly_regular_db import is_GQqmqp >>> t = is_GQqmqp(Integer(27),Integer(10),Integer(1),Integer(5)); t (<function AhrensSzekeresGeneralizedQuadrangleGraph at ...>, 3, False) >>> g = t[Integer(0)](*t[Integer(1):]); g AS(3); GQ(2, 4): Graph on 27 vertices >>> t = is_GQqmqp(Integer(45),Integer(12),Integer(3),Integer(3)); t (<function AhrensSzekeresGeneralizedQuadrangleGraph at ...>, 3, True) >>> g = t[Integer(0)](*t[Integer(1):]); g AS(3)*; GQ(4, 2): Graph on 45 vertices >>> g.is_strongly_regular(parameters=True) (45, 12, 3, 3) >>> t = is_GQqmqp(Integer(16),Integer(6),Integer(2),Integer(2)); t (<function T2starGeneralizedQuadrangleGraph at ...>, 2, True) >>> g = t[Integer(0)](*t[Integer(1):]); g T2*(O,2)*; GQ(3, 1): Graph on 16 vertices >>> g.is_strongly_regular(parameters=True) (16, 6, 2, 2) >>> t = is_GQqmqp(Integer(64),Integer(18),Integer(2),Integer(6)); t (<function T2starGeneralizedQuadrangleGraph at ...>, 4, False) >>> g = t[Integer(0)](*t[Integer(1):]); g T2*(O,4); GQ(3, 5): Graph on 64 vertices >>> g.is_strongly_regular(parameters=True) (64, 18, 2, 6)
- sage.graphs.strongly_regular_db.is_NO_F2(k, l, mu)[source]¶
Test whether some NO^e,perp(2n,2) graph is \((v,k,\lambda,\mu)\)-strongly regular.
For more information, see
sage.graphs.graph_generators.GraphGenerators.NonisotropicOrthogonalPolarGraph()
.INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_NO_F2 sage: t = is_NO_F2(10, 3, 0, 1); t # needs sage.libs.pari (<function NonisotropicOrthogonalPolarGraph at ...>, 4, 2, '-') sage: g = t[0](*t[1:]); g # needs sage.libs.pari NO^-(4, 2): Graph on 10 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.libs.pari (10, 3, 0, 1)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_NO_F2 >>> t = is_NO_F2(Integer(10), Integer(3), Integer(0), Integer(1)); t # needs sage.libs.pari (<function NonisotropicOrthogonalPolarGraph at ...>, 4, 2, '-') >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.libs.pari NO^-(4, 2): Graph on 10 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.libs.pari (10, 3, 0, 1)
- sage.graphs.strongly_regular_db.is_NO_F3(k, l, mu)[source]¶
Test whether some NO^e,perp(2n,3) graph is \((v,k,\lambda,\mu)\)-strongly regular.
For more information, see
sage.graphs.graph_generators.GraphGenerators.NonisotropicOrthogonalPolarGraph()
.INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_NO_F3 sage: t = is_NO_F3(15, 6, 1, 3); t # needs sage.libs.pari (<function NonisotropicOrthogonalPolarGraph at ...>, 4, 3, '-') sage: g = t[0](*t[1:]); g # needs sage.libs.pari NO^-(4, 3): Graph on 15 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.libs.pari (15, 6, 1, 3)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_NO_F3 >>> t = is_NO_F3(Integer(15), Integer(6), Integer(1), Integer(3)); t # needs sage.libs.pari (<function NonisotropicOrthogonalPolarGraph at ...>, 4, 3, '-') >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.libs.pari NO^-(4, 3): Graph on 15 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.libs.pari (15, 6, 1, 3)
- sage.graphs.strongly_regular_db.is_NOodd(k, l, mu)[source]¶
Test whether some NO^e(2n+1,q) graph is \((v,k,\lambda,\mu)\)-strongly regular.
Here \(q>2\), for in the case \(q=2\) this graph is complete. For more information, see
sage.graphs.graph_generators.GraphGenerators.NonisotropicOrthogonalPolarGraph()
and Sect. 7.C of [BL1984].INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_NOodd sage: t = is_NOodd(120, 51, 18, 24); t # needs sage.libs.pari (<function NonisotropicOrthogonalPolarGraph at ...>, 5, 4, '-') sage: g = t[0](*t[1:]); g # needs sage.libs.pari NO^-(5, 4): Graph on 120 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.libs.pari (120, 51, 18, 24)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_NOodd >>> t = is_NOodd(Integer(120), Integer(51), Integer(18), Integer(24)); t # needs sage.libs.pari (<function NonisotropicOrthogonalPolarGraph at ...>, 5, 4, '-') >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.libs.pari NO^-(5, 4): Graph on 120 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.libs.pari (120, 51, 18, 24)
- sage.graphs.strongly_regular_db.is_NOperp_F5(k, l, mu)[source]¶
Test whether some NO^e,perp(2n+1,5) graph is \((v,k,\lambda,\mu)\)-strongly regular.
For more information, see
sage.graphs.graph_generators.GraphGenerators.NonisotropicOrthogonalPolarGraph()
and Sect. 7.D of [BL1984].INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_NOperp_F5 sage: t = is_NOperp_F5(10, 3, 0, 1); t # needs sage.libs.pari (<function NonisotropicOrthogonalPolarGraph at ...>, 3, 5, '-', 1) sage: g = t[0](*t[1:]); g # needs sage.libs.pari NO^-,perp(3, 5): Graph on 10 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.libs.pari (10, 3, 0, 1)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_NOperp_F5 >>> t = is_NOperp_F5(Integer(10), Integer(3), Integer(0), Integer(1)); t # needs sage.libs.pari (<function NonisotropicOrthogonalPolarGraph at ...>, 3, 5, '-', 1) >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.libs.pari NO^-,perp(3, 5): Graph on 10 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.libs.pari (10, 3, 0, 1)
- sage.graphs.strongly_regular_db.is_NU(k, l, mu)[source]¶
Test whether some NU(n,q)-graph, is \((v,k,\lambda,\mu)\)-strongly regular.
Note that n>2; for n=2 there is no s.r.g. For more information, see
sage.graphs.graph_generators.GraphGenerators.NonisotropicUnitaryPolarGraph()
and series C14 in [Hub1975].INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_NU sage: t = is_NU(40, 27, 18, 18); t # needs sage.libs.pari (<function NonisotropicUnitaryPolarGraph at ...>, 4, 2) sage: g = t[0](*t[1:]); g # needs sage.libs.pari NU(4, 2): Graph on 40 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.libs.pari (40, 27, 18, 18)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_NU >>> t = is_NU(Integer(40), Integer(27), Integer(18), Integer(18)); t # needs sage.libs.pari (<function NonisotropicUnitaryPolarGraph at ...>, 4, 2) >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.libs.pari NU(4, 2): Graph on 40 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.libs.pari (40, 27, 18, 18)
- sage.graphs.strongly_regular_db.is_RSHCD(v, k, l, mu)[source]¶
Test whether some RSHCD graph is \((v,k,\lambda,\mu)\)-strongly regular.
For more information, see
SRG_from_RSHCD()
.INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_RSHCD sage: t = is_RSHCD(64,27,10,12); t # needs sage.combinat sage.modules [<built-in function SRG_from_RSHCD>, 64, 27, 10, 12] sage: g = t[0](*t[1:]); g # needs sage.combinat sage.modules Graph on 64 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.combinat sage.modules (64, 27, 10, 12)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_RSHCD >>> t = is_RSHCD(Integer(64),Integer(27),Integer(10),Integer(12)); t # needs sage.combinat sage.modules [<built-in function SRG_from_RSHCD>, 64, 27, 10, 12] >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.combinat sage.modules Graph on 64 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.combinat sage.modules (64, 27, 10, 12)
- sage.graphs.strongly_regular_db.is_affine_polar(k, l, mu)[source]¶
Test whether some Affine Polar graph is \((v,k,\lambda,\mu)\)-strongly regular.
For more information, see https://www.win.tue.nl/~aeb/graphs/VO.html.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_affine_polar sage: t = is_affine_polar(81,32,13,12); t # needs sage.rings.finite_rings (..., 4, 3) sage: g = t[0](*t[1:]); g # needs sage.rings.finite_rings Affine Polar Graph VO^+(4,3): Graph on 81 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings (81, 32, 13, 12) sage: t = is_affine_polar(5,5,5,5); t
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_affine_polar >>> t = is_affine_polar(Integer(81),Integer(32),Integer(13),Integer(12)); t # needs sage.rings.finite_rings (..., 4, 3) >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.rings.finite_rings Affine Polar Graph VO^+(4,3): Graph on 81 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings (81, 32, 13, 12) >>> t = is_affine_polar(Integer(5),Integer(5),Integer(5),Integer(5)); t
- sage.graphs.strongly_regular_db.is_complete_multipartite(k, l, mu)[source]¶
Test whether some complete multipartite graph is \((v,k,\lambda,\mu)\)-strongly regular.
Any complete multipartite graph with parts of the same size is strongly regular.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_complete_multipartite sage: t = is_complete_multipartite(12,8,4,8); t (<cyfunction is_complete_multipartite.<locals>.CompleteMultipartiteSRG at ...>, 3, 4) sage: g = t[0](*t[1:]); g Multipartite Graph with set sizes [4, 4, 4]: Graph on 12 vertices sage: g.is_strongly_regular(parameters=True) (12, 8, 4, 8)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_complete_multipartite >>> t = is_complete_multipartite(Integer(12),Integer(8),Integer(4),Integer(8)); t (<cyfunction is_complete_multipartite.<locals>.CompleteMultipartiteSRG at ...>, 3, 4) >>> g = t[Integer(0)](*t[Integer(1):]); g Multipartite Graph with set sizes [4, 4, 4]: Graph on 12 vertices >>> g.is_strongly_regular(parameters=True) (12, 8, 4, 8)
- sage.graphs.strongly_regular_db.is_cossidente_penttila(k, l, mu)[source]¶
Test whether some CossidentePenttilaGraph graph is \((v,k,\lambda,\mu)\)-strongly regular.
For more information, see
CossidentePenttilaGraph()
.INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_cossidente_penttila sage: t = is_cossidente_penttila(378, 52, 1, 8); t # needs sage.libs.pari (<function CossidentePenttilaGraph at ...>, 5) sage: g = t[0](*t[1:]); g # optional - gap_package_design, needs sage.libs.pari CossidentePenttila(5): Graph on 378 vertices sage: g.is_strongly_regular(parameters=True) # optional - gap_package_design, needs sage.libs.pari (378, 52, 1, 8)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_cossidente_penttila >>> t = is_cossidente_penttila(Integer(378), Integer(52), Integer(1), Integer(8)); t # needs sage.libs.pari (<function CossidentePenttilaGraph at ...>, 5) >>> g = t[Integer(0)](*t[Integer(1):]); g # optional - gap_package_design, needs sage.libs.pari CossidentePenttila(5): Graph on 378 vertices >>> g.is_strongly_regular(parameters=True) # optional - gap_package_design, needs sage.libs.pari (378, 52, 1, 8)
- sage.graphs.strongly_regular_db.is_goethals_seidel(k, l, mu)[source]¶
Test whether some
GoethalsSeidelGraph()
graph is \((v,k,\lambda,\mu)\)-strongly regular.INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_goethals_seidel sage: t = is_goethals_seidel(28, 15, 6, 10); t # needs sage.combinat sage.modules [<function GoethalsSeidelGraph at ...>, 3, 3] sage: g = t[0](*t[1:]); g # needs sage.combinat sage.modules Graph on 28 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.combinat sage.modules (28, 15, 6, 10) sage: t = is_goethals_seidel(256, 135, 70, 72); t # needs sage.combinat sage.modules [<function GoethalsSeidelGraph at ...>, 2, 15] sage: g = t[0](*t[1:]); g # needs sage.combinat sage.modules Graph on 256 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.combinat sage.modules (256, 135, 70, 72) sage: t = is_goethals_seidel(5,5,5,5); t # needs sage.combinat sage.modules
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_goethals_seidel >>> t = is_goethals_seidel(Integer(28), Integer(15), Integer(6), Integer(10)); t # needs sage.combinat sage.modules [<function GoethalsSeidelGraph at ...>, 3, 3] >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.combinat sage.modules Graph on 28 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.combinat sage.modules (28, 15, 6, 10) >>> t = is_goethals_seidel(Integer(256), Integer(135), Integer(70), Integer(72)); t # needs sage.combinat sage.modules [<function GoethalsSeidelGraph at ...>, 2, 15] >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.combinat sage.modules Graph on 256 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.combinat sage.modules (256, 135, 70, 72) >>> t = is_goethals_seidel(Integer(5),Integer(5),Integer(5),Integer(5)); t # needs sage.combinat sage.modules
- sage.graphs.strongly_regular_db.is_haemers(k, l, mu)[source]¶
Test whether some HaemersGraph graph is \((v,k,\lambda,\mu)\)-strongly regular.
For more information, see
HaemersGraph()
.INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_haemers sage: t = is_haemers(96, 19, 2, 4); t # needs sage.libs.pari (<function HaemersGraph at ...>, 4) sage: g = t[0](*t[1:]); g # needs sage.libs.pari Haemers(4): Graph on 96 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.libs.pari (96, 19, 2, 4)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_haemers >>> t = is_haemers(Integer(96), Integer(19), Integer(2), Integer(4)); t # needs sage.libs.pari (<function HaemersGraph at ...>, 4) >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.libs.pari Haemers(4): Graph on 96 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.libs.pari (96, 19, 2, 4)
- sage.graphs.strongly_regular_db.is_johnson(k, l, mu)[source]¶
Test whether some Johnson graph is \((v,k,\lambda,\mu)\)-strongly regular.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_johnson sage: t = is_johnson(10,6,3,4); t (..., 5) sage: g = t[0](*t[1:]); g Johnson graph with parameters 5,2: Graph on 10 vertices sage: g.is_strongly_regular(parameters=True) (10, 6, 3, 4) sage: t = is_johnson(5,5,5,5); t
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_johnson >>> t = is_johnson(Integer(10),Integer(6),Integer(3),Integer(4)); t (..., 5) >>> g = t[Integer(0)](*t[Integer(1):]); g Johnson graph with parameters 5,2: Graph on 10 vertices >>> g.is_strongly_regular(parameters=True) (10, 6, 3, 4) >>> t = is_johnson(Integer(5),Integer(5),Integer(5),Integer(5)); t
- sage.graphs.strongly_regular_db.is_mathon_PC_srg(k, l, mu)[source]¶
Test whether some Mathon’s Pseudocyclic s.r.g. is \((v,k,\lambda,\mu)\)-strongly regular.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.Todo
The current implementation only gives a subset of all possible graphs that can be obtained using this construction. A full implementation should rely on a database of conference matrices (or, equivalently, on a database of s.r.g.’s with parameters \((4t+1,2t,t-1,t)\). Currently we make an extra assumption that \(4t+1\) is a prime power. The first case where we miss a construction is \(t=11\), where we could (recursively) use the graph for \(t=1\) to construct a graph on 83205 vertices.
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_mathon_PC_srg sage: t = is_mathon_PC_srg(45,22,10,11); t # needs sage.libs.pari (..., 1) sage: g = t[0](*t[1:]); g # needs sage.libs.pari Mathon's PC SRG on 45 vertices: Graph on 45 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.libs.pari (45, 22, 10, 11)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_mathon_PC_srg >>> t = is_mathon_PC_srg(Integer(45),Integer(22),Integer(10),Integer(11)); t # needs sage.libs.pari (..., 1) >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.libs.pari Mathon's PC SRG on 45 vertices: Graph on 45 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.libs.pari (45, 22, 10, 11)
- sage.graphs.strongly_regular_db.is_muzychuk_S6(k, l, mu)[source]¶
Test whether some Muzychuk S6 graph is (v, k, l, mu)-strongly regular.
Tests whether a
MuzychukS6Graph()
has parameters (v, k, l, mu).INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the required graph if it exists, andNone
otherwise.EXAMPLES:
sage: # needs sage.libs.pari sage: from sage.graphs.strongly_regular_db import is_muzychuk_S6 sage: t = is_muzychuk_S6(378, 116, 34, 36) sage: G = t[0](*t[1:]); G Muzychuk S6 graph with parameters (3,3): Graph on 378 vertices sage: G.is_strongly_regular(parameters=True) (378, 116, 34, 36) sage: t = is_muzychuk_S6(5, 5, 5, 5); t
>>> from sage.all import * >>> # needs sage.libs.pari >>> from sage.graphs.strongly_regular_db import is_muzychuk_S6 >>> t = is_muzychuk_S6(Integer(378), Integer(116), Integer(34), Integer(36)) >>> G = t[Integer(0)](*t[Integer(1):]); G Muzychuk S6 graph with parameters (3,3): Graph on 378 vertices >>> G.is_strongly_regular(parameters=True) (378, 116, 34, 36) >>> t = is_muzychuk_S6(Integer(5), Integer(5), Integer(5), Integer(5)); t
- sage.graphs.strongly_regular_db.is_nowhere0_twoweight(v, k, l, mu)[source]¶
Test whether some graph of nowhere 0 words is \((v,k,\lambda,\mu)\)-strongly regular.
Test whether a
Nowhere0WordsTwoWeightCodeGraph()
is \((v,k,\lambda,\mu)\)-strongly regular.INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if the parameters match, andNone
otherwise.EXAMPLES:
sage: graphs.strongly_regular_graph(196, 60, 14, 20) # needs sage.combinat sage.modules Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
>>> from sage.all import * >>> graphs.strongly_regular_graph(Integer(196), Integer(60), Integer(14), Integer(20)) # needs sage.combinat sage.modules Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
- sage.graphs.strongly_regular_db.is_orthogonal_array_block_graph(k, l, mu)[source]¶
Test whether some (pseudo)Orthogonal Array graph is \((v,k,\lambda,\mu)\)-strongly regular.
We know how to construct graphs with parameters of an Orthogonal Array (\(OA(m,n)\)), also known as Latin squares graphs \(L_m(n)\), in several cases where no orthogonal array is known, or even in some cases for which they are known not to exist.
Such graphs are usually called pseudo-Latin squares graphs. Namely, Sage can construct a graph with parameters of an \(OA(m,n)\)-graph whenever there exists a skew-Hadamard matrix of order \(n+1\), and \(m=(n+1)/2\) or \(m=(n-1)/2\). The construction in the former case is due to Goethals-Seidel [BL1984], and in the latter case due to Pasechnik [Pas1992].
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: # needs sage.combinat sage.modules sage: from sage.graphs.strongly_regular_db import is_orthogonal_array_block_graph sage: t = is_orthogonal_array_block_graph(64, 35, 18, 20); t (..., 5, 8) sage: g = t[0](*t[1:]); g OA(5,8): Graph on 64 vertices sage: g.is_strongly_regular(parameters=True) (64, 35, 18, 20) sage: t = is_orthogonal_array_block_graph(225,98,43,42); t (..., 4) sage: g = t[0](*t[1:]); g Pasechnik Graph_4: Graph on 225 vertices sage: g.is_strongly_regular(parameters=True) (225, 98, 43, 42) sage: t = is_orthogonal_array_block_graph(225,112,55,56); t (..., 4) sage: g = t[0](*t[1:]); g skewhad^2_4: Graph on 225 vertices sage: g.is_strongly_regular(parameters=True) (225, 112, 55, 56) sage: t = is_orthogonal_array_block_graph(5,5,5,5); t # needs sage.combinat sage.modules
>>> from sage.all import * >>> # needs sage.combinat sage.modules >>> from sage.graphs.strongly_regular_db import is_orthogonal_array_block_graph >>> t = is_orthogonal_array_block_graph(Integer(64), Integer(35), Integer(18), Integer(20)); t (..., 5, 8) >>> g = t[Integer(0)](*t[Integer(1):]); g OA(5,8): Graph on 64 vertices >>> g.is_strongly_regular(parameters=True) (64, 35, 18, 20) >>> t = is_orthogonal_array_block_graph(Integer(225),Integer(98),Integer(43),Integer(42)); t (..., 4) >>> g = t[Integer(0)](*t[Integer(1):]); g Pasechnik Graph_4: Graph on 225 vertices >>> g.is_strongly_regular(parameters=True) (225, 98, 43, 42) >>> t = is_orthogonal_array_block_graph(Integer(225),Integer(112),Integer(55),Integer(56)); t (..., 4) >>> g = t[Integer(0)](*t[Integer(1):]); g skewhad^2_4: Graph on 225 vertices >>> g.is_strongly_regular(parameters=True) (225, 112, 55, 56) >>> t = is_orthogonal_array_block_graph(Integer(5),Integer(5),Integer(5),Integer(5)); t # needs sage.combinat sage.modules
- sage.graphs.strongly_regular_db.is_orthogonal_polar(k, l, mu)[source]¶
Test whether some Orthogonal Polar graph is \((v,k,\lambda,\mu)\)-strongly regular.
For more information, see https://www.win.tue.nl/~aeb/graphs/srghub.html.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_orthogonal_polar sage: t = is_orthogonal_polar(85, 20, 3, 5); t (<function OrthogonalPolarGraph at ...>, 5, 4, '') sage: g = t[0](*t[1:]); g # needs sage.rings.finite_rings Orthogonal Polar Graph O(5, 4): Graph on 85 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings (85, 20, 3, 5) sage: t = is_orthogonal_polar(5,5,5,5); t # needs sage.rings.finite_rings
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_orthogonal_polar >>> t = is_orthogonal_polar(Integer(85), Integer(20), Integer(3), Integer(5)); t (<function OrthogonalPolarGraph at ...>, 5, 4, '') >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.rings.finite_rings Orthogonal Polar Graph O(5, 4): Graph on 85 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings (85, 20, 3, 5) >>> t = is_orthogonal_polar(Integer(5),Integer(5),Integer(5),Integer(5)); t # needs sage.rings.finite_rings
- sage.graphs.strongly_regular_db.is_paley(k, l, mu)[source]¶
Test whether some Paley graph is \((v,k,\lambda,\mu)\)-strongly regular.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_paley sage: t = is_paley(13,6,2,3); t (..., 13) sage: g = t[0](*t[1:]); g # needs sage.rings.finite_rings Paley graph with parameter 13: Graph on 13 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings (13, 6, 2, 3) sage: t = is_paley(5,5,5,5); t
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_paley >>> t = is_paley(Integer(13),Integer(6),Integer(2),Integer(3)); t (..., 13) >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.rings.finite_rings Paley graph with parameter 13: Graph on 13 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings (13, 6, 2, 3) >>> t = is_paley(Integer(5),Integer(5),Integer(5),Integer(5)); t
- sage.graphs.strongly_regular_db.is_polhill(k, l, mu)[source]¶
Test whether some graph from [Pol2009] is \((1024,k,\lambda,\mu)\)-strongly regular.
Note
This function does not actually explore all strongly regular graphs produced in [Pol2009], but only those on 1024 vertices.
John Polhill offered his help if we attempt to write a code to guess, given \((v,k,\lambda,\mu)\), which of his construction must be applied to find the graph.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if the parameters match, andNone
otherwise.EXAMPLES:
sage: # needs sage.rings.finite_rings sage: from sage.graphs.strongly_regular_db import is_polhill sage: t = is_polhill(1024, 231, 38, 56); t [<cyfunction is_polhill.<locals>.<lambda> at ...>] sage: g = t[0](*t[1:]); g # not tested (too long) Graph on 1024 vertices sage: g.is_strongly_regular(parameters=True) # not tested (too long) (1024, 231, 38, 56) sage: t = is_polhill(1024, 264, 56, 72); t [<cyfunction is_polhill.<locals>.<lambda> at ...>] sage: t = is_polhill(1024, 297, 76, 90); t [<cyfunction is_polhill.<locals>.<lambda> at ...>] sage: t = is_polhill(1024, 330, 98, 110); t [<cyfunction is_polhill.<locals>.<lambda> at ...>] sage: t = is_polhill(1024, 462, 206, 210); t [<cyfunction is_polhill.<locals>.<lambda> at ...>]
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> from sage.graphs.strongly_regular_db import is_polhill >>> t = is_polhill(Integer(1024), Integer(231), Integer(38), Integer(56)); t [<cyfunction is_polhill.<locals>.<lambda> at ...>] >>> g = t[Integer(0)](*t[Integer(1):]); g # not tested (too long) Graph on 1024 vertices >>> g.is_strongly_regular(parameters=True) # not tested (too long) (1024, 231, 38, 56) >>> t = is_polhill(Integer(1024), Integer(264), Integer(56), Integer(72)); t [<cyfunction is_polhill.<locals>.<lambda> at ...>] >>> t = is_polhill(Integer(1024), Integer(297), Integer(76), Integer(90)); t [<cyfunction is_polhill.<locals>.<lambda> at ...>] >>> t = is_polhill(Integer(1024), Integer(330), Integer(98), Integer(110)); t [<cyfunction is_polhill.<locals>.<lambda> at ...>] >>> t = is_polhill(Integer(1024), Integer(462), Integer(206), Integer(210)); t [<cyfunction is_polhill.<locals>.<lambda> at ...>]
- sage.graphs.strongly_regular_db.is_steiner(k, l, mu)[source]¶
Test whether some Steiner graph is \((v,k,\lambda,\mu)\)-strongly regular.
A Steiner graph is the intersection graph of a Steiner set system. For more information, see https://www.win.tue.nl/~aeb/graphs/S.html.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_steiner sage: t = is_steiner(26,15,8,9); t (..., 13, 3) sage: g = t[0](*t[1:]); g Intersection Graph: Graph on 26 vertices sage: g.is_strongly_regular(parameters=True) (26, 15, 8, 9) sage: t = is_steiner(5,5,5,5); t
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_steiner >>> t = is_steiner(Integer(26),Integer(15),Integer(8),Integer(9)); t (..., 13, 3) >>> g = t[Integer(0)](*t[Integer(1):]); g Intersection Graph: Graph on 26 vertices >>> g.is_strongly_regular(parameters=True) (26, 15, 8, 9) >>> t = is_steiner(Integer(5),Integer(5),Integer(5),Integer(5)); t
- sage.graphs.strongly_regular_db.is_switch_OA_srg(v, k, l, mu)[source]¶
Test whether some switch \(OA(k,n)+*\) is \((v,k,\lambda,\mu)\)-strongly regular.
The “switch* \(OA(k,n)+*\) graphs appear on Andries Brouwer’s database and are built by adding an isolated vertex to a
OrthogonalArrayBlockGraph()
, and aSeidel switching
a set of disjoint \(n\)-cocliques.INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if the parameters match, andNone
otherwise.EXAMPLES:
sage: graphs.strongly_regular_graph(170, 78, 35, 36) # indirect doctest # needs sage.combinat sage.modules Graph on 170 vertices
>>> from sage.all import * >>> graphs.strongly_regular_graph(Integer(170), Integer(78), Integer(35), Integer(36)) # indirect doctest # needs sage.combinat sage.modules Graph on 170 vertices
- sage.graphs.strongly_regular_db.is_switch_skewhad(v, k, l, mu)[source]¶
Test whether some
switch skewhad^2+*
is \((v,k,\lambda,\mu)\)-strongly regular.The
switch skewhad^2+*
graphs appear on Andries Brouwer’s database and are built by adding an isolated vertex to the complement ofSquaredSkewHadamardMatrixGraph()
, and aSeidel switching
a set of disjoint \(n\)-cocliques.INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if the parameters match, andNone
otherwise.EXAMPLES:
sage: graphs.strongly_regular_graph(226, 105, 48, 49) # needs sage.combinat sage.modules switch skewhad^2+*_4: Graph on 226 vertices
>>> from sage.all import * >>> graphs.strongly_regular_graph(Integer(226), Integer(105), Integer(48), Integer(49)) # needs sage.combinat sage.modules switch skewhad^2+*_4: Graph on 226 vertices
- sage.graphs.strongly_regular_db.is_taylor_twograph_srg(k, l, mu)[source]¶
Test whether some Taylor two-graph SRG is \((v,k,\lambda,\mu)\)-strongly regular.
For more information, see §7E of [BL1984].
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graphTaylorTwographSRG
if the parameters match, andNone
otherwise.EXAMPLES:
sage: # needs sage.libs.pari sage: from sage.graphs.strongly_regular_db import is_taylor_twograph_srg sage: t = is_taylor_twograph_srg(28, 15, 6, 10); t (<function TaylorTwographSRG at ...>, 3) sage: g = t[0](*t[1:]); g Taylor two-graph SRG: Graph on 28 vertices sage: g.is_strongly_regular(parameters=True) (28, 15, 6, 10) sage: t = is_taylor_twograph_srg(5,5,5,5); t
>>> from sage.all import * >>> # needs sage.libs.pari >>> from sage.graphs.strongly_regular_db import is_taylor_twograph_srg >>> t = is_taylor_twograph_srg(Integer(28), Integer(15), Integer(6), Integer(10)); t (<function TaylorTwographSRG at ...>, 3) >>> g = t[Integer(0)](*t[Integer(1):]); g Taylor two-graph SRG: Graph on 28 vertices >>> g.is_strongly_regular(parameters=True) (28, 15, 6, 10) >>> t = is_taylor_twograph_srg(Integer(5),Integer(5),Integer(5),Integer(5)); t
- sage.graphs.strongly_regular_db.is_twograph_descendant_of_srg(k0, l, mu)[source]¶
Test whether some descendant graph of a s.r.g. is \((v,k_0,\lambda,\mu)\)-s.r.g.
We check whether there can exist \((v+1,k,\lambda^*,\mu^*)\)-s.r.g. \(G\) so that
self
is a descendant graph of the regular two-graph specified by \(G\). Specifically, we must have that \(v+1=2(2k-\lambda^*-\mu^*)\), and \(k_0=2(k-\mu^*)\), \(\lambda=k+\lambda^*-2\mu^*\), \(\mu=k-\mu^*\), which give 2 independent linear conditions, say \(k-\mu^*=\mu\) and \(\lambda^*-\mu^*=\lambda-\mu\). Further, there is a quadratic relation \(2 k^2-(v+1+4 \mu) k+ 2 v \mu=0\).If we can construct such \(G\) then we return a function to build a \((v,k_0,\lambda,\mu)\)-s.r.g. For more information, see 10.3 in https://www.win.tue.nl/~aeb/2WF02/spectra.pdf
INPUT:
v
,k0
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists and is known, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_twograph_descendant_of_srg sage: t = is_twograph_descendant_of_srg(27, 10, 1, 5); t # needs sage.rings.finite_rings (<cyfunction is_twograph_descendant_of_srg.<locals>.la at... sage: g = t[0](*t[1:]); g # needs sage.rings.finite_rings descendant of complement(Johnson graph with parameters 8,2) at {0, 1}: Graph on 27 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings (27, 10, 1, 5) sage: t = is_twograph_descendant_of_srg(5,5,5,5); t
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_twograph_descendant_of_srg >>> t = is_twograph_descendant_of_srg(Integer(27), Integer(10), Integer(1), Integer(5)); t # needs sage.rings.finite_rings (<cyfunction is_twograph_descendant_of_srg.<locals>.la at... >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.rings.finite_rings descendant of complement(Johnson graph with parameters 8,2) at {0, 1}: Graph on 27 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings (27, 10, 1, 5) >>> t = is_twograph_descendant_of_srg(Integer(5),Integer(5),Integer(5),Integer(5)); t
- sage.graphs.strongly_regular_db.is_unitary_dual_polar(k, l, mu)[source]¶
Test whether some Unitary Dual Polar graph is \((v,k,\lambda,\mu)\)-strongly regular.
This must be the U_5(q) on totally isotropic lines. For more information, see https://www.win.tue.nl/~aeb/graphs/srghub.html.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: # needs sage.libs.pari sage: from sage.graphs.strongly_regular_db import is_unitary_dual_polar sage: t = is_unitary_dual_polar(297, 40, 7, 5); t (<function UnitaryDualPolarGraph at ...>, 5, 2) sage: g = t[0](*t[1:]); g Unitary Dual Polar Graph DU(5, 2); GQ(8, 4): Graph on 297 vertices sage: g.is_strongly_regular(parameters=True) (297, 40, 7, 5) sage: t = is_unitary_dual_polar(5,5,5,5); t
>>> from sage.all import * >>> # needs sage.libs.pari >>> from sage.graphs.strongly_regular_db import is_unitary_dual_polar >>> t = is_unitary_dual_polar(Integer(297), Integer(40), Integer(7), Integer(5)); t (<function UnitaryDualPolarGraph at ...>, 5, 2) >>> g = t[Integer(0)](*t[Integer(1):]); g Unitary Dual Polar Graph DU(5, 2); GQ(8, 4): Graph on 297 vertices >>> g.is_strongly_regular(parameters=True) (297, 40, 7, 5) >>> t = is_unitary_dual_polar(Integer(5),Integer(5),Integer(5),Integer(5)); t
- sage.graphs.strongly_regular_db.is_unitary_polar(k, l, mu)[source]¶
Test whether some Unitary Polar graph is \((v,k,\lambda,\mu)\)-strongly regular.
For more information, see https://www.win.tue.nl/~aeb/graphs/srghub.html.
INPUT:
v
,k
,l
,mu
– integers
OUTPUT:
A tuple
t
such thatt[0](*t[1:])
builds the requested graph if one exists, andNone
otherwise.EXAMPLES:
sage: from sage.graphs.strongly_regular_db import is_unitary_polar sage: t = is_unitary_polar(45, 12, 3, 3); t # needs sage.libs.pari (<function UnitaryPolarGraph at ...>, 4, 2) sage: g = t[0](*t[1:]); g # needs sage.libs.pari Unitary Polar Graph U(4, 2); GQ(4, 2): Graph on 45 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.libs.pari (45, 12, 3, 3) sage: t = is_unitary_polar(5,5,5,5); t # needs sage.libs.pari
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import is_unitary_polar >>> t = is_unitary_polar(Integer(45), Integer(12), Integer(3), Integer(3)); t # needs sage.libs.pari (<function UnitaryPolarGraph at ...>, 4, 2) >>> g = t[Integer(0)](*t[Integer(1):]); g # needs sage.libs.pari Unitary Polar Graph U(4, 2); GQ(4, 2): Graph on 45 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.libs.pari (45, 12, 3, 3) >>> t = is_unitary_polar(Integer(5),Integer(5),Integer(5),Integer(5)); t # needs sage.libs.pari
- sage.graphs.strongly_regular_db.latin_squares_graph_parameters(v, k, l, mu)[source]¶
Check whether (v,k,l,mu)-strongly regular graph has parameters of an \(L_g(n)\) s.r.g.
Also known as pseudo-OA(n,g) case, i.e. s.r.g. with parameters of an OA(n,g)-graph. Return g and n, if they exist. See Sect. 9.1 of [BH2012] for details.
INPUT:
v
,k
,l
,mu
– - (integrs) parameters of the graph
OUTPUT:
(g, n)
– parameters of an \(L_g(n)\) graph, orNone
- sage.graphs.strongly_regular_db.strongly_regular_from_two_intersection_set(M)[source]¶
Return a strongly regular graph from a 2-intersection set.
A set of points in the projective geometry \(PG(k,q)\) is said to be a 2-intersection set if it intersects every hyperplane in either \(h_1\) or \(h_2\) points, where \(h_1,h_2\in \\NN\).
From a 2-intersection set \(S\) can be defined a strongly-regular graph in the following way:
Place the points of \(S\) on a hyperplane \(H\) in \(PG(k+1,q)\)
Define the graph \(G\) on all points of \(PG(k+1,q)\backslash H\)
Make two points of \(V(G)=PG(k+1,q)\backslash H\) adjacent if the line going through them intersects \(S\)
For more information, see e.g. [CD2013] where this explanation has been taken from.
INPUT:
M
– a \(|S| \times k\) matrix with entries in \(F_q\) representing the points of the 2-intersection set. We assume that the first nonzero entry of each row is equal to \(1\), that is, they give points in homogeneous coordinates.
The implementation does not check that \(S\) is actually a 2-intersection set.
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import strongly_regular_from_two_intersection_set sage: S = Matrix([(0,0,1),(0,1,0)] + [(1,x^2,x) for x in GF(4,'b')]) # needs sage.modules sage.rings.finite_rings sage: g = strongly_regular_from_two_intersection_set(S); g # needs sage.modules sage.rings.finite_rings two-intersection set in PG(3,4): Graph on 64 vertices sage: g.is_strongly_regular(parameters=True) # needs sage.modules sage.rings.finite_rings (64, 18, 2, 6)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import strongly_regular_from_two_intersection_set >>> S = Matrix([(Integer(0),Integer(0),Integer(1)),(Integer(0),Integer(1),Integer(0))] + [(Integer(1),x**Integer(2),x) for x in GF(Integer(4),'b')]) # needs sage.modules sage.rings.finite_rings >>> g = strongly_regular_from_two_intersection_set(S); g # needs sage.modules sage.rings.finite_rings two-intersection set in PG(3,4): Graph on 64 vertices >>> g.is_strongly_regular(parameters=True) # needs sage.modules sage.rings.finite_rings (64, 18, 2, 6)
- sage.graphs.strongly_regular_db.strongly_regular_from_two_weight_code(L)[source]¶
Return a strongly regular graph from a two-weight code.
A code is said to be a two-weight code the weight of its nonzero codewords (i.e. their number of nonzero coordinates) can only be one of two integer values \(w_1,w_2\). It is said to be projective if the minimum weight of the dual code is \(\geq 3\). A strongly regular graph can be built from a two-weight projective code with weights \(w_1,w_2\) (assuming \(w_1<w_2\)) by adding an edge between any two codewords whose difference has weight \(w_1\). For more information, see [LS1981] or [Del1972].
INPUT:
L
– a two-weight linear code, or its generating matrix
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import strongly_regular_from_two_weight_code sage: x = ("100022021001111", ....: "010011211122000", ....: "001021112100011", ....: "000110120222220") sage: M = Matrix(GF(3),[list(l) for l in x]) # needs sage.modules sage.rings.finite_rings sage: G = strongly_regular_from_two_weight_code(LinearCode(M)) # needs sage.modules sage.rings.finite_rings sage: G.is_strongly_regular(parameters=True) # needs sage.modules sage.rings.finite_rings (81, 50, 31, 30)
>>> from sage.all import * >>> from sage.graphs.strongly_regular_db import strongly_regular_from_two_weight_code >>> x = ("100022021001111", ... "010011211122000", ... "001021112100011", ... "000110120222220") >>> M = Matrix(GF(Integer(3)),[list(l) for l in x]) # needs sage.modules sage.rings.finite_rings >>> G = strongly_regular_from_two_weight_code(LinearCode(M)) # needs sage.modules sage.rings.finite_rings >>> G.is_strongly_regular(parameters=True) # needs sage.modules sage.rings.finite_rings (81, 50, 31, 30)
- sage.graphs.strongly_regular_db.strongly_regular_graph(v, k, l, mu=-1, existence=False, check=True)[source]¶
Return a \((v,k,\lambda,\mu)\)-strongly regular graph.
This function relies partly on Andries Brouwer’s database of strongly regular graphs. See the documentation of
sage.graphs.strongly_regular_db
for more information.INPUT:
v
,k
,l
,mu
–integers
– note thatmu
, if unspecified, is automatically determined fromv
,k
,l
existence
– boolean;``False``; instead of building the graph, return:True
– meaning that a \((v,k,\lambda,\mu)\)-strongly regular graph existsUnknown
– meaning that Sage does not know if such a strongly regular graph exists (seesage.misc.unknown
)False
– meaning that no such strongly regular graph exists
check
– boolean (default:True
); whether to check that output is correct before returning it. As this is expected to be useless, you may want to disable it whenever you want speed.
EXAMPLES:
Petersen’s graph from its set of parameters:
sage: graphs.strongly_regular_graph(10,3,0,1,existence=True) # needs sage.libs.pari True sage: graphs.strongly_regular_graph(10,3,0,1) complement(Johnson graph with parameters 5,2): Graph on 10 vertices
>>> from sage.all import * >>> graphs.strongly_regular_graph(Integer(10),Integer(3),Integer(0),Integer(1),existence=True) # needs sage.libs.pari True >>> graphs.strongly_regular_graph(Integer(10),Integer(3),Integer(0),Integer(1)) complement(Johnson graph with parameters 5,2): Graph on 10 vertices
Now without specifying \(\mu\):
sage: graphs.strongly_regular_graph(10,3,0) complement(Johnson graph with parameters 5,2): Graph on 10 vertices
>>> from sage.all import * >>> graphs.strongly_regular_graph(Integer(10),Integer(3),Integer(0)) complement(Johnson graph with parameters 5,2): Graph on 10 vertices
An obviously infeasible set of parameters:
sage: graphs.strongly_regular_graph(5,5,5,5,existence=True) False sage: graphs.strongly_regular_graph(5,5,5,5) Traceback (most recent call last): ... ValueError: There exists no (5, 5, 5, 5)-strongly regular graph
>>> from sage.all import * >>> graphs.strongly_regular_graph(Integer(5),Integer(5),Integer(5),Integer(5),existence=True) False >>> graphs.strongly_regular_graph(Integer(5),Integer(5),Integer(5),Integer(5)) Traceback (most recent call last): ... ValueError: There exists no (5, 5, 5, 5)-strongly regular graph
A set of parameters proved in a paper to be infeasible:
sage: graphs.strongly_regular_graph(324,57,0,12,existence=True) # needs sage.combinat sage.modules False sage: graphs.strongly_regular_graph(324,57,0,12) # needs sage.combinat sage.modules Traceback (most recent call last): ... EmptySetError: Andries Brouwer's database reports that no (324, 57, 0, 12)-strongly regular graph exists. Comments: <a href="srgtabrefs.html#GavrilyukMakhnev05">Gavrilyuk & Makhnev</a> ...
>>> from sage.all import * >>> graphs.strongly_regular_graph(Integer(324),Integer(57),Integer(0),Integer(12),existence=True) # needs sage.combinat sage.modules False >>> graphs.strongly_regular_graph(Integer(324),Integer(57),Integer(0),Integer(12)) # needs sage.combinat sage.modules Traceback (most recent call last): ... EmptySetError: Andries Brouwer's database reports that no (324, 57, 0, 12)-strongly regular graph exists. Comments: <a href="srgtabrefs.html#GavrilyukMakhnev05">Gavrilyuk & Makhnev</a> ...
A set of parameters unknown to be realizable in Andries Brouwer’s database:
sage: graphs.strongly_regular_graph(324,95,22,30,existence=True) # needs sage.combinat Unknown sage: graphs.strongly_regular_graph(324,95,22,30) # needs sage.combinat Traceback (most recent call last): ... RuntimeError: Andries Brouwer's database reports that no (324, 95, 22, 30)-strongly regular graph is known to exist. Comments:
>>> from sage.all import * >>> graphs.strongly_regular_graph(Integer(324),Integer(95),Integer(22),Integer(30),existence=True) # needs sage.combinat Unknown >>> graphs.strongly_regular_graph(Integer(324),Integer(95),Integer(22),Integer(30)) # needs sage.combinat Traceback (most recent call last): ... RuntimeError: Andries Brouwer's database reports that no (324, 95, 22, 30)-strongly regular graph is known to exist. Comments:
A large unknown set of parameters (not in Andries Brouwer’s database):
sage: graphs.strongly_regular_graph(1394,175,0,25,existence=True) # needs sage.combinat Unknown sage: graphs.strongly_regular_graph(1394,175,0,25) # needs sage.combinat Traceback (most recent call last): ... RuntimeError: Sage cannot figure out if a (1394, 175, 0, 25)-strongly regular graph exists.
>>> from sage.all import * >>> graphs.strongly_regular_graph(Integer(1394),Integer(175),Integer(0),Integer(25),existence=True) # needs sage.combinat Unknown >>> graphs.strongly_regular_graph(Integer(1394),Integer(175),Integer(0),Integer(25)) # needs sage.combinat Traceback (most recent call last): ... RuntimeError: Sage cannot figure out if a (1394, 175, 0, 25)-strongly regular graph exists.
Test the Claw bound (see 3.D of [BL1984]):
sage: graphs.strongly_regular_graph(2058,242,91,20,existence=True) False
>>> from sage.all import * >>> graphs.strongly_regular_graph(Integer(2058),Integer(242),Integer(91),Integer(20),existence=True) False
- sage.graphs.strongly_regular_db.strongly_regular_graph_lazy(v, k, l, mu=-1, existence=False)[source]¶
Return a promise to build an \((v,k,l,mu)\)-srg.
Return a promise to build an \((v,k,l,mu)\)-srg as a tuple \(t\), with \(t[0]\) a function to evaluate on \(*t[1:]\).
Input as in
strongly_regular_graph()
, although without \(check\).