Modular Decomposition¶
This module implements the function for computing the modular decomposition of undirected graphs.
AUTHORS:
Lokesh Jain (2017): first implementation of the linear time algorithm of D. Corneil, M. Habib, C. Paul and M. Tedder [TCHP2008]
David Einstein (2018): added the algorithm of M. Habib and M. Maurer [HM1979]
Cyril Bouvier (2024): second implementation of the linear time algorithm of D. Corneil, M. Habib, C. Paul and M. Tedder [TCHP2008]
- class sage.graphs.graph_decompositions.modular_decomposition.Node(node_type)[source]¶
Bases:
object
Node class stores information about the node type.
Node type can be
PRIME
,SERIES
,PARALLEL
,NORMAL
orEMPTY
.node_type
– is of type NodeType and specifies the type of node
- classmethod create_leaf(v)[source]¶
Return Node object that is a leaf corresponding to the vertex
v
.INPUT:
vertex
– vertex number
OUTPUT: a node object representing the vertex with
node_type
set asNodeType.NORMAL
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import Node sage: node = Node.create_leaf(2) sage: node NORMAL [2]
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import Node >>> node = Node.create_leaf(Integer(2)) >>> node NORMAL [2]
- is_empty()[source]¶
Check whether
self
is an empty node.EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: Node(NodeType.EMPTY).is_empty() True sage: Node.create_leaf(1).is_empty() False
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> Node(NodeType.EMPTY).is_empty() True >>> Node.create_leaf(Integer(1)).is_empty() False
- is_leaf()[source]¶
Check whether
self
is a leaf.EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: n = Node(NodeType.PRIME) sage: n.children.append(Node.create_leaf(1)) sage: n.children.append(Node.create_leaf(2)) sage: n.is_leaf() False sage: all(c.is_leaf() for c in n.children) True
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> n = Node(NodeType.PRIME) >>> n.children.append(Node.create_leaf(Integer(1))) >>> n.children.append(Node.create_leaf(Integer(2))) >>> n.is_leaf() False >>> all(c.is_leaf() for c in n.children) True
- is_prime()[source]¶
Check whether
self
is a prime node.EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: n = Node(NodeType.PRIME) sage: n.children.append(Node.create_leaf(1)) sage: n.children.append(Node.create_leaf(2)) sage: n.is_prime() True sage: (n.children[0].is_prime(), n.children[1].is_prime()) (False, False)
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> n = Node(NodeType.PRIME) >>> n.children.append(Node.create_leaf(Integer(1))) >>> n.children.append(Node.create_leaf(Integer(2))) >>> n.is_prime() True >>> (n.children[Integer(0)].is_prime(), n.children[Integer(1)].is_prime()) (False, False)
- is_series()[source]¶
Check whether
self
is a series node.EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: n = Node(NodeType.SERIES) sage: n.children.append(Node.create_leaf(1)) sage: n.children.append(Node.create_leaf(2)) sage: n.is_series() True sage: (n.children[0].is_series(), n.children[1].is_series()) (False, False)
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> n = Node(NodeType.SERIES) >>> n.children.append(Node.create_leaf(Integer(1))) >>> n.children.append(Node.create_leaf(Integer(2))) >>> n.is_series() True >>> (n.children[Integer(0)].is_series(), n.children[Integer(1)].is_series()) (False, False)
- class sage.graphs.graph_decompositions.modular_decomposition.NodeType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
Bases:
IntEnum
NodeType is an enumeration class used to define the various types of nodes in modular decomposition tree.
The various node types defined are
PARALLEL
– indicates the node is a parallel moduleSERIES
– indicates the node is a series modulePRIME
– indicates the node is a prime moduleEMPTY
– indicates a empty treeNORMAL
– indicates the node is normal containing a vertex
- sage.graphs.graph_decompositions.modular_decomposition.check_algos_are_equivalent(trials, graph_gen, verbose=False)[source]¶
Verify that both algorithms compute the same tree (up to equivalence) for random graphs.
INPUT:
trials
– integer; the number of tests the function will run.graph_gen
– function; a function that can be called without argument and returns a random graph.verbose
– boolean (defaul:False
); enable printing debug information.
OUTPUT:
None
. Raises anAssertionError
on failure.EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: check_algos_are_equivalent(3, lambda : graphs.RandomGNP(10, 0.1)) sage: check_algos_are_equivalent(3, lambda : graphs.RandomGNP(10, 0.5)) sage: check_algos_are_equivalent(3, lambda : graphs.RandomGNP(10, 0.9))
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> check_algos_are_equivalent(Integer(3), lambda : graphs.RandomGNP(Integer(10), RealNumber('0.1'))) >>> check_algos_are_equivalent(Integer(3), lambda : graphs.RandomGNP(Integer(10), RealNumber('0.5'))) >>> check_algos_are_equivalent(Integer(3), lambda : graphs.RandomGNP(Integer(10), RealNumber('0.9')))
- sage.graphs.graph_decompositions.modular_decomposition.children_node_type(module, node_type)[source]¶
Check whether the node type of the children of
module
isnode_type
.INPUT:
module
– module which is testednode_type
– input node_type
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: g = graphs.OctahedralGraph() sage: tree_root = modular_decomposition(g) sage: print_md_tree(tree_root) SERIES PARALLEL 2 3 PARALLEL 1 4 PARALLEL 0 5 sage: children_node_type(tree_root, NodeType.SERIES) False sage: children_node_type(tree_root, NodeType.PARALLEL) True
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> g = graphs.OctahedralGraph() >>> tree_root = modular_decomposition(g) >>> print_md_tree(tree_root) SERIES PARALLEL 2 3 PARALLEL 1 4 PARALLEL 0 5 >>> children_node_type(tree_root, NodeType.SERIES) False >>> children_node_type(tree_root, NodeType.PARALLEL) True
- sage.graphs.graph_decompositions.modular_decomposition.corneil_habib_paul_tedder_algorithm(G)[source]¶
Compute the modular decomposition by the algorithm of Corneil, Habib, Paul and Tedder.
INPUT:
G
– the graph for which modular decomposition tree needs to be computed
OUTPUT: an object of type Node representing the modular decomposition tree of the graph G
This function computes the modular decomposition of the given graph by the algorithm of Corneil, Habib, Paul and Tedder [TCHP2008]. It is a recursive, linear-time algorithm that first computes the slice decomposition of the graph (via the extended lexBFS algorithm) and then computes the modular decomposition by calling itself recursively on the slices of the previously computed slice decomposition.
This functions is based on the last version of the paper [TCHP2008]. Previous versions of the paper and previous implementations were found to contains errors, see [AP2024].
See also
slice_decomposition
– compute a slice decomposition of the simple undirect graph
This function should not be used directly, it should be called via the
modular_decomposition
method ofGraph
with the parameteralgorithm='corneil_habib_paul_tedder'
.This functions assumes that
graph
is a object of the classGraph
and is a simple graph.
- sage.graphs.graph_decompositions.modular_decomposition.either_connected_or_not_connected(v, vertices_in_module, graph)[source]¶
Check whether
v
is connected or disconnected to all vertices in the module.INPUT:
v
– vertex testedvertices_in_module
– list containing vertices in the modulegraph
– graph to which the vertices belong
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: g = graphs.OctahedralGraph() sage: print_md_tree(modular_decomposition(g)) SERIES PARALLEL 2 3 PARALLEL 1 4 PARALLEL 0 5 sage: either_connected_or_not_connected(2, [1, 4], g) True sage: either_connected_or_not_connected(2, [3, 4], g) False
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> g = graphs.OctahedralGraph() >>> print_md_tree(modular_decomposition(g)) SERIES PARALLEL 2 3 PARALLEL 1 4 PARALLEL 0 5 >>> either_connected_or_not_connected(Integer(2), [Integer(1), Integer(4)], g) True >>> either_connected_or_not_connected(Integer(2), [Integer(3), Integer(4)], g) False
- sage.graphs.graph_decompositions.modular_decomposition.equivalent_trees(root1, root2)[source]¶
Check that two modular decomposition trees are the same.
Verify that the structure of the trees is the same. Two leaves are equivalent if they represent the same vertex, two internal nodes are equivalent if they have the same nodes type and the same number of children and there is a matching between the children such that each pair of children is a pair of equivalent subtrees.
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: t1 = nested_tuple_to_tree((NodeType.SERIES, 1, 2, ....: (NodeType.PARALLEL, 3, 4))) sage: t2 = nested_tuple_to_tree((NodeType.SERIES, ....: (NodeType.PARALLEL, 4, 3), 2, 1)) sage: equivalent_trees(t1, t2) True
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> t1 = nested_tuple_to_tree((NodeType.SERIES, Integer(1), Integer(2), ... (NodeType.PARALLEL, Integer(3), Integer(4)))) >>> t2 = nested_tuple_to_tree((NodeType.SERIES, ... (NodeType.PARALLEL, Integer(4), Integer(3)), Integer(2), Integer(1))) >>> equivalent_trees(t1, t2) True
- sage.graphs.graph_decompositions.modular_decomposition.form_module(index, other_index, tree_root, graph)[source]¶
Forms a module out of the modules in the module pair.
Let \(M_1\) and \(M_2\) be the input modules. Let \(V\) be the set of vertices in these modules. Suppose \(x\) is a neighbor of subset of the vertices in \(V\) but not all the vertices and \(x\) does not belong to \(V\). Then the set of modules also include the module which contains \(x\). This process is repeated until a module is formed and the formed module if subset of \(V\) is returned.
INPUT:
index
– first module in the module pairother_index
– second module in the module pairtree_root
– modular decomposition tree which contains the modules in the module pairgraph
– graph whose modular decomposition tree is created
OUTPUT:
[module_formed, vertices]
wheremodule_formed
isTrue
if module is formed elseFalse
andvertices
is a list of vertices included in the formed moduleEXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: g = graphs.HexahedralGraph() sage: tree_root = modular_decomposition(g) sage: form_module(0, 2, tree_root, g) [False, {0, 1, 2, 3, 4, 5, 6, 7}]
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> g = graphs.HexahedralGraph() >>> tree_root = modular_decomposition(g) >>> form_module(Integer(0), Integer(2), tree_root, g) [False, {0, 1, 2, 3, 4, 5, 6, 7}]
- sage.graphs.graph_decompositions.modular_decomposition.gamma_classes(graph)[source]¶
Partition the edges of the graph into Gamma classes.
Two distinct edges are Gamma related if they share a vertex but are not part of a triangle. A Gamma class of edges is a collection of edges such that any edge in the class can be reached from any other by a chain of Gamma related edges (that are also in the class).
The two important properties of the Gamma class
The vertex set corresponding to a Gamma class is a module
If the graph is not fragile (neither it or its complement is disconnected) then there is exactly one class that visits all the vertices of the graph, and this class consists of just the edges that connect the maximal strong modules of that graph.
EXAMPLES:
The gamma_classes of the octahedral graph are the three 4-cycles corresponding to the slices through the center of the octahedron:
sage: from sage.graphs.graph_decompositions.modular_decomposition import gamma_classes sage: g = graphs.OctahedralGraph() sage: sorted(gamma_classes(g), key=str) [frozenset({0, 1, 4, 5}), frozenset({0, 2, 3, 5}), frozenset({1, 2, 3, 4})]
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import gamma_classes >>> g = graphs.OctahedralGraph() >>> sorted(gamma_classes(g), key=str) [frozenset({0, 1, 4, 5}), frozenset({0, 2, 3, 5}), frozenset({1, 2, 3, 4})]
- sage.graphs.graph_decompositions.modular_decomposition.get_module_type(graph)[source]¶
Return the module type of the root of the modular decomposition tree of
graph
.INPUT:
graph
– input sage graph
OUTPUT:
PRIME
if graph is PRIME,PARALLEL
if graph is PARALLEL andSERIES
if graph is of type SERIESEXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import get_module_type sage: g = graphs.HexahedralGraph() sage: get_module_type(g) PRIME
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import get_module_type >>> g = graphs.HexahedralGraph() >>> get_module_type(g) PRIME
- sage.graphs.graph_decompositions.modular_decomposition.get_vertices(component_root)[source]¶
Compute the list of vertices in the (co)component.
INPUT:
component_root
– root of the (co)component whose vertices need to be returned as a list
OUTPUT:
list of vertices in the (co)component
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: forest = Node(NodeType.PRIME) sage: forest.children = [Node.create_leaf(2), Node.create_leaf(0), ....: Node.create_leaf(3), Node.create_leaf(1)] sage: series_node = Node(NodeType.SERIES) sage: series_node.children = [Node.create_leaf(4), ....: Node.create_leaf(5)] sage: parallel_node = Node(NodeType.PARALLEL) sage: parallel_node.children = [Node.create_leaf(6), ....: Node.create_leaf(7)] sage: forest.children.insert(1, series_node) sage: forest.children.insert(3, parallel_node) sage: get_vertices(forest) [2, 4, 5, 0, 6, 7, 3, 1]
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> forest = Node(NodeType.PRIME) >>> forest.children = [Node.create_leaf(Integer(2)), Node.create_leaf(Integer(0)), ... Node.create_leaf(Integer(3)), Node.create_leaf(Integer(1))] >>> series_node = Node(NodeType.SERIES) >>> series_node.children = [Node.create_leaf(Integer(4)), ... Node.create_leaf(Integer(5))] >>> parallel_node = Node(NodeType.PARALLEL) >>> parallel_node.children = [Node.create_leaf(Integer(6)), ... Node.create_leaf(Integer(7))] >>> forest.children.insert(Integer(1), series_node) >>> forest.children.insert(Integer(3), parallel_node) >>> get_vertices(forest) [2, 4, 5, 0, 6, 7, 3, 1]
- sage.graphs.graph_decompositions.modular_decomposition.habib_maurer_algorithm(graph, g_classes=None)[source]¶
Compute the modular decomposition by the algorithm of Habib and Maurer.
Compute the modular decomposition of the given graph by the algorithm of Habib and Maurer [HM1979] . If the graph is disconnected or its complement is disconnected return a tree with a
PARALLEL
orSERIES
node at the root and children being the modular decomposition of the subgraphs induced by the components. Otherwise, the root isPRIME
and the modules are identified by having identical neighborhoods in the gamma class that spans the vertices of the subgraph (exactly one is guaranteed to exist). The gamma classes only need to be computed once, as the algorithm computes the the classes for the current root and each of the submodules. See also [BM1983] for an equivalent algorithm described in greater detail.This function should not be used directly, it should be called via the
modular_decomposition
method ofGraph
with the parameteralgorithm='habib_maurer'
.This functions assumes that
graph
is a object of the classGraph
, is a simple graph and has at least 1 vertex.INPUT:
graph
– the graph for which modular decomposition tree needs to be computedg_classes
– dictionary (default:None
); a dictionary whose values are the gamma classes of the graph, and whose keys are a frozenset of the vertices corresponding to the class. Used internally.
OUTPUT: the modular decomposition tree of the graph
EXAMPLES:
The Icosahedral graph is Prime:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: print_md_tree(habib_maurer_algorithm(graphs.IcosahedralGraph())) PRIME 3 4 7 9 11 1 5 8 0 2 6 10
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> print_md_tree(habib_maurer_algorithm(graphs.IcosahedralGraph())) PRIME 3 4 7 9 11 1 5 8 0 2 6 10
The Octahedral graph is not Prime:
sage: print_md_tree(habib_maurer_algorithm(graphs.OctahedralGraph())) SERIES PARALLEL 0 5 PARALLEL 1 4 PARALLEL 2 3
>>> from sage.all import * >>> print_md_tree(habib_maurer_algorithm(graphs.OctahedralGraph())) SERIES PARALLEL 0 5 PARALLEL 1 4 PARALLEL 2 3
Tetrahedral Graph is Series:
sage: print_md_tree(habib_maurer_algorithm(graphs.TetrahedralGraph())) SERIES 0 1 2 3
>>> from sage.all import * >>> print_md_tree(habib_maurer_algorithm(graphs.TetrahedralGraph())) SERIES 0 1 2 3
Modular Decomposition tree containing both parallel and series modules:
sage: d = {2:[4,3,5], 1:[4,3,5], 5:[3,2,1,4], 3:[1,2,5], 4:[1,2,5]} sage: g = Graph(d) sage: print_md_tree(habib_maurer_algorithm(g)) SERIES PARALLEL 1 2 PARALLEL 3 4 5
>>> from sage.all import * >>> d = {Integer(2):[Integer(4),Integer(3),Integer(5)], Integer(1):[Integer(4),Integer(3),Integer(5)], Integer(5):[Integer(3),Integer(2),Integer(1),Integer(4)], Integer(3):[Integer(1),Integer(2),Integer(5)], Integer(4):[Integer(1),Integer(2),Integer(5)]} >>> g = Graph(d) >>> print_md_tree(habib_maurer_algorithm(g)) SERIES PARALLEL 1 2 PARALLEL 3 4 5
Graph from Marc Tedder implementation of modular decomposition:
sage: d = {1:[5,4,3,24,6,7,8,9,2,10,11,12,13,14,16,17], 2:[1], ....: 3:[24,9,1], 4:[5,24,9,1], 5:[4,24,9,1], 6:[7,8,9,1], ....: 7:[6,8,9,1], 8:[6,7,9,1], 9:[6,7,8,5,4,3,1], 10:[1], ....: 11:[12,1], 12:[11,1], 13:[14,16,17,1], 14:[13,17,1], ....: 16:[13,17,1], 17:[13,14,16,18,1], 18:[17], 24:[5,4,3,1]} sage: g = Graph(d) sage: test_modular_decomposition(habib_maurer_algorithm(g), g) True
>>> from sage.all import * >>> d = {Integer(1):[Integer(5),Integer(4),Integer(3),Integer(24),Integer(6),Integer(7),Integer(8),Integer(9),Integer(2),Integer(10),Integer(11),Integer(12),Integer(13),Integer(14),Integer(16),Integer(17)], Integer(2):[Integer(1)], ... Integer(3):[Integer(24),Integer(9),Integer(1)], Integer(4):[Integer(5),Integer(24),Integer(9),Integer(1)], Integer(5):[Integer(4),Integer(24),Integer(9),Integer(1)], Integer(6):[Integer(7),Integer(8),Integer(9),Integer(1)], ... Integer(7):[Integer(6),Integer(8),Integer(9),Integer(1)], Integer(8):[Integer(6),Integer(7),Integer(9),Integer(1)], Integer(9):[Integer(6),Integer(7),Integer(8),Integer(5),Integer(4),Integer(3),Integer(1)], Integer(10):[Integer(1)], ... Integer(11):[Integer(12),Integer(1)], Integer(12):[Integer(11),Integer(1)], Integer(13):[Integer(14),Integer(16),Integer(17),Integer(1)], Integer(14):[Integer(13),Integer(17),Integer(1)], ... Integer(16):[Integer(13),Integer(17),Integer(1)], Integer(17):[Integer(13),Integer(14),Integer(16),Integer(18),Integer(1)], Integer(18):[Integer(17)], Integer(24):[Integer(5),Integer(4),Integer(3),Integer(1)]} >>> g = Graph(d) >>> test_modular_decomposition(habib_maurer_algorithm(g), g) True
Tetrahedral Graph is Series:
sage: print_md_tree(habib_maurer_algorithm(graphs.TetrahedralGraph())) SERIES 0 1 2 3
>>> from sage.all import * >>> print_md_tree(habib_maurer_algorithm(graphs.TetrahedralGraph())) SERIES 0 1 2 3
Modular Decomposition tree containing both parallel and series modules:
sage: d = {2:[4,3,5], 1:[4,3,5], 5:[3,2,1,4], 3:[1,2,5], 4:[1,2,5]} sage: g = Graph(d) sage: print_md_tree(habib_maurer_algorithm(g)) SERIES PARALLEL 1 2 PARALLEL 3 4 5
>>> from sage.all import * >>> d = {Integer(2):[Integer(4),Integer(3),Integer(5)], Integer(1):[Integer(4),Integer(3),Integer(5)], Integer(5):[Integer(3),Integer(2),Integer(1),Integer(4)], Integer(3):[Integer(1),Integer(2),Integer(5)], Integer(4):[Integer(1),Integer(2),Integer(5)]} >>> g = Graph(d) >>> print_md_tree(habib_maurer_algorithm(g)) SERIES PARALLEL 1 2 PARALLEL 3 4 5
- sage.graphs.graph_decompositions.modular_decomposition.md_tree_to_graph(root, prime_node_generator=None)[source]¶
Create a graph having the given MD tree.
For the prime nodes, the parameter
prime_node_generator
is called with the number of vertices as the only argument. If it isNone
, the path graph is used (it is prime when the length is 4 or more).EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: from sage.graphs.graph_generators import graphs sage: tup1 = (NodeType.PRIME, 1, (NodeType.SERIES, 2, 3), ....: (NodeType.PARALLEL, 4, 5), 6) sage: tree1 = nested_tuple_to_tree(tup1) sage: g1 = md_tree_to_graph(tree1) sage: g2 = Graph({1: [2, 3], 2: [1, 3, 4, 5], 3: [1, 2, 4, 5], ....: 4: [2, 3, 6], 5: [2, 3, 6], 6: [4, 5]}) sage: g1.is_isomorphic(g2) True sage: G = md_tree_to_graph(Node(NodeType.EMPTY)) sage: G.is_isomorphic(Graph()) True sage: tree = Node(NodeType.SERIES) sage: tree.children.extend(Node.create_leaf(i) for i in range(5)) sage: G = md_tree_to_graph(tree) sage: G.is_isomorphic(graphs.CompleteGraph(5)) True sage: tree = Node(NodeType.PRIME) sage: tree.children.extend(Node.create_leaf(i) for i in range(5)) sage: png = lambda n: (graphs.PathGraph if n == 4 else graphs.CycleGraph)(n) sage: G = md_tree_to_graph(tree, prime_node_generator=png) sage: G.is_isomorphic(graphs.CycleGraph(5)) True
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> from sage.graphs.graph_generators import graphs >>> tup1 = (NodeType.PRIME, Integer(1), (NodeType.SERIES, Integer(2), Integer(3)), ... (NodeType.PARALLEL, Integer(4), Integer(5)), Integer(6)) >>> tree1 = nested_tuple_to_tree(tup1) >>> g1 = md_tree_to_graph(tree1) >>> g2 = Graph({Integer(1): [Integer(2), Integer(3)], Integer(2): [Integer(1), Integer(3), Integer(4), Integer(5)], Integer(3): [Integer(1), Integer(2), Integer(4), Integer(5)], ... Integer(4): [Integer(2), Integer(3), Integer(6)], Integer(5): [Integer(2), Integer(3), Integer(6)], Integer(6): [Integer(4), Integer(5)]}) >>> g1.is_isomorphic(g2) True >>> G = md_tree_to_graph(Node(NodeType.EMPTY)) >>> G.is_isomorphic(Graph()) True >>> tree = Node(NodeType.SERIES) >>> tree.children.extend(Node.create_leaf(i) for i in range(Integer(5))) >>> G = md_tree_to_graph(tree) >>> G.is_isomorphic(graphs.CompleteGraph(Integer(5))) True >>> tree = Node(NodeType.PRIME) >>> tree.children.extend(Node.create_leaf(i) for i in range(Integer(5))) >>> png = lambda n: (graphs.PathGraph if n == Integer(4) else graphs.CycleGraph)(n) >>> G = md_tree_to_graph(tree, prime_node_generator=png) >>> G.is_isomorphic(graphs.CycleGraph(Integer(5))) True
- sage.graphs.graph_decompositions.modular_decomposition.modular_decomposition(G, algorithm=None)[source]¶
Return the modular decomposition of the current graph.
This function should not be used directly, it should be called via the
modular_decomposition
method ofGraph
.INPUT:
G
– graph whose modular decomposition tree is to be computedalgorithm
– string (default:None
); the algorithm to use among:None
or'corneil_habib_paul_tedder'
– will use the Corneil-Habib-Paul-Tedder algorithm from [TCHP2008], its complexity is linear in the number of vertices and edges.'habib_maurer'
– will use the Habib-Maurer algorithm from [HM1979], its complexity is cubic in the number of vertices.
OUTPUT: The modular decomposition tree, as an object of type
Node
.
- sage.graphs.graph_decompositions.modular_decomposition.nested_tuple_to_tree(nest)[source]¶
Turn a tuple representing the modular decomposition into a tree.
INPUT:
nest
– a nested tuple of the form returned bytree_to_nested_tuple()
OUTPUT: the root node of a modular decomposition tree
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: tree = (NodeType.SERIES, 1, 2, (NodeType.PARALLEL, 3, 4)) sage: print_md_tree(nested_tuple_to_tree(tree)) SERIES 1 2 PARALLEL 3 4
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> tree = (NodeType.SERIES, Integer(1), Integer(2), (NodeType.PARALLEL, Integer(3), Integer(4))) >>> print_md_tree(nested_tuple_to_tree(tree)) SERIES 1 2 PARALLEL 3 4
- sage.graphs.graph_decompositions.modular_decomposition.permute_decomposition(trials, algorithm, vertices, prob, verbose=False)[source]¶
Check that a graph and its permuted relabeling have the same modular decomposition.
We generate a
trials
random graphs and then generate an isomorphic graph by relabeling the original graph. We then verifyEXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: permute_decomposition(30, habib_maurer_algorithm, 10, 0.5)
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> permute_decomposition(Integer(30), habib_maurer_algorithm, Integer(10), RealNumber('0.5'))
- sage.graphs.graph_decompositions.modular_decomposition.print_md_tree(root)[source]¶
Print the modular decomposition tree.
INPUT:
root
– root of the modular decomposition tree
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: print_md_tree(habib_maurer_algorithm(graphs.IcosahedralGraph())) PRIME 3 4 7 9 11 1 5 8 0 2 6 10
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> print_md_tree(habib_maurer_algorithm(graphs.IcosahedralGraph())) PRIME 3 4 7 9 11 1 5 8 0 2 6 10
- sage.graphs.graph_decompositions.modular_decomposition.random_md_tree(max_depth, max_fan_out, leaf_probability)[source]¶
Create a random MD tree.
INPUT:
max_depth
– the maximum depth of the treemax_fan_out
– the maximum number of children a node can have (must be >=4 as a prime node must have at least 4 vertices)leaf_probability
– the probability that a subtree is a leaf
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: set_random_seed(0) sage: tree_to_nested_tuple(random_md_tree(2, 5, 0.5)) (PRIME, [0, 1, (PRIME, [2, 3, 4, 5, 6]), 7, (PARALLEL, [8, 9, 10])])
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> set_random_seed(Integer(0)) >>> tree_to_nested_tuple(random_md_tree(Integer(2), Integer(5), RealNumber('0.5'))) (PRIME, [0, 1, (PRIME, [2, 3, 4, 5, 6]), 7, (PARALLEL, [8, 9, 10])])
- sage.graphs.graph_decompositions.modular_decomposition.recreate_decomposition(trials, algorithm, max_depth, max_fan_out, leaf_probability, verbose=False)[source]¶
Verify that we can recreate a random MD tree.
We create a random MD tree, then create a graph having that decomposition, then find a modular decomposition for that graph, and verify that the two modular decomposition trees are equivalent.
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: recreate_decomposition(3, habib_maurer_algorithm, 4, 6, 0.5, ....: verbose=False)
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> recreate_decomposition(Integer(3), habib_maurer_algorithm, Integer(4), Integer(6), RealNumber('0.5'), ... verbose=False)
- sage.graphs.graph_decompositions.modular_decomposition.relabel_tree(root, perm)[source]¶
Relabel the leaves of a tree according to a dictionary.
INPUT:
root
– the root of the treeperm
– a function, dictionary, list, permutation, orNone
representing the relabeling. Seerelabel()
for description of the permutation input.
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: tuple_tree = (NodeType.SERIES, 1, 2, (NodeType.PARALLEL, 3, 4)) sage: tree = nested_tuple_to_tree(tuple_tree) sage: print_md_tree(relabel_tree(tree, (4,3,2,1))) SERIES 4 3 PARALLEL 2 1
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> tuple_tree = (NodeType.SERIES, Integer(1), Integer(2), (NodeType.PARALLEL, Integer(3), Integer(4))) >>> tree = nested_tuple_to_tree(tuple_tree) >>> print_md_tree(relabel_tree(tree, (Integer(4),Integer(3),Integer(2),Integer(1)))) SERIES 4 3 PARALLEL 2 1
- sage.graphs.graph_decompositions.modular_decomposition.test_gamma_modules(trials, vertices, prob, verbose=False)[source]¶
Verify that the vertices of each gamma class of a random graph are modules of that graph.
INPUT:
trials
– the number of trials to runvertices
– the size of the graph to useprob
– the probability that any given edge is in the graph SeeRandomGNP()
for more detailsverbose
– print information on each trial
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: test_gamma_modules(3, 7, 0.5)
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> test_gamma_modules(Integer(3), Integer(7), RealNumber('0.5'))
- sage.graphs.graph_decompositions.modular_decomposition.test_maximal_modules(tree_root, graph)[source]¶
Test the maximal nature of modules in a modular decomposition tree.
Suppose the module \(M = [M_1, M_2, \cdots, n]\) is the input modular decomposition tree. Algorithm forms pairs like \((M_1, M_2), (M_1, M_3), \cdots, (M_1, M_n)\); \((M_2, M_3), (M_2, M_4), \cdots, (M_2, M_n)\); \(\cdots\) and so on and tries to form a module using the pair. If the module formed has same type as \(M\) and is of type
SERIES
orPARALLEL
then the formed module is not considered maximal. Otherwise it is considered maximal and \(M\) is not a modular decomposition tree.INPUT:
tree_root
– modular decomposition tree whose modules are tested for maximal naturegraph
– graph whose modular decomposition tree is tested
OUTPUT:
True
if all modules at first level in the modular decomposition tree are maximal in natureEXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: g = graphs.HexahedralGraph() sage: test_maximal_modules(modular_decomposition(g), g) True
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> g = graphs.HexahedralGraph() >>> test_maximal_modules(modular_decomposition(g), g) True
- sage.graphs.graph_decompositions.modular_decomposition.test_modular_decomposition(tree_root, graph)[source]¶
Test the input modular decomposition tree using recursion.
INPUT:
tree_root
– root of the modular decomposition tree to be testedgraph
– graph whose modular decomposition tree needs to be tested
OUTPUT:
True
if input tree is a modular decomposition elseFalse
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: g = graphs.HexahedralGraph() sage: test_modular_decomposition(modular_decomposition(g), g) True
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> g = graphs.HexahedralGraph() >>> test_modular_decomposition(modular_decomposition(g), g) True
- sage.graphs.graph_decompositions.modular_decomposition.test_module(module, graph)[source]¶
Test whether input module is actually a module.
INPUT:
module
– module which needs to be testedgraph
– input sage graph which contains the module
OUTPUT:
True
if input module is a module by definition elseFalse
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: g = graphs.HexahedralGraph() sage: tree_root = modular_decomposition(g) sage: test_module(tree_root, g) True sage: test_module(tree_root.children[0], g) True
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> g = graphs.HexahedralGraph() >>> tree_root = modular_decomposition(g) >>> test_module(tree_root, g) True >>> test_module(tree_root.children[Integer(0)], g) True
- sage.graphs.graph_decompositions.modular_decomposition.tree_to_nested_tuple(root)[source]¶
Convert a modular decomposition tree to a nested tuple.
INPUT:
root
– the root of the modular decomposition tree
OUTPUT:
A tuple whose first element is the type of the root of the tree and whose subsequent nodes are either vertex labels in the case of leaves or tuples representing the child subtrees.
EXAMPLES:
sage: from sage.graphs.graph_decompositions.modular_decomposition import * sage: g = graphs.OctahedralGraph() sage: tree_to_nested_tuple(modular_decomposition(g)) (SERIES, [(PARALLEL, [2, 3]), (PARALLEL, [1, 4]), (PARALLEL, [0, 5])])
>>> from sage.all import * >>> from sage.graphs.graph_decompositions.modular_decomposition import * >>> g = graphs.OctahedralGraph() >>> tree_to_nested_tuple(modular_decomposition(g)) (SERIES, [(PARALLEL, [2, 3]), (PARALLEL, [1, 4]), (PARALLEL, [0, 5])])