Matching covered graphs¶
This module implements functions and operations pertaining to matching covered graphs.
A matching in a graph is a set of pairwise nonadjacent links (nonloop edges). In other words, a matching in a graph is the edge set of an 1-regular subgraph. A matching is called a perfect matching if it the subgraph generated by a set of matching edges spans the graph, i.e. it’s the edge set of an 1-regular spanning subgraph. A connected nontrivial graph is called matching covered if each edge participates in some perfect matching.
Barriers and canonical partition
Return the canonical partition of the (matching covered) graph. |
|
Return the (unique) maximal barrier containing the vertex. |
Bricks, braces and tight cut decomposition
Check if the (matching covered) graph is a brace. |
|
Check if the (matching covered) graph is a brick. |
Miscellaneous methods
Return an |
|
Update the perfect matching captured in |
Overwritten methods
Add an edge from vertex |
|
Add edges from an iterable container. |
|
Add a vertex to the (matching covered) graph. |
|
Add vertices to the (matching covered) graph from an iterable container of vertices. |
|
Change whether loops are allowed in (matching covered) graphs. |
|
Return whether loops are permitted in (matching covered) graphs. |
|
Delete a vertex, removing all incident edges. |
|
Delete specified vertices form |
|
Check whether there are loops in the (matching covered) graph. |
|
Check whether the graph has a perfect matching. |
|
Return a list of vertices with loops. |
|
Return a list of all loops in the (matching covered) graph. |
|
Return the number of edges that are loops. |
|
Remove loops on vertices in |
REFERENCES:
This methods of this module has been adopted and inspired by the book of Lucchesi and Murty — Perfect Matchings: a theory of matching covered graphs [LM2024].
AUTHORS:
Janmenjaya Panda (2024-06-14): initial version
Todo
The following methods are to be incorporated in
MatchingCoveredGraph
:
|
Compute a hash for |
|
Return the matching covered subgraph containing the provided vertices and edges. |
Overwritten Methods
|
Add a clique to the graph with the provided vertices. |
|
Add a cycle to the graph with the provided vertices. |
|
Add a path to the graph with the provided vertices. |
|
Return the Cartesian product of |
|
Empties the graph of vertices and edges and removes name, associated objects, and position information. |
|
Return the complement of the graph. |
|
Contract an edge from |
|
Contract edges from an iterable container. |
|
Return a degree-constrained matching covered subgraph. |
|
Delete the edge from |
|
Delete edges from an iterable container. |
|
Delete all edges from |
|
Return the disjoint union of |
|
Return the disjunctive product of |
|
Check if the matching covered graph is biconnected. |
|
Check whether the matching covered graph is a block graph. |
|
Check whether the matching covered graph is cograph. |
|
Check if the matching covered graph is a forest, i.e. a disjoint union of trees. |
|
Check if the graph is matching covered. |
|
Check whether the graph is a path. |
|
Check whether the matching covered graph is a subgraph of |
|
Check whether the matching covered graph is a tree. |
|
Return the join of |
|
Return the lexicographic product of |
|
Load the matching covered graph specified in the given file into the current object. |
|
Merge vertices. |
|
Return the vertices of a minor isomorphic to \(H\) in the current graph. |
|
Return a random matching covered subgraph containing each vertex with probability |
|
Save the graph to file in alist format. |
|
Return the strong product of |
|
Subdivide an edge \(k\) times. |
|
Subdivide \(k\) times edges from an iterable container. |
|
Return the matching covered subgraph containing the given vertices and edges. |
|
Return a copy of (matching covered) |
|
Return the number of labelled occurrences of (matching covered) |
|
Return an iterator over the labelled copies of (matching covered) |
|
Return the tensor product of |
|
Return an undirected Graph instance of the matching covered graph. |
|
Return a topological \(H\)-minor from |
|
Return the transitive closure of the matching covered graph. |
|
Return a transitive reduction of the matching covered graph. |
|
Return the union of |
Bricks, braces and tight cut decomposition
|
Return the list of (underlying simple graph of) the bricks and braces of the (matching covered) graph. |
|
Return the number of braces. |
|
Return the number of bricks. |
|
Return the number of Petersen bricks. |
|
Return a maximal set of laminar nontrivial tight cuts and a corresponding vertex set partition. |
Removability and ear decomposition
|
Add an ear to the graph with the provided end vertices number of internal vertices. |
|
Bisubdivide an edge \(k\) times. |
|
Bisubdivide \(k\) times edges from an iterable container. |
|
Return a matching covered ear decomposition computed at the fastest possible time. |
|
Check whether the pair of ears form a removable double ear. |
|
Check whether the pair of edges constitute a removable doubleton. |
|
Check whether the ear is removable. |
|
Check whether the edge is removable. |
|
Return an optimal ear decomposition. |
|
Return a list of removable double ears. |
|
Return a list of removable doubletons. |
|
Return a list of removable ears. |
|
Return a |
|
Compute the retract of the (matching covered) graph. |
Generating bricks and braces
|
Return a McCuaig brace generation sequence of the (provided) brace. |
|
Return a Norine-Thomas brick generation sequence of the (provided) brick. |
|
Check if the brace is a McCuaig brace. |
|
Check if the brick is a Norine-Thomas brick. |
Methods¶
- class sage.graphs.matching_covered_graph.MatchingCoveredGraph(data=None, matching=None, algorithm='Edmonds', solver=None, verbose=0, integrality_tolerance=0.001, *args, **kwds)[source]¶
Bases:
Graph
Matching covered graph
INPUT:
data
– can be any of the following:Empty or
None
(throws aValueError
as the graph must be nontrival).An arbitrary graph.
matching
– (default:None
); a perfect matching of the graph, that can be given using any valid input format ofGraph
.If set to
None
, a matching is computed using the other parameters.algorithm
– string (default:'Edmonds'
); the algorithm to be used to compute a maximum matching of the graph among'Edmonds'
selects Edmonds’ algorithm as implemented in NetworkX,'LP'
uses a Linear Program formulation of the matching problem.
solver
– string (default:None
); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set toNone
, the default one is used. For more information on MILP solvers and which default solver is used, see the methodsolve
of the classMixedIntegerLinearProgram
.verbose
– integer (default:0
); sets the level of verbosity: set to 0 by default, which means quiet (only useful whenalgorithm == 'LP'
).integrality_tolerance
– float; parameter for use with MILP solvers over an inexact base ring; seeMixedIntegerLinearProgram.get_values()
.
OUTPUT:
An object of the class
MatchingCoveredGraph
if the input is valid and the graph is matching covered, or otherwise an error is thrown.
Note
All remaining arguments are passed to the
Graph
constructorEXAMPLES:
Generating an object of the class
MatchingCoveredGraph
from the provided instance ofGraph
without providing any other information:sage: G = MatchingCoveredGraph(graphs.PetersenGraph()) sage: G Matching covered petersen graph: graph on 10 vertices sage: sorted(G.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] sage: G = graphs.StaircaseGraph(4) sage: H = MatchingCoveredGraph(G) sage: H Matching covered staircase graph: graph on 8 vertices sage: H == G True sage: sorted(H.get_matching()) [(0, 1, None), (2, 7, None), (3, 6, None), (4, 5, None)] sage: G = Graph({0: [1, 2, 3, 4], 1: [2, 5], ....: 2: [5], 3: [4, 5], 4: [5]}) sage: H = MatchingCoveredGraph(G) sage: H Matching covered graph on 6 vertices sage: H == G True sage: sorted(H.get_matching()) [(0, 4, None), (1, 2, None), (3, 5, None)] sage: # needs networkx sage: import networkx sage: G = Graph(networkx.complete_bipartite_graph(12, 12)) sage: H = MatchingCoveredGraph(G) sage: H Matching covered graph on 24 vertices sage: H == G True sage: sorted(H.get_matching()) [(0, 15, None), (1, 14, None), (2, 13, None), (3, 12, None), (4, 23, None), (5, 22, None), (6, 21, None), (7, 20, None), (8, 19, None), (9, 18, None), (10, 17, None), (11, 16, None)] sage: G = Graph('E|fG', sparse=True) sage: H = MatchingCoveredGraph(G) sage: H Matching covered graph on 6 vertices sage: H == G True sage: sorted(H.get_matching()) [(0, 5, None), (1, 2, None), (3, 4, None)] sage: # needs sage.modules sage: M = Matrix([(0,1,0,0,1,1,0,0,0,0), ....: (1,0,1,0,0,0,1,0,0,0), ....: (0,1,0,1,0,0,0,1,0,0), ....: (0,0,1,0,1,0,0,0,1,0), ....: (1,0,0,1,0,0,0,0,0,1), ....: (1,0,0,0,0,0,0,1,1,0), ....: (0,1,0,0,0,0,0,0,1,1), ....: (0,0,1,0,0,1,0,0,0,1), ....: (0,0,0,1,0,1,1,0,0,0), ....: (0,0,0,0,1,0,1,1,0,0)]) sage: M [0 1 0 0 1 1 0 0 0 0] [1 0 1 0 0 0 1 0 0 0] [0 1 0 1 0 0 0 1 0 0] [0 0 1 0 1 0 0 0 1 0] [1 0 0 1 0 0 0 0 0 1] [1 0 0 0 0 0 0 1 1 0] [0 1 0 0 0 0 0 0 1 1] [0 0 1 0 0 1 0 0 0 1] [0 0 0 1 0 1 1 0 0 0] [0 0 0 0 1 0 1 1 0 0] sage: G = Graph(M) sage: H = MatchingCoveredGraph(G) sage: H == G True sage: sorted(H.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] sage: # needs sage.modules sage: M = Matrix([(-1, 0, 0, 0, 1, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0), ....: ( 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0), ....: ( 0, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0), ....: ( 0, 0, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0), ....: ( 0, 0, 0, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1), ....: ( 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 0, 0), ....: ( 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0), ....: ( 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 0, 0, 1, 0, 0), ....: ( 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0), ....: ( 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 0, 0, 0, 1)]) sage: M [-1 0 0 0 1 0 0 0 0 0 -1 0 0 0 0] [ 1 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0] [ 0 1 -1 0 0 0 0 0 0 0 0 0 -1 0 0] [ 0 0 1 -1 0 0 0 0 0 0 0 0 0 -1 0] [ 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 -1] [ 0 0 0 0 0 -1 0 0 0 1 1 0 0 0 0] [ 0 0 0 0 0 0 0 1 -1 0 0 1 0 0 0] [ 0 0 0 0 0 1 -1 0 0 0 0 0 1 0 0] [ 0 0 0 0 0 0 0 0 1 -1 0 0 0 1 0] [ 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 1] sage: G = Graph(M) sage: H = MatchingCoveredGraph(G) sage: H == G True sage: sorted(H.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] sage: G = Graph([(0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (2, 3), ....: (2, 6), (3, 7), (4, 5), (4, 7), (5, 6), (6, 7)]) sage: H = MatchingCoveredGraph(G) sage: H == G True sage: sorted(H.get_matching()) [(0, 4, None), (1, 5, None), (2, 6, None), (3, 7, None)] sage: # optional - python_igraph sage: import igraph sage: G = Graph(igraph.Graph([(0, 1), (0, 3), (1, 2), (2, 3)])) sage: H = MatchingCoveredGraph(G) sage: H Matching covered graph on 4 vertices sage: sorted(H.get_matching()) [(0, 3, {}), (1, 2, {})]
>>> from sage.all import * >>> G = MatchingCoveredGraph(graphs.PetersenGraph()) >>> G Matching covered petersen graph: graph on 10 vertices >>> sorted(G.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] >>> G = graphs.StaircaseGraph(Integer(4)) >>> H = MatchingCoveredGraph(G) >>> H Matching covered staircase graph: graph on 8 vertices >>> H == G True >>> sorted(H.get_matching()) [(0, 1, None), (2, 7, None), (3, 6, None), (4, 5, None)] >>> G = Graph({Integer(0): [Integer(1), Integer(2), Integer(3), Integer(4)], Integer(1): [Integer(2), Integer(5)], ... Integer(2): [Integer(5)], Integer(3): [Integer(4), Integer(5)], Integer(4): [Integer(5)]}) >>> H = MatchingCoveredGraph(G) >>> H Matching covered graph on 6 vertices >>> H == G True >>> sorted(H.get_matching()) [(0, 4, None), (1, 2, None), (3, 5, None)] >>> # needs networkx >>> import networkx >>> G = Graph(networkx.complete_bipartite_graph(Integer(12), Integer(12))) >>> H = MatchingCoveredGraph(G) >>> H Matching covered graph on 24 vertices >>> H == G True >>> sorted(H.get_matching()) [(0, 15, None), (1, 14, None), (2, 13, None), (3, 12, None), (4, 23, None), (5, 22, None), (6, 21, None), (7, 20, None), (8, 19, None), (9, 18, None), (10, 17, None), (11, 16, None)] >>> G = Graph('E|fG', sparse=True) >>> H = MatchingCoveredGraph(G) >>> H Matching covered graph on 6 vertices >>> H == G True >>> sorted(H.get_matching()) [(0, 5, None), (1, 2, None), (3, 4, None)] >>> # needs sage.modules >>> M = Matrix([(Integer(0),Integer(1),Integer(0),Integer(0),Integer(1),Integer(1),Integer(0),Integer(0),Integer(0),Integer(0)), ... (Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(1),Integer(0),Integer(0),Integer(0)), ... (Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(1),Integer(0),Integer(0)), ... (Integer(0),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(1),Integer(0)), ... (Integer(1),Integer(0),Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)), ... (Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1),Integer(1),Integer(0)), ... (Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1),Integer(1)), ... (Integer(0),Integer(0),Integer(1),Integer(0),Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(1)), ... (Integer(0),Integer(0),Integer(0),Integer(1),Integer(0),Integer(1),Integer(1),Integer(0),Integer(0),Integer(0)), ... (Integer(0),Integer(0),Integer(0),Integer(0),Integer(1),Integer(0),Integer(1),Integer(1),Integer(0),Integer(0))]) >>> M [0 1 0 0 1 1 0 0 0 0] [1 0 1 0 0 0 1 0 0 0] [0 1 0 1 0 0 0 1 0 0] [0 0 1 0 1 0 0 0 1 0] [1 0 0 1 0 0 0 0 0 1] [1 0 0 0 0 0 0 1 1 0] [0 1 0 0 0 0 0 0 1 1] [0 0 1 0 0 1 0 0 0 1] [0 0 0 1 0 1 1 0 0 0] [0 0 0 0 1 0 1 1 0 0] >>> G = Graph(M) >>> H = MatchingCoveredGraph(G) >>> H == G True >>> sorted(H.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] >>> # needs sage.modules >>> M = Matrix([(-Integer(1), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)), ... ( Integer(1),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-Integer(1), Integer(0), Integer(0), Integer(0)), ... ( Integer(0), Integer(1),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-Integer(1), Integer(0), Integer(0)), ... ( Integer(0), Integer(0), Integer(1),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-Integer(1), Integer(0)), ... ( Integer(0), Integer(0), Integer(0), Integer(1),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-Integer(1)), ... ( Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)), ... ( Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1),-Integer(1), Integer(0), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0)), ... ( Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0), Integer(0)), ... ( Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0)), ... ( Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1),-Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1))]) >>> M [-1 0 0 0 1 0 0 0 0 0 -1 0 0 0 0] [ 1 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0] [ 0 1 -1 0 0 0 0 0 0 0 0 0 -1 0 0] [ 0 0 1 -1 0 0 0 0 0 0 0 0 0 -1 0] [ 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 -1] [ 0 0 0 0 0 -1 0 0 0 1 1 0 0 0 0] [ 0 0 0 0 0 0 0 1 -1 0 0 1 0 0 0] [ 0 0 0 0 0 1 -1 0 0 0 0 0 1 0 0] [ 0 0 0 0 0 0 0 0 1 -1 0 0 0 1 0] [ 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 1] >>> G = Graph(M) >>> H = MatchingCoveredGraph(G) >>> H == G True >>> sorted(H.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] >>> G = Graph([(Integer(0), Integer(1)), (Integer(0), Integer(3)), (Integer(0), Integer(4)), (Integer(1), Integer(2)), (Integer(1), Integer(5)), (Integer(2), Integer(3)), ... (Integer(2), Integer(6)), (Integer(3), Integer(7)), (Integer(4), Integer(5)), (Integer(4), Integer(7)), (Integer(5), Integer(6)), (Integer(6), Integer(7))]) >>> H = MatchingCoveredGraph(G) >>> H == G True >>> sorted(H.get_matching()) [(0, 4, None), (1, 5, None), (2, 6, None), (3, 7, None)] >>> # optional - python_igraph >>> import igraph >>> G = Graph(igraph.Graph([(Integer(0), Integer(1)), (Integer(0), Integer(3)), (Integer(1), Integer(2)), (Integer(2), Integer(3))])) >>> H = MatchingCoveredGraph(G) >>> H Matching covered graph on 4 vertices >>> sorted(H.get_matching()) [(0, 3, {}), (1, 2, {})]
One may specify a perfect matching:
sage: P = graphs.PetersenGraph() sage: M = P.matching() sage: sorted(M) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] sage: G = MatchingCoveredGraph(P, matching=M) sage: G Matching covered petersen graph: graph on 10 vertices sage: P == G True sage: sorted(G.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] sage: sorted(G.get_matching()) == sorted(M) True sage: G = graphs.TruncatedBiwheelGraph(14) sage: M = G.matching() sage: sorted(M) [(0, 27, None), (1, 26, None), (2, 3, None), (4, 5, None), (6, 7, None), (8, 9, None), (10, 11, None), (12, 13, None), (14, 15, None), (16, 17, None), (18, 19, None), (20, 21, None), (22, 23, None), (24, 25, None)] sage: H = MatchingCoveredGraph(G, M) sage: H Matching covered truncated biwheel graph: graph on 28 vertices sage: H == G True sage: sorted(H.get_matching()) == sorted(M) True
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> M = P.matching() >>> sorted(M) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] >>> G = MatchingCoveredGraph(P, matching=M) >>> G Matching covered petersen graph: graph on 10 vertices >>> P == G True >>> sorted(G.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] >>> sorted(G.get_matching()) == sorted(M) True >>> G = graphs.TruncatedBiwheelGraph(Integer(14)) >>> M = G.matching() >>> sorted(M) [(0, 27, None), (1, 26, None), (2, 3, None), (4, 5, None), (6, 7, None), (8, 9, None), (10, 11, None), (12, 13, None), (14, 15, None), (16, 17, None), (18, 19, None), (20, 21, None), (22, 23, None), (24, 25, None)] >>> H = MatchingCoveredGraph(G, M) >>> H Matching covered truncated biwheel graph: graph on 28 vertices >>> H == G True >>> sorted(H.get_matching()) == sorted(M) True
One may specify some keyword arguments:
sage: G = Graph([(0, 1, 5)], {'weighted': True}) sage: kwds = { ....: 'loops': False, ....: 'multiedges': True, ....: 'pos': {0: (0, 0), 1: (1, 1)} ....: } sage: H = MatchingCoveredGraph(G, **kwds) sage: H Matching covered multi-graph on 2 vertices sage: H.add_edge(0, 1) sage: H.edges() [(0, 1, None), (0, 1, 5)]
>>> from sage.all import * >>> G = Graph([(Integer(0), Integer(1), Integer(5))], {'weighted': True}) >>> kwds = { ... 'loops': False, ... 'multiedges': True, ... 'pos': {Integer(0): (Integer(0), Integer(0)), Integer(1): (Integer(1), Integer(1))} ... } >>> H = MatchingCoveredGraph(G, **kwds) >>> H Matching covered multi-graph on 2 vertices >>> H.add_edge(Integer(0), Integer(1)) >>> H.edges() [(0, 1, None), (0, 1, 5)]
- add_edge(u, v=None, label=None)[source]¶
Add an edge from vertex
u
to vertexv
.Note
This method overwrites the
add_edge()
method to ensure that resultant graph is also matching covered.INPUT:
The following forms are all accepted:
G.add_edge(1, 2)
G.add_edge((1, 2))
G.add_edges([(1, 2)])
G.add_edge(1, 2, ‘label’)
G.add_edge((1, 2, ‘label’))
G.add_edges([(1, 2, ‘label’)])
OUTPUT:
If an edge is provided with a valid format, but addition of the edge leaves the resulting graph not being matching covered, a
ValueError
is returned without any alteration to the existing matching covered graph. If the addition of the edge preserves the property of matching covered, then the graph is updated and nothing is returned.If the edge is provided with an invalid format, a
ValueError
is returned.
WARNING:
The following intuitive input results in nonintuitive output, even though the resulting graph behind the intuition might be matching covered:
sage: P = graphs.WheelGraph(6) sage: G = MatchingCoveredGraph(P) sage: G.add_edge((1, 4), 'label') Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge (((1, 4), 'label', None)) is not matching covered sage: G.edges(sort=False) [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 5, None), (2, 3, None), (3, 4, None), (4, 5, None)]
>>> from sage.all import * >>> P = graphs.WheelGraph(Integer(6)) >>> G = MatchingCoveredGraph(P) >>> G.add_edge((Integer(1), Integer(4)), 'label') Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge (((1, 4), 'label', None)) is not matching covered >>> G.edges(sort=False) [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 5, None), (2, 3, None), (3, 4, None), (4, 5, None)]
The key word
label
must be used:sage: W = graphs.WheelGraph(6) sage: G = MatchingCoveredGraph(W) sage: G.add_edge((1, 4), label='label') sage: G.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 4, 'label'), (1, 5, None), (2, 3, None), (3, 4, None), (4, 5, None)]
>>> from sage.all import * >>> W = graphs.WheelGraph(Integer(6)) >>> G = MatchingCoveredGraph(W) >>> G.add_edge((Integer(1), Integer(4)), label='label') >>> G.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 4, 'label'), (1, 5, None), (2, 3, None), (3, 4, None), (4, 5, None)]
An expression, analogous to the syntax mentioned above may be used:
sage: S = graphs.StaircaseGraph(4) sage: G = MatchingCoveredGraph(S) sage: G.add_edge(0, 5) sage: G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)] sage: G.add_edge((2, 3)) sage: G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 3, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)] sage: G.add_edges([(0, 4)]) sage: G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 3, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)] sage: G.add_edge(2, 4, 'label') sage: G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 3, None), (2, 4, 'label'), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)] sage: G.add_edge((4, 6, 'label')) sage: G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 3, None), (2, 4, 'label'), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (4, 6, 'label'), (5, 7, None), (6, 7, None)] sage: G.add_edges([(4, 7, 'label')]) sage: G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 3, None), (2, 4, 'label'), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (4, 6, 'label'), (4, 7, 'label'), (5, 7, None), (6, 7, None)]
>>> from sage.all import * >>> S = graphs.StaircaseGraph(Integer(4)) >>> G = MatchingCoveredGraph(S) >>> G.add_edge(Integer(0), Integer(5)) >>> G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)] >>> G.add_edge((Integer(2), Integer(3))) >>> G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 3, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)] >>> G.add_edges([(Integer(0), Integer(4))]) >>> G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 3, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)] >>> G.add_edge(Integer(2), Integer(4), 'label') >>> G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 3, None), (2, 4, 'label'), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)] >>> G.add_edge((Integer(4), Integer(6), 'label')) >>> G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 3, None), (2, 4, 'label'), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (4, 6, 'label'), (5, 7, None), (6, 7, None)] >>> G.add_edges([(Integer(4), Integer(7), 'label')]) >>> G.edges(sort=False) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 3, None), (2, 4, 'label'), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (4, 6, 'label'), (4, 7, 'label'), (5, 7, None), (6, 7, None)]
Note that the
weight
of the edge shall be input as thelabel
:sage: G.add_edge((1, 3), label=5) sage: G.edges() [(0, 1, None), (0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 3, 5), (1, 4, None), (2, 3, None), (2, 4, 'label'), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (4, 6, 'label'), (4, 7, 'label'), (5, 7, None), (6, 7, None)] sage: G.add_edge((2, 4, 6), label=6) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge (((2, 4, 6), None, 6)) is not matching covered
>>> from sage.all import * >>> G.add_edge((Integer(1), Integer(3)), label=Integer(5)) >>> G.edges() [(0, 1, None), (0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (1, 2, None), (1, 3, 5), (1, 4, None), (2, 3, None), (2, 4, 'label'), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (4, 6, 'label'), (4, 7, 'label'), (5, 7, None), (6, 7, None)] >>> G.add_edge((Integer(2), Integer(4), Integer(6)), label=Integer(6)) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge (((2, 4, 6), None, 6)) is not matching covered
Vertex name cannot be
None
, so:sage: W = graphs.WheelGraph(6) sage: H = MatchingCoveredGraph(W) sage: H.add_edge(None, 1) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge ((None, 1, None)) is not matching covered sage: H.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 5, None), (2, 3, None), (3, 4, None), (4, 5, None)] sage: H.add_edge(None, None) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge ((None, None, None)) is not matching covered sage: H.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 5, None), (2, 3, None), (3, 4, None), (4, 5, None)]
>>> from sage.all import * >>> W = graphs.WheelGraph(Integer(6)) >>> H = MatchingCoveredGraph(W) >>> H.add_edge(None, Integer(1)) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge ((None, 1, None)) is not matching covered >>> H.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 5, None), (2, 3, None), (3, 4, None), (4, 5, None)] >>> H.add_edge(None, None) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge ((None, None, None)) is not matching covered >>> H.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 5, None), (2, 3, None), (3, 4, None), (4, 5, None)]
EXAMPLES:
Adding an already existing edge:
sage: P = graphs.PetersenGraph() sage: G = MatchingCoveredGraph(P) sage: G.add_edge(next(G.edge_iterator())) sage: P == G True sage: G.size() 15 sage: G.allow_multiple_edges(True) sage: G.add_edge(0, 1) sage: G.size() 16
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> G = MatchingCoveredGraph(P) >>> G.add_edge(next(G.edge_iterator())) >>> P == G True >>> G.size() 15 >>> G.allow_multiple_edges(True) >>> G.add_edge(Integer(0), Integer(1)) >>> G.size() 16
Adding an edge such that the resulting graph is matching covered:
sage: P = graphs.PetersenGraph() sage: G = MatchingCoveredGraph(P) sage: G.add_edge(1, 4) sage: G.edges(sort=False) [(0, 1, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 4, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 4, None), (3, 8, None), (4, 9, None), (5, 7, None), (5, 8, None), (6, 8, None), (6, 9, None), (7, 9, None)]
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> G = MatchingCoveredGraph(P) >>> G.add_edge(Integer(1), Integer(4)) >>> G.edges(sort=False) [(0, 1, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 4, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 4, None), (3, 8, None), (4, 9, None), (5, 7, None), (5, 8, None), (6, 8, None), (6, 9, None), (7, 9, None)]
Adding an edge with both the incident vertices being existent such that the resulting graph is not matching covered:
sage: C = graphs.CycleGraph(4) sage: G = MatchingCoveredGraph(C) sage: G.add_edge(0, 2) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge ((0, 2, None)) is not matching covered sage: G.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 3, None), (1, 2, None), (2, 3, None)]
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(4)) >>> G = MatchingCoveredGraph(C) >>> G.add_edge(Integer(0), Integer(2)) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge ((0, 2, None)) is not matching covered >>> G.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 3, None), (1, 2, None), (2, 3, None)]
Adding an edge with exactly one incident vertex that is nonexistent throws a
ValueError
exception, as the resulting graph would have an odd order:sage: C = graphs.CycleGraph(4) sage: G = MatchingCoveredGraph(C) sage: G.add_edge(0, 4) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge ((0, 4, None)) is not matching covered sage: G.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 3, None), (1, 2, None), (2, 3, None)]
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(4)) >>> G = MatchingCoveredGraph(C) >>> G.add_edge(Integer(0), Integer(4)) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge ((0, 4, None)) is not matching covered >>> G.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 3, None), (1, 2, None), (2, 3, None)]
Adding an edge with both the incident vertices that is nonexistent throws a
ValueError
exception, as the resulting graph would have been disconnected:sage: C = graphs.CycleGraph(4) sage: G = MatchingCoveredGraph(C) sage: G.add_edge(4, 5) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge ((4, 5, None)) is not matching covered sage: G.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 3, None), (1, 2, None), (2, 3, None)]
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(4)) >>> G = MatchingCoveredGraph(C) >>> G.add_edge(Integer(4), Integer(5)) Traceback (most recent call last): ... ValueError: the graph obtained after the addition of edge ((4, 5, None)) is not matching covered >>> G.edges(sort=False) # No alteration to the existing graph [(0, 1, None), (0, 3, None), (1, 2, None), (2, 3, None)]
Adding a self-loop:
sage: H = graphs.HeawoodGraph() sage: G = MatchingCoveredGraph(H) sage: v = next(G.vertex_iterator()) sage: G.add_edge(v, v) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs
>>> from sage.all import * >>> H = graphs.HeawoodGraph() >>> G = MatchingCoveredGraph(H) >>> v = next(G.vertex_iterator()) >>> G.add_edge(v, v) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs
- add_edges(edges, loops=False)[source]¶
Add edges from an iterable container.
Note
This method overwrites the
add_edges()
method to ensure that resultant graph is also matching covered.INPUT:
edges
– an iterable of edges, given either as(u, v)
or(u, v, 'label')
loops
– boolean (default:False
); note that this shall always be set to eitherFalse
orNone
(since matching covered graphs are free of loops), in which case all the loops(v, v, 'label')
are removed from the iterator. Ifloops
is set toTrue
, aValueError
is thrown.
OUTPUT:
If
loops
is set toTrue
, aValueError
is returned.If
edges
is provided with a valid format, but addition of the edges leave the resulting graph not being matching covered, aValueError
is returned without any alteration to the existing matching covered graph. If the addition of the edges preserves the property of matching covered, then the graph is updated and nothing is returned.If
edges
is provided with an invalid format, aValueError
is returned.
EXAMPLES:
Providing with an empty list of edges:
sage: C = graphs.CycleGraph(6) sage: G = MatchingCoveredGraph(C) sage: G.add_edges([]) sage: G == C True
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(6)) >>> G = MatchingCoveredGraph(C) >>> G.add_edges([]) >>> G == C True
Adding some edges, the incident vertices of each of which are existent, such that the resulting graph is matching covered:
sage: S = graphs.StaircaseGraph(4) sage: G = MatchingCoveredGraph(S) sage: F = [(0, 4), (2, 4), (4, 6), (4, 7)] sage: G.add_edges(F) sage: G.edges(sort=True) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 4, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (4, 6, None), (4, 7, None), (5, 7, None), (6, 7, None)]
>>> from sage.all import * >>> S = graphs.StaircaseGraph(Integer(4)) >>> G = MatchingCoveredGraph(S) >>> F = [(Integer(0), Integer(4)), (Integer(2), Integer(4)), (Integer(4), Integer(6)), (Integer(4), Integer(7))] >>> G.add_edges(F) >>> G.edges(sort=True) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 4, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (4, 6, None), (4, 7, None), (5, 7, None), (6, 7, None)]
Adding some edges, at least one of the incident vertices of some of which are nonexistent such that the resulting graph is matching covered:
sage: C = graphs.CycleGraph(8) sage: G = MatchingCoveredGraph(C) sage: F = [(0, 9), (1, 8), (2, 9), (3, 8), ....: (4, 9), (5, 8), (6, 9), (7, 8)] sage: G.add_edges(F) sage: G.edges(sort=True) [(0, 1, None), (0, 7, None), (0, 9, None), (1, 2, None), (1, 8, None), (2, 3, None), (2, 9, None), (3, 4, None), (3, 8, None), (4, 5, None), (4, 9, None), (5, 6, None), (5, 8, None), (6, 7, None), (6, 9, None), (7, 8, None)] sage: G.is_isomorphic(graphs.BiwheelGraph(5)) True
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(8)) >>> G = MatchingCoveredGraph(C) >>> F = [(Integer(0), Integer(9)), (Integer(1), Integer(8)), (Integer(2), Integer(9)), (Integer(3), Integer(8)), ... (Integer(4), Integer(9)), (Integer(5), Integer(8)), (Integer(6), Integer(9)), (Integer(7), Integer(8))] >>> G.add_edges(F) >>> G.edges(sort=True) [(0, 1, None), (0, 7, None), (0, 9, None), (1, 2, None), (1, 8, None), (2, 3, None), (2, 9, None), (3, 4, None), (3, 8, None), (4, 5, None), (4, 9, None), (5, 6, None), (5, 8, None), (6, 7, None), (6, 9, None), (7, 8, None)] >>> G.is_isomorphic(graphs.BiwheelGraph(Integer(5))) True
Adding a removable double ear to a matching covered graph:
sage: H = graphs.HexahedralGraph() sage: G = MatchingCoveredGraph(H) sage: F = {(0, 8, None), (1, 10), (4, 11, 'label'), ....: (5, 9), (8, 9), (10, 11)} sage: G.add_edges(F) sage: G.edges(sort=True) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 8, None), (1, 2, None), (1, 5, None), (1, 10, None), (2, 3, None), (2, 6, None), (3, 7, None), (4, 5, None), (4, 7, None), (4, 11, 'label'), (5, 6, None), (5, 9, None), (6, 7, None), (8, 9, None), (10, 11, None)]
>>> from sage.all import * >>> H = graphs.HexahedralGraph() >>> G = MatchingCoveredGraph(H) >>> F = {(Integer(0), Integer(8), None), (Integer(1), Integer(10)), (Integer(4), Integer(11), 'label'), ... (Integer(5), Integer(9)), (Integer(8), Integer(9)), (Integer(10), Integer(11))} >>> G.add_edges(F) >>> G.edges(sort=True) [(0, 1, None), (0, 3, None), (0, 4, None), (0, 8, None), (1, 2, None), (1, 5, None), (1, 10, None), (2, 3, None), (2, 6, None), (3, 7, None), (4, 5, None), (4, 7, None), (4, 11, 'label'), (5, 6, None), (5, 9, None), (6, 7, None), (8, 9, None), (10, 11, None)]
Adding some edges, the incident vertices of each of which are existent, such that the resulting graph is NOT matching covered:
sage: C = graphs.CycleGraph(6) sage: G = MatchingCoveredGraph(C) sage: F = [(0, 2), (3, 5)] sage: G.add_edges(F) Traceback (most recent call last): ... ValueError: the resulting graph after the addition ofthe edges is not matching covered
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(6)) >>> G = MatchingCoveredGraph(C) >>> F = [(Integer(0), Integer(2)), (Integer(3), Integer(5))] >>> G.add_edges(F) Traceback (most recent call last): ... ValueError: the resulting graph after the addition ofthe edges is not matching covered
Adding some edges, at least one of the incident vertices of some of which are nonexistent such that the resulting graph is NOT matching covered:
sage: H = graphs.HexahedralGraph() sage: G = MatchingCoveredGraph(H) sage: F = [(3, 8), (6, 9), (8, 9)] sage: G.add_edges(F) Traceback (most recent call last): ... ValueError: the resulting graph after the addition ofthe edges is not matching covered sage: I = [(0, 8), (1, 9)] sage: G.add_edges(I) Traceback (most recent call last): ... ValueError: the resulting graph after the addition ofthe edges is not matching covered sage: J = [(u, 8) for u in range(8)] sage: G.add_edges(J) Traceback (most recent call last): ... ValueError: odd order is not allowed for matching covered graphs
>>> from sage.all import * >>> H = graphs.HexahedralGraph() >>> G = MatchingCoveredGraph(H) >>> F = [(Integer(3), Integer(8)), (Integer(6), Integer(9)), (Integer(8), Integer(9))] >>> G.add_edges(F) Traceback (most recent call last): ... ValueError: the resulting graph after the addition ofthe edges is not matching covered >>> I = [(Integer(0), Integer(8)), (Integer(1), Integer(9))] >>> G.add_edges(I) Traceback (most recent call last): ... ValueError: the resulting graph after the addition ofthe edges is not matching covered >>> J = [(u, Integer(8)) for u in range(Integer(8))] >>> G.add_edges(J) Traceback (most recent call last): ... ValueError: odd order is not allowed for matching covered graphs
Setting the parameter
loops
to eitherFalse
orNone
:sage: W = graphs.WheelGraph(6) sage: G = MatchingCoveredGraph(W) sage: F = [(0, 0), (1, 3), (2, 4)] sage: G.add_edges(edges=F, loops=False) sage: G.edges(sort=True) [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 3, None), (1, 5, None), (2, 3, None), (2, 4, None), (3, 4, None), (4, 5, None)] sage: J = [(1, 1), (3, 5)] sage: G.add_edges(edges=J, loops=True) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.edges(sort=True) [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 3, None), (1, 5, None), (2, 3, None), (2, 4, None), (3, 4, None), (4, 5, None)]
>>> from sage.all import * >>> W = graphs.WheelGraph(Integer(6)) >>> G = MatchingCoveredGraph(W) >>> F = [(Integer(0), Integer(0)), (Integer(1), Integer(3)), (Integer(2), Integer(4))] >>> G.add_edges(edges=F, loops=False) >>> G.edges(sort=True) [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 3, None), (1, 5, None), (2, 3, None), (2, 4, None), (3, 4, None), (4, 5, None)] >>> J = [(Integer(1), Integer(1)), (Integer(3), Integer(5))] >>> G.add_edges(edges=J, loops=True) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.edges(sort=True) [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 3, None), (1, 5, None), (2, 3, None), (2, 4, None), (3, 4, None), (4, 5, None)]
Setting the parameter
loops
toTrue
:sage: P = graphs.PetersenGraph() sage: G = MatchingCoveredGraph(P) sage: F = [(0, 0), (0, 2), (0, 3)] sage: G.add_edges(edges=F, loops=True) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> G = MatchingCoveredGraph(P) >>> F = [(Integer(0), Integer(0)), (Integer(0), Integer(2)), (Integer(0), Integer(3))] >>> G.add_edges(edges=F, loops=True) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs
Adding a multiple edge:
sage: S = graphs.StaircaseGraph(4) sage: G = MatchingCoveredGraph(S) sage: G.allow_multiple_edges(True) sage: F = [(0, 1, 'label'), (0, 4), (1, 2)] sage: G.add_edges(F) sage: G.edges(sort=False) [(0, 1, None), (0, 1, 'label'), (0, 3, None), (0, 4, None), (0, 6, None), (1, 2, None), (1, 2, None), (1, 4, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)]
>>> from sage.all import * >>> S = graphs.StaircaseGraph(Integer(4)) >>> G = MatchingCoveredGraph(S) >>> G.allow_multiple_edges(True) >>> F = [(Integer(0), Integer(1), 'label'), (Integer(0), Integer(4)), (Integer(1), Integer(2))] >>> G.add_edges(F) >>> G.edges(sort=False) [(0, 1, None), (0, 1, 'label'), (0, 3, None), (0, 4, None), (0, 6, None), (1, 2, None), (1, 2, None), (1, 4, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)]
- add_vertex(name=None)[source]¶
Add a vertex to the (matching covered) graph.
Note
This method overwrites the
add_vertex()
method to ensure that isolated vertices are forbidden inMatchingCoveredGraph
.INPUT:
name
– an immutable object (default:None
); when no name is specified (default), then the new vertex will be represented by the least integer not already representing a vertex.name
must be an immutable object (e.g., an integer, a tuple, etc.).
OUTPUT:
If
name
specifies an existing vertex, then nothing is done. Otherwise aValueError
is returned with no change to the existing (matching covered) graph is returned since matching covered graphs are free of isolated vertices.
EXAMPLES:
Adding an existing vertex:
sage: P = graphs.PetersenGraph() sage: P Petersen graph: Graph on 10 vertices sage: G = MatchingCoveredGraph(P) sage: G Matching covered petersen graph: graph on 10 vertices sage: u = next(G.vertex_iterator()) sage: G.add_vertex(u) sage: G Matching covered petersen graph: graph on 10 vertices
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> P Petersen graph: Graph on 10 vertices >>> G = MatchingCoveredGraph(P) >>> G Matching covered petersen graph: graph on 10 vertices >>> u = next(G.vertex_iterator()) >>> G.add_vertex(u) >>> G Matching covered petersen graph: graph on 10 vertices
Adding a new/ non-existing vertex:
sage: G.add_vertex() Traceback (most recent call last): ... ValueError: isolated vertices are not allowed in matching covered graphs sage: u = 100 sage: G.add_vertex(u) Traceback (most recent call last): ... ValueError: isolated vertices are not allowed in matching covered graphs
>>> from sage.all import * >>> G.add_vertex() Traceback (most recent call last): ... ValueError: isolated vertices are not allowed in matching covered graphs >>> u = Integer(100) >>> G.add_vertex(u) Traceback (most recent call last): ... ValueError: isolated vertices are not allowed in matching covered graphs
- add_vertices(vertices)[source]¶
Add vertices to the (matching covered) graph from an iterable container of vertices.
Note
This method overwrites the
add_vertices()
method to ensure that isolated vertices are forbidden inMatchingCoveredGraph
.INPUT:
vertices
– iterator container of vertex labels. A new label is created, used and returned in the output list for allNone
values invertices
.
OUTPUT:
If all of the vertices are existing vertices of the (matching covered) graph, then nothing is done; otherwise a
ValueError
is returned with no change to the existing (matching covered) graph since matching covered graphs are free of isolated vertices.
EXAMPLES:
Adding a list of already existing vertices:
sage: T = graphs.TruncatedBiwheelGraph(15) sage: T Truncated biwheel graph: Graph on 30 vertices sage: G = MatchingCoveredGraph(T) sage: G Matching covered truncated biwheel graph: graph on 30 vertices sage: S = [0, 1, 2, 3] # We choose 4 existing vertices sage: G.add_vertices(S) sage: G Matching covered truncated biwheel graph: graph on 30 vertices
>>> from sage.all import * >>> T = graphs.TruncatedBiwheelGraph(Integer(15)) >>> T Truncated biwheel graph: Graph on 30 vertices >>> G = MatchingCoveredGraph(T) >>> G Matching covered truncated biwheel graph: graph on 30 vertices >>> S = [Integer(0), Integer(1), Integer(2), Integer(3)] # We choose 4 existing vertices >>> G.add_vertices(S) >>> G Matching covered truncated biwheel graph: graph on 30 vertices
Adding a list of vertices in which at least one is non-existent or
None
or possibly both:sage: T = graphs.CompleteGraph(2) sage: T Complete graph: Graph on 2 vertices sage: G = MatchingCoveredGraph(T) sage: G Matching covered complete graph: graph on 2 vertices sage: S1 = [2, 3, 4] sage: G.add_vertices(S1) Traceback (most recent call last): ... ValueError: isolated vertices are not allowed in matching covered graphs sage: S2 = [None, None] sage: G.add_vertices(S2) Traceback (most recent call last): ... ValueError: isolated vertices are not allowed in matching covered graphs sage: S3 = [2, None, None, 5] sage: G.add_vertices(S3) Traceback (most recent call last): ... ValueError: isolated vertices are not allowed in matching covered graphs
>>> from sage.all import * >>> T = graphs.CompleteGraph(Integer(2)) >>> T Complete graph: Graph on 2 vertices >>> G = MatchingCoveredGraph(T) >>> G Matching covered complete graph: graph on 2 vertices >>> S1 = [Integer(2), Integer(3), Integer(4)] >>> G.add_vertices(S1) Traceback (most recent call last): ... ValueError: isolated vertices are not allowed in matching covered graphs >>> S2 = [None, None] >>> G.add_vertices(S2) Traceback (most recent call last): ... ValueError: isolated vertices are not allowed in matching covered graphs >>> S3 = [Integer(2), None, None, Integer(5)] >>> G.add_vertices(S3) Traceback (most recent call last): ... ValueError: isolated vertices are not allowed in matching covered graphs
- allow_loops(new, check=True)[source]¶
Change whether loops are allowed in (matching covered) graphs.
Note
This method overwrites the
allow_loops()
method to ensure that loops are forbidden inMatchingCoveredGraph
.INPUT:
new
– booleancheck
– boolean (default:True
); whether to remove existing loops from the graph when the new status isFalse
. It is an argument inallow_loops()
method and is not used in this overwritten one.
OUTPUT:
A
ValueError
is returned with no change to the existing (matching covered) graph ifnew
isTrue
since a matching covered graph, by definition, is free of self-loops. Ifnew
is set toFalse
, there is no output.
EXAMPLES:
Petersen graph is matching covered:
sage: P = graphs.PetersenGraph() sage: P.is_matching_covered() True sage: G = MatchingCoveredGraph(P) sage: G.allow_loops(True) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> P.is_matching_covered() True >>> G = MatchingCoveredGraph(P) >>> G.allow_loops(True) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs
- allows_loops()[source]¶
Return whether loops are permitted in (matching covered) graphs.
Note
This method overwrites the
allows_loops()
method to show that loops are forbidden inMatchingCoveredGraph
.OUTPUT:
A boolean value
False
is returned, since matching covered graphs, by definition, are free of loops.
EXAMPLES:
Petersen graph is matching covered:
sage: P = graphs.PetersenGraph() sage: P.is_matching_covered() True sage: G = MatchingCoveredGraph(P) sage: G.allows_loops() False
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> P.is_matching_covered() True >>> G = MatchingCoveredGraph(P) >>> G.allows_loops() False
- canonical_partition()[source]¶
Return the canonical partition of the (matching covered) graph.
For a matching covered graph \(G\), a subset \(B\) of the vertex set \(V\) is a barrier if \(|B| = o(G - B)\), where \(|B|\) denotes the cardinality of the set \(B\) and \(o(G - B)\) denotes the number of odd components in the graph \(G - B\). And a barrier \(B\) is a maximal barrier if \(C\) is not a barrier for each \(C\) such that \(B \subset C \subseteq V\).
Note that in a matching covered graph, each vertex belongs to a unique maximal barrier. The maximal barriers of a matching covered graph partitions its vertex set and the partition of the vertex set of a matching covered graph into its maximal barriers is called as its canonical partition.
OUTPUT:
A list of sets that constitute a (canonical) partition of the vertex set, wherein each set is a (unique) maximal barrier of the (matching covered) graph.
EXAMPLES:
Show the maximal barrier of the graph \(K_4 \odot K_{3, 3}\):
sage: G = Graph([ ....: (0, 2), (0, 3), (0, 4), (1, 2), ....: (1, 3), (1, 4), (2, 5), (3, 6), ....: (4, 7), (5, 6), (5, 7), (6, 7) ....: ]) sage: H = MatchingCoveredGraph(G) sage: H.canonical_partition() [{0}, {1}, {2, 3, 4}, {5}, {6}, {7}]
>>> from sage.all import * >>> G = Graph([ ... (Integer(0), Integer(2)), (Integer(0), Integer(3)), (Integer(0), Integer(4)), (Integer(1), Integer(2)), ... (Integer(1), Integer(3)), (Integer(1), Integer(4)), (Integer(2), Integer(5)), (Integer(3), Integer(6)), ... (Integer(4), Integer(7)), (Integer(5), Integer(6)), (Integer(5), Integer(7)), (Integer(6), Integer(7)) ... ]) >>> H = MatchingCoveredGraph(G) >>> H.canonical_partition() [{0}, {1}, {2, 3, 4}, {5}, {6}, {7}]
For a bicritical graph (for instance, the Petersen graph), the canonical parition constitutes of only singleton sets each containing an individual vertex:
sage: P = graphs.PetersenGraph() sage: G = MatchingCoveredGraph(P) sage: G.canonical_partition() [{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}]
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> G = MatchingCoveredGraph(P) >>> G.canonical_partition() [{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}]
For a bipartite matching covered graph (for instance, the Hexahedral graph), the canonical partition consists of two sets each of which corresponds to the individual color class:
sage: H = graphs.HexahedralGraph() sage: G = MatchingCoveredGraph(H) sage: G.canonical_partition() [{0, 2, 5, 7}, {1, 3, 4, 6}] sage: B = BipartiteGraph(H) sage: list(B.bipartition()) == G.canonical_partition() True
>>> from sage.all import * >>> H = graphs.HexahedralGraph() >>> G = MatchingCoveredGraph(H) >>> G.canonical_partition() [{0, 2, 5, 7}, {1, 3, 4, 6}] >>> B = BipartiteGraph(H) >>> list(B.bipartition()) == G.canonical_partition() True
REFERENCES:
- delete_vertex(vertex, in_order=False)[source]¶
Delete a vertex, removing all incident edges.
Note
This method overwrites the
delete_vertex()
method to ensure that an odd order is forbidden inMatchingCoveredGraph
.INPUT:
vertex
– a vertex that is to be deleted.in_order
– boolean (default:False
); ifTrue
, this deletes the \(i\)-th vertex in the sorted list of vertices, i.e.G.vertices(sort=True)[i]
OUTPUT:
Deleting a non-existent vertex raises a
ValueError
exception; also a (different)ValueError
is returned on deleting an existing vertex since matching covered graphs are of even order. In both cases no modifications are made to the existing (matching covered) graph.
EXAMPLES:
Deleting a non-existent vertex:
sage: W = graphs.WheelGraph(12) sage: G = MatchingCoveredGraph(W) sage: u = 100 sage: G.delete_vertex(u) Traceback (most recent call last): ... ValueError: vertex (100) not in the graph sage: G.delete_vertex(vertex=u, in_order=True) Traceback (most recent call last): ... ValueError: vertex (100) not in the graph
>>> from sage.all import * >>> W = graphs.WheelGraph(Integer(12)) >>> G = MatchingCoveredGraph(W) >>> u = Integer(100) >>> G.delete_vertex(u) Traceback (most recent call last): ... ValueError: vertex (100) not in the graph >>> G.delete_vertex(vertex=u, in_order=True) Traceback (most recent call last): ... ValueError: vertex (100) not in the graph
Deleting an existing vertex:
sage: W = graphs.WheelGraph(12) sage: G = MatchingCoveredGraph(W) sage: u = next(G.vertex_iterator()) sage: G.delete_vertex(u) Traceback (most recent call last): ... ValueError: odd order is not allowed for matching covered graphs sage: G.delete_vertex(vertex=u, in_order=True) Traceback (most recent call last): ... ValueError: odd order is not allowed for matching covered graphs
>>> from sage.all import * >>> W = graphs.WheelGraph(Integer(12)) >>> G = MatchingCoveredGraph(W) >>> u = next(G.vertex_iterator()) >>> G.delete_vertex(u) Traceback (most recent call last): ... ValueError: odd order is not allowed for matching covered graphs >>> G.delete_vertex(vertex=u, in_order=True) Traceback (most recent call last): ... ValueError: odd order is not allowed for matching covered graphs
- delete_vertices(vertices)[source]¶
Delete specified vertices form
self
.This method deletes the vertices from the iterable container
vertices
fromself
along with incident edges. An error is raised if the resulting graph is not matching covered.Note
This method overwrites the
delete_vertices()
method to ensure that an odd order is forbidden inMatchingCoveredGraph
.INPUT:
vertices
– a list/ set of vertices that are to be deleted.
OUTPUT:
Deleting a non-existent vertex will raise a
ValueError
exception, in which case none of the vertices invertices
is deleted.If all of the vertices in the list/ set provided exist in the graph, but the resulting graph after deletion of all of those is not matching covered, then a
ValueError
exception is raised without any alterations to the existing (matching covered) graph, otherwise the vertices are deleted and nothing is returned.
EXAMPLES:
Providing with an empty list of vertices:
sage: C = graphs.CycleGraph(6) sage: G = MatchingCoveredGraph(C) sage: G.delete_vertices([]) sage: G == C True
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(6)) >>> G = MatchingCoveredGraph(C) >>> G.delete_vertices([]) >>> G == C True
Removing all the existent vertices:
sage: M = graphs.MoebiusLadderGraph(10) sage: G = MatchingCoveredGraph(M) sage: S = list(G.vertices()) sage: G.delete_vertices(S) Traceback (most recent call last): ... ValueError: the resulting graph after the removal of the vertices is trivial, therefore is not matching covered
>>> from sage.all import * >>> M = graphs.MoebiusLadderGraph(Integer(10)) >>> G = MatchingCoveredGraph(M) >>> S = list(G.vertices()) >>> G.delete_vertices(S) Traceback (most recent call last): ... ValueError: the resulting graph after the removal of the vertices is trivial, therefore is not matching covered
Providing with a list of vertices with at least one non-existent vertex:
sage: S = graphs.StaircaseGraph(4) sage: S Staircase graph: Graph on 8 vertices sage: G = MatchingCoveredGraph(S) sage: G Matching covered staircase graph: graph on 8 vertices sage: T = list(range(5, 20, 2)) sage: G.delete_vertices(T) Traceback (most recent call last): ... ValueError: vertex (9) not in the graph
>>> from sage.all import * >>> S = graphs.StaircaseGraph(Integer(4)) >>> S Staircase graph: Graph on 8 vertices >>> G = MatchingCoveredGraph(S) >>> G Matching covered staircase graph: graph on 8 vertices >>> T = list(range(Integer(5), Integer(20), Integer(2))) >>> G.delete_vertices(T) Traceback (most recent call last): ... ValueError: vertex (9) not in the graph
Removing an odd no. of distinct vertices from a matching covered graph:
sage: P = graphs.PetersenGraph() sage: G = MatchingCoveredGraph(P) sage: S = [0, 1, 2, 10, 10, 100] sage: G.delete_vertices(S) Traceback (most recent call last): ... ValueError: an odd no. of distinct vertices can not be removed from a matching covered graph
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> G = MatchingCoveredGraph(P) >>> S = [Integer(0), Integer(1), Integer(2), Integer(10), Integer(10), Integer(100)] >>> G.delete_vertices(S) Traceback (most recent call last): ... ValueError: an odd no. of distinct vertices can not be removed from a matching covered graph
Providing with a list of existent vertices whose deletion results in a graph which is not matching covered:
sage: S = graphs.StaircaseGraph(4) sage: S Staircase graph: Graph on 8 vertices sage: G = MatchingCoveredGraph(S) sage: G Matching covered staircase graph: graph on 8 vertices sage: T = [1, 4] sage: G.delete_vertices(T) Traceback (most recent call last): ... ValueError: the resulting graph after the removal of the vertices is not matching covered
>>> from sage.all import * >>> S = graphs.StaircaseGraph(Integer(4)) >>> S Staircase graph: Graph on 8 vertices >>> G = MatchingCoveredGraph(S) >>> G Matching covered staircase graph: graph on 8 vertices >>> T = [Integer(1), Integer(4)] >>> G.delete_vertices(T) Traceback (most recent call last): ... ValueError: the resulting graph after the removal of the vertices is not matching covered
Providing with a list of existent vertices after the deletion of which the resulting graph is still matching covered; note that in the following example, after the deletion of two vertices from a staircase graph, the resulting graph is NOT a staircase graph (see Issue #38768):
sage: S = graphs.StaircaseGraph(4) sage: S Staircase graph: Graph on 8 vertices sage: G = MatchingCoveredGraph(S) sage: G Matching covered staircase graph: graph on 8 vertices sage: T = [6, 7] sage: G.delete_vertices(T) sage: G # Matching covered graph on 6 vertices Matching covered staircase graph: graph on 6 vertices
>>> from sage.all import * >>> S = graphs.StaircaseGraph(Integer(4)) >>> S Staircase graph: Graph on 8 vertices >>> G = MatchingCoveredGraph(S) >>> G Matching covered staircase graph: graph on 8 vertices >>> T = [Integer(6), Integer(7)] >>> G.delete_vertices(T) >>> G # Matching covered graph on 6 vertices Matching covered staircase graph: graph on 6 vertices
- get_matching()[source]¶
Return an
EdgesView
ofself._matching
.OUTPUT:
This method returns
EdgesView
of the edges of a perfect matching of the (matching covered) graph.
EXAMPLES:
If one specifies a perfect matching while initializing the object, the value of
self._matching
is captures the same matching:sage: P = graphs.PetersenGraph() sage: M = [(0, 1), (2, 3), (4, 9), (5, 7), (6, 8)] sage: G = MatchingCoveredGraph(P, M) sage: sorted(G.get_matching()) [(0, 1), (2, 3), (4, 9), (5, 7), (6, 8)] sage: M == sorted(G.get_matching()) True
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> M = [(Integer(0), Integer(1)), (Integer(2), Integer(3)), (Integer(4), Integer(9)), (Integer(5), Integer(7)), (Integer(6), Integer(8))] >>> G = MatchingCoveredGraph(P, M) >>> sorted(G.get_matching()) [(0, 1), (2, 3), (4, 9), (5, 7), (6, 8)] >>> M == sorted(G.get_matching()) True
If no matching is specified while initilizing a matching covered graph, a perfect is computed
matching()
and that is captured asself._matching
:sage: P = graphs.PetersenGraph() sage: M = P.matching() sage: G = MatchingCoveredGraph(P) sage: sorted(G.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] sage: sorted(M) == sorted(G.get_matching()) True
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> M = P.matching() >>> G = MatchingCoveredGraph(P) >>> sorted(G.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] >>> sorted(M) == sorted(G.get_matching()) True
- has_loops()[source]¶
Check whether there are loops in the (matching covered) graph.
Note
This method overwrites the
has_loops()
method in order to returnFalse
as matching covered graphs are always free of looped edges.OUTPUT:
A boolean
False
is returned since matching covered graphs, by definition, are free of self-loops.
EXAMPLES:
A matching covered graph, for instance the Petersen graph, is always free of loops:
sage: P = graphs.PetersenGraph() sage: G = MatchingCoveredGraph(P) sage: G Matching covered petersen graph: graph on 10 vertices sage: G.has_loops() False sage: G.allows_loops() False sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> G = MatchingCoveredGraph(P) >>> G Matching covered petersen graph: graph on 10 vertices >>> G.has_loops() False >>> G.allows_loops() False >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs
A matching covered graph may support multiple edges, still no loops are allowed:
sage: K = graphs.CompleteGraph(2) sage: G = MatchingCoveredGraph(K) sage: G.allow_multiple_edges(True) sage: G Matching covered complete graph: multi-graph on 2 vertices sage: G.add_edge(0, 1, 'label') sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.edges(sort=False) [(0, 1, None), (0, 1, 'label')] sage: G.allows_loops() False sage: G.has_loops() False sage: G.allow_loops(True) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs
>>> from sage.all import * >>> K = graphs.CompleteGraph(Integer(2)) >>> G = MatchingCoveredGraph(K) >>> G.allow_multiple_edges(True) >>> G Matching covered complete graph: multi-graph on 2 vertices >>> G.add_edge(Integer(0), Integer(1), 'label') >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.edges(sort=False) [(0, 1, None), (0, 1, 'label')] >>> G.allows_loops() False >>> G.has_loops() False >>> G.allow_loops(True) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs
- has_perfect_matching(G, algorithm, solver='Edmonds', verbose=None, integrality_tolerance=0)[source]¶
Check whether the graph has a perfect matching.
Note
This method overwrites the
has_perfect_matching()
method in order to returnTrue
(provided the input arguments are valid) as matching covered graphs always admit a perfect matching.INPUT:
algorithm
– string (default:'Edmonds'
)'Edmonds'
uses Edmonds’ algorithm as implemented in NetworkX to find a matching of maximal cardinality, then check whether this cardinality is half the number of vertices of the graph.'LP_matching'
uses a Linear Program to find a matching of maximal cardinality, then check whether this cardinality is half the number of vertices of the graph.'LP'
uses a Linear Program formulation of the perfect matching problem: put a binary variableb[e]
on each edge \(e\), and for each vertex \(v\), require that the sum of the values of the edges incident to \(v\) is 1.
solver
– string (default:None
); specifies a Mixed Integer Linear Programming (MILP) solver to be used. If set toNone
, the default one is used. For more information on MILP solvers and which default solver is used, see the methodsolve
of the classMixedIntegerLinearProgram
.verbose
– integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet (only useful whenalgorithm == "LP_matching"
oralgorithm == "LP"
)integrality_tolerance
– float; parameter for use with MILP solvers over an inexact base ring; seeMixedIntegerLinearProgram.get_values()
.
OUTPUT:
If the input arguments are valid, a boolean (
True
) is returned as a maximum matching of a matching covered graph is always a perfect matching, otherwise aValueError
is raised.
EXAMPLES:
Note that regardless of the algorithm (as long as the input arguments are in valid format), the method always returns the boolean
True
:sage: P = graphs.PetersenGraph() sage: P.has_perfect_matching() # Calls Graph.has_perfect_matching() True sage: G = MatchingCoveredGraph(P) sage: G.has_perfect_matching() # Calls MatchingCoveredGraph.has_perfect_matching() True sage: W = graphs.WheelGraph(6) sage: H = MatchingCoveredGraph(W) sage: H.has_perfect_matching(algorithm='LP_matching') True
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> P.has_perfect_matching() # Calls Graph.has_perfect_matching() True >>> G = MatchingCoveredGraph(P) >>> G.has_perfect_matching() # Calls MatchingCoveredGraph.has_perfect_matching() True >>> W = graphs.WheelGraph(Integer(6)) >>> H = MatchingCoveredGraph(W) >>> H.has_perfect_matching(algorithm='LP_matching') True
Providing with an algorithm, that is not one of
'Edmonds'
,'LP_matching'
or'LP'
:sage: S = graphs.StaircaseGraph(4) sage: J = MatchingCoveredGraph(S) sage: J.has_perfect_matching(algorithm='algorithm') Traceback (most recent call last): ... ValueError: algorithm must be set to 'Edmonds', 'LP_matching' or 'LP'
>>> from sage.all import * >>> S = graphs.StaircaseGraph(Integer(4)) >>> J = MatchingCoveredGraph(S) >>> J.has_perfect_matching(algorithm='algorithm') Traceback (most recent call last): ... ValueError: algorithm must be set to 'Edmonds', 'LP_matching' or 'LP'
- is_brace(coNP_certificate=False)[source]¶
Check if the (matching covered) graph is a brace.
A matching covered graph which is free of nontrivial tight cuts is called a brace if it is bipartite. Let \(G := (A \cup B, E)\) be a bipartite matching covered graph on six or more vertices. The following statements are equivalent [LM2024]:
\(G\) is a brace (aka free of nontrivial tight cuts).
\(G - a_1 - a_2 - b_1 - b_2\) has a perfect matching for any two distinct vertices \(a_1\) and \(a_2\) in \(A\) and any two distinct vertices \(b_1\) and \(b_2\) in \(B\).
\(G\) is two extendable (any two nonadjacent distinct edges can be extended to some perfect matching of \(G\)).
\(|N(X)| \geq |X| + 2\), for all \(X ⊂ A\) such that \(0 < |X| < |A| - 1\), where \(N(S) := \{b \mid (a, b) \in E ∧ a \in S\}\) is called the neighboring set of \(S\).
\(G - a - b\) is matching covered, for some perfect matching \(M\) of \(G\) and for each edge \(ab\) in \(M\).
We shall be using the 5th characterization mentioned above in order to determine whether the provided bipartite matching covered graph is a brace or not using M-alternating tree search [LZ2001].
INPUT:
coNP_certificate
– boolean (default:False
)
OUTPUT:
If the input matching covered graph is not bipartite, a
ValueError
is returned.If the input bipartite matching covered graph is a brace, a boolean
True
is returned ifcoNP_certificate
is set toFalse
otherwise a 5-tuple(True, None, None, None, None)
is returned.If the input bipartite matching covered graph is not a brace, a boolean
False
is returned ifcoNP_certificate
is set toFalse
otherwise a 5-tuple ofa boolean
False
,a list of edges constituting a nontrivial tight cut (which is a nontrivial barrier cut)
a set of vertices of one of the shores of the nontrivial tight cut
a string ‘nontrivial tight cut’
a set of vertices showing the respective barrier
is returned.
EXAMPLES:
The complete graph on two vertices \(K_2\) is the smallest brace:
sage: K = graphs.CompleteGraph(2) sage: G = MatchingCoveredGraph(K) sage: G.is_brace() True
>>> from sage.all import * >>> K = graphs.CompleteGraph(Integer(2)) >>> G = MatchingCoveredGraph(K) >>> G.is_brace() True
The cycle graph on four vertices \(C_4\) is a brace:
sage: C = graphs.CycleGraph(4) sage: G = MatchingCoveredGraph(C) sage: G.is_brace() True
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(4)) >>> G = MatchingCoveredGraph(C) >>> G.is_brace() True
Each graph that is isomorphic to a biwheel is a brace:
sage: B = graphs.BiwheelGraph(15) sage: G = MatchingCoveredGraph(B) sage: G.is_brace() True
>>> from sage.all import * >>> B = graphs.BiwheelGraph(Integer(15)) >>> G = MatchingCoveredGraph(B) >>> G.is_brace() True
A circular ladder graph of order eight or more on \(2n\) vertices for an even \(n\) is a brace:
sage: n = 10 sage: CL = graphs.CircularLadderGraph(n) sage: G = MatchingCoveredGraph(CL) sage: G.is_brace() True
>>> from sage.all import * >>> n = Integer(10) >>> CL = graphs.CircularLadderGraph(n) >>> G = MatchingCoveredGraph(CL) >>> G.is_brace() True
A moebius ladder graph of order six or more on \(2n\) vertices for an odd \(n\) is a brace:
sage: n = 11 sage: ML = graphs.MoebiusLadderGraph(n) sage: G = MatchingCoveredGraph(ML) sage: G.is_brace() True
>>> from sage.all import * >>> n = Integer(11) >>> ML = graphs.MoebiusLadderGraph(n) >>> G = MatchingCoveredGraph(ML) >>> G.is_brace() True
Note that the union of the above mentioned four families of braces, that are:
the biwheel graph
BiwheelGraph(n)
,the circular ladder graph
CircularLadderGraph(n)
for evenn
,the moebius ladder graph
MoebiusLadderGraph(n)
for oddn
,
is referred to as the McCuaig family of braces.
The only simple brace of order six is the complete graph of the same order, that is \(K_{3, 3}\):
sage: L = list(graphs(6, ....: lambda G: G.size() <= 15 and ....: G.is_bipartite()) ....: ) sage: L = list(G for G in L if G.is_connected() and ....: G.is_matching_covered() ....: ) sage: M = list(MatchingCoveredGraph(G) for G in L) sage: B = list(G for G in M if G.is_brace()) sage: K = graphs.CompleteBipartiteGraph(3, 3) sage: G = MatchingCoveredGraph(K) sage: next(iter(B)).is_isomorphic(G) True
>>> from sage.all import * >>> L = list(graphs(Integer(6), ... lambda G: G.size() <= Integer(15) and ... G.is_bipartite()) ... ) >>> L = list(G for G in L if G.is_connected() and ... G.is_matching_covered() ... ) >>> M = list(MatchingCoveredGraph(G) for G in L) >>> B = list(G for G in M if G.is_brace()) >>> K = graphs.CompleteBipartiteGraph(Integer(3), Integer(3)) >>> G = MatchingCoveredGraph(K) >>> next(iter(B)).is_isomorphic(G) True
The nonplanar \(K_{3, 3}\)-free brace Heawood graph is the unique cubic graph of girth six with the fewest number of vertices (that is 14). Note that by \(K_{3, 3}\)-free, it shows that the Heawood graph does not contain a subgraph that is isomophic to a graph obtained by bisubdivision of \(K_{3, 3}\):
sage: K = graphs.CompleteBipartiteGraph(3, 3) sage: J = graphs.HeawoodGraph() sage: H = MatchingCoveredGraph(J) sage: H.is_brace() and not H.is_planar() and \ ....: H.is_regular(k=3) and H.girth() == 6 True
>>> from sage.all import * >>> K = graphs.CompleteBipartiteGraph(Integer(3), Integer(3)) >>> J = graphs.HeawoodGraph() >>> H = MatchingCoveredGraph(J) >>> H.is_brace() and not H.is_planar() and H.is_regular(k=Integer(3)) and H.girth() == Integer(6) True
Braces of order six or more are 3-connected:
sage: H = graphs.HexahedralGraph() sage: G = MatchingCoveredGraph(H) sage: G.is_brace() and G.is_triconnected() True
>>> from sage.all import * >>> H = graphs.HexahedralGraph() >>> G = MatchingCoveredGraph(H) >>> G.is_brace() and G.is_triconnected() True
Braces of order four or more are 2-extendable:
sage: H = graphs.EllinghamHorton54Graph() sage: G = MatchingCoveredGraph(H) sage: G.is_brace() True sage: e = next(G.edge_iterator(labels=False)); f = None sage: for f in G.edge_iterator(labels=False): ....: if not (set(e) & set(f)): ....: break sage: S = [u for x in [e, f] for u in set(x)] sage: J = H.copy(); J.delete_vertices(S) sage: M = Graph(J.matching()) sage: M.add_edges([e, f]) sage: if all(d == 1 for d in M.degree()) and \ ....: G.order() == M.order() and \ ....: G.order() == 2*M.size(): ....: print(f'graph {G} is 2-extendable') graph Ellingham-Horton 54-graph is 2-extendable
>>> from sage.all import * >>> H = graphs.EllinghamHorton54Graph() >>> G = MatchingCoveredGraph(H) >>> G.is_brace() True >>> e = next(G.edge_iterator(labels=False)); f = None >>> for f in G.edge_iterator(labels=False): ... if not (set(e) & set(f)): ... break >>> S = [u for x in [e, f] for u in set(x)] >>> J = H.copy(); J.delete_vertices(S) >>> M = Graph(J.matching()) >>> M.add_edges([e, f]) >>> if all(d == Integer(1) for d in M.degree()) and G.order() == M.order() and G.order() == Integer(2)*M.size(): ... print(f'graph {G} is 2-extendable') graph Ellingham-Horton 54-graph is 2-extendable
Every edge in a brace of order at least six is removable:
sage: H = graphs.CircularLadderGraph(8) sage: G = MatchingCoveredGraph(H) sage: # len(G.removble_edges()) == G.size() # True
>>> from sage.all import * >>> H = graphs.CircularLadderGraph(Integer(8)) >>> G = MatchingCoveredGraph(H) >>> # len(G.removble_edges()) == G.size() # True
Every brace of order eight has the hexahedral graph as a spanning subgraph:
sage: H = graphs.HexahedralGraph() sage: L = list(graphs(8, ....: lambda G: G.size() <= 28 and ....: G.is_bipartite()) ....: ) sage: L = list(G for G in L if G.is_connected() and ....: G.is_matching_covered() ....: ) sage: M = list(MatchingCoveredGraph(G) for G in L) sage: B = list(G for G in M if G.is_brace()) sage: C = list(G for G in M if Graph(G).subgraph_search(H) is not None) sage: B == C True
>>> from sage.all import * >>> H = graphs.HexahedralGraph() >>> L = list(graphs(Integer(8), ... lambda G: G.size() <= Integer(28) and ... G.is_bipartite()) ... ) >>> L = list(G for G in L if G.is_connected() and ... G.is_matching_covered() ... ) >>> M = list(MatchingCoveredGraph(G) for G in L) >>> B = list(G for G in M if G.is_brace()) >>> C = list(G for G in M if Graph(G).subgraph_search(H) is not None) >>> B == C True
For every brace \(G[A, B]\) of order at least six, the graph \(G - a_1 - a_2 - b_1 - b_2\) has a perfect matching for any two distinct vertices \(a_1\) and \(a_2\) in \(A\) and any two distinct vertices \(b_1\) and \(b_2\) in \(B\):
sage: H = graphs.CompleteBipartiteGraph(10, 10) sage: G = MatchingCoveredGraph(H) sage: G.is_brace() True sage: S = [0, 1, 10, 12] sage: G.delete_vertices(S) sage: G.has_perfect_matching() True
>>> from sage.all import * >>> H = graphs.CompleteBipartiteGraph(Integer(10), Integer(10)) >>> G = MatchingCoveredGraph(H) >>> G.is_brace() True >>> S = [Integer(0), Integer(1), Integer(10), Integer(12)] >>> G.delete_vertices(S) >>> G.has_perfect_matching() True
For a brace \(G[A, B]\) of order six or more, \(|N(X)| \geq |X| + 2\), for all \(X \subset A\) such that \(0 < |X| <|A| - 1\), where \(N(S) := \{b | (a, b) \in E \^ a \in S\}\) is called the neighboring set of \(S\):
sage: H = graphs.MoebiusLadderGraph(15) sage: G = MatchingCoveredGraph(H) sage: G.is_brace() True sage: A, _ = G.bipartite_sets() sage: # needs random sage: X = random.sample(list(A), random.randint(1, len(A) - 1)) sage: N = {v for u in X for v in G.neighbor_iterator(u)} sage: len(N) >= len(X) + 2 True
>>> from sage.all import * >>> H = graphs.MoebiusLadderGraph(Integer(15)) >>> G = MatchingCoveredGraph(H) >>> G.is_brace() True >>> A, _ = G.bipartite_sets() >>> # needs random >>> X = random.sample(list(A), random.randint(Integer(1), len(A) - Integer(1))) >>> N = {v for u in X for v in G.neighbor_iterator(u)} >>> len(N) >= len(X) + Integer(2) True
For a brace \(G\) of order four or more with a perfect matching \(M\), the graph \(G - a - b\) is matching covered for each edge \((a, b)\) in \(M\):
sage: H = graphs.HeawoodGraph() sage: G = MatchingCoveredGraph(H) sage: G.is_brace() True sage: M = G.get_matching() sage: L = [] sage: for a, b, *_ in M: ....: J = G.copy(); J.delete_vertices([a, b]) ....: if J.is_matching_covered(): ....: L.append(J) sage: len(L) == len(M) True
>>> from sage.all import * >>> H = graphs.HeawoodGraph() >>> G = MatchingCoveredGraph(H) >>> G.is_brace() True >>> M = G.get_matching() >>> L = [] >>> for a, b, *_ in M: ... J = G.copy(); J.delete_vertices([a, b]) ... if J.is_matching_covered(): ... L.append(J) >>> len(L) == len(M) True
A cycle graph of order six or more is a bipartite matching covered graph, but is not a brace:
sage: C = graphs.CycleGraph(10) sage: G = MatchingCoveredGraph(C) sage: G.is_brace() False
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(10)) >>> G = MatchingCoveredGraph(C) >>> G.is_brace() False
A ladder graph of order six or more is a bipartite matching covered graph, that is not a brace. The tight cut decomposition of a ladder graph produces a list graphs the underlying graph of each of which is isomorphic to a 4-cycle:
sage: L = graphs.LadderGraph(10) sage: G = MatchingCoveredGraph(L) sage: G.is_brace() False
>>> from sage.all import * >>> L = graphs.LadderGraph(Integer(10)) >>> G = MatchingCoveredGraph(L) >>> G.is_brace() False
One may set the
coNP_certificate
to beTrue
:sage: H = graphs.HexahedralGraph() sage: G = MatchingCoveredGraph(H) sage: G.is_brace(coNP_certificate=True) (True, None, None, None, None) sage: C = graphs.CycleGraph(6) sage: D = MatchingCoveredGraph(C) sage: is_brace, nontrivial_tight_cut, nontrivial_odd_component, \ ....: nontrivial_tight_cut_variant, cut_identifier = \ ....: D.is_brace(coNP_certificate=True) sage: is_brace is False True sage: J = C.subgraph(vertices=nontrivial_odd_component) sage: J.is_isomorphic(graphs.PathGraph(3)) True sage: len(nontrivial_tight_cut) == 2 True sage: nontrivial_tight_cut_variant 'nontrivial barrier cut' sage: # Corresponding barrier sage: cut_identifier == {a for u, v, *_ in nontrivial_tight_cut for a in [u, v] \ ....: if a not in nontrivial_odd_component} True sage: for u, v, *_ in nontrivial_tight_cut: ....: assert (u in nontrivial_odd_component and v not in nontrivial_odd_component) sage: L = graphs.LadderGraph(3) # A ladder graph with two constituent braces sage: G = MatchingCoveredGraph(L) sage: is_brace, nontrivial_tight_cut, nontrivial_odd_component, cut_variant, cut_identifier = \ ....: G.is_brace(coNP_certificate=True) sage: is_brace is False True sage: G1 = L.copy() sage: G1.merge_vertices(list(nontrivial_odd_component)) sage: G1.to_simple().is_isomorphic(graphs.CycleGraph(4)) True sage: G2 = L.copy() sage: G2.merge_vertices([v for v in G if v not in nontrivial_odd_component]) sage: G2.to_simple().is_isomorphic(graphs.CycleGraph(4)) True sage: cut_variant 'nontrivial barrier cut' sage: cut_identifier == {a for u, v, *_ in nontrivial_tight_cut for a in [u, v] \ ....: if a not in nontrivial_odd_component} True sage: H = graphs.CompleteBipartiteGraph(3, 3) sage: H.delete_edge(0, 3) sage: G = MatchingCoveredGraph(H) sage: G.is_brace(coNP_certificate=True) (False, [(4, 1, None), (5, 1, None), (4, 2, None), (5, 2, None)], {0, 4, 5}, 'nontrivial barrier cut', {1, 2})
>>> from sage.all import * >>> H = graphs.HexahedralGraph() >>> G = MatchingCoveredGraph(H) >>> G.is_brace(coNP_certificate=True) (True, None, None, None, None) >>> C = graphs.CycleGraph(Integer(6)) >>> D = MatchingCoveredGraph(C) >>> is_brace, nontrivial_tight_cut, nontrivial_odd_component, nontrivial_tight_cut_variant, cut_identifier = D.is_brace(coNP_certificate=True) >>> is_brace is False True >>> J = C.subgraph(vertices=nontrivial_odd_component) >>> J.is_isomorphic(graphs.PathGraph(Integer(3))) True >>> len(nontrivial_tight_cut) == Integer(2) True >>> nontrivial_tight_cut_variant 'nontrivial barrier cut' >>> # Corresponding barrier >>> cut_identifier == {a for u, v, *_ in nontrivial_tight_cut for a in [u, v] if a not in nontrivial_odd_component} True >>> for u, v, *_ in nontrivial_tight_cut: ... assert (u in nontrivial_odd_component and v not in nontrivial_odd_component) >>> L = graphs.LadderGraph(Integer(3)) # A ladder graph with two constituent braces >>> G = MatchingCoveredGraph(L) >>> is_brace, nontrivial_tight_cut, nontrivial_odd_component, cut_variant, cut_identifier = G.is_brace(coNP_certificate=True) >>> is_brace is False True >>> G1 = L.copy() >>> G1.merge_vertices(list(nontrivial_odd_component)) >>> G1.to_simple().is_isomorphic(graphs.CycleGraph(Integer(4))) True >>> G2 = L.copy() >>> G2.merge_vertices([v for v in G if v not in nontrivial_odd_component]) >>> G2.to_simple().is_isomorphic(graphs.CycleGraph(Integer(4))) True >>> cut_variant 'nontrivial barrier cut' >>> cut_identifier == {a for u, v, *_ in nontrivial_tight_cut for a in [u, v] if a not in nontrivial_odd_component} True >>> H = graphs.CompleteBipartiteGraph(Integer(3), Integer(3)) >>> H.delete_edge(Integer(0), Integer(3)) >>> G = MatchingCoveredGraph(H) >>> G.is_brace(coNP_certificate=True) (False, [(4, 1, None), (5, 1, None), (4, 2, None), (5, 2, None)], {0, 4, 5}, 'nontrivial barrier cut', {1, 2})
If the input matching covered graph is nonbipartite, a
ValueError
is thrown:sage: K4 = graphs.CompleteGraph(4) sage: G = MatchingCoveredGraph(K4) sage: G.is_brace() Traceback (most recent call last): ... ValueError: the input graph is not bipartite sage: P = graphs.PetersenGraph() sage: H = MatchingCoveredGraph(P) sage: H.is_brace(coNP_certificate=True) Traceback (most recent call last): ... ValueError: the input graph is not bipartite
>>> from sage.all import * >>> K4 = graphs.CompleteGraph(Integer(4)) >>> G = MatchingCoveredGraph(K4) >>> G.is_brace() Traceback (most recent call last): ... ValueError: the input graph is not bipartite >>> P = graphs.PetersenGraph() >>> H = MatchingCoveredGraph(P) >>> H.is_brace(coNP_certificate=True) Traceback (most recent call last): ... ValueError: the input graph is not bipartite
See also
bricks_and_braces()
number_of_braces()
- is_brick(coNP_certificate=False)[source]¶
Check if the (matching covered) graph is a brick.
A matching covered graph which is free of nontrivial tight cuts is called a brick if it is nonbipartite. A nonbipartite matching covered graph is a brick if and only if it is 3-connected and bicritical [LM2024].
INPUT:
coNP_certificate
– boolean (default:False
)
OUTPUT:
If the input matching covered graph is bipartite, a
ValueError
is returned.If the input nonbipartite matching covered graph is a brick, a boolean
True
is returned ifcoNP_certificate
is set toFalse
, otherwise a 5-tuple(True, None, None, None, None)
is returned.If the input nonbipartite matching covered graph is not a brick, a boolean
False
is returned ifcoNP_certificate
is set toFalse
.If
coNP_certificate
is set toTrue
and the input nonbipartite graph is not a brick, a 5-tuple ofa boolean
False
,a list of lists of edges, each list constituting a nontrivial tight cut collectively representing a laminar tight cut,
a list of set of vertices of one of the shores of those respective nontrivial tight cuts:
In case of nontrivial barrier cuts, each of the shores is a nontrivial odd component with respect to a nontrivial barrier, thus the returned list forms mutually exclusive collection of (odd) sets.
Otherwise each of the nontrivial tight cuts is a 2-separation cut, each of the shores form a subset sequence, with the \(i\) th shore being a proper subset of the \(i + 1\) th shore.
a string showing whether the nontrivial tight cuts are barrier cuts (if the string is ‘nontrivial barrier cut’), or 2-separation cuts (if the string is ‘nontrivial 2-separation cut’)
a set of vertices showing the respective barrier if the nontrivial tight cuts are barrier cuts, or otherwise a set of two vertices constituting the corresponding two vertex cut (in this case the nontrivial tight cuts are 2-separation cuts)
is returned.
EXAMPLES:
The complete graph on four vertices \(K_4\) is the smallest brick:
sage: K = graphs.CompleteGraph(4) sage: G = MatchingCoveredGraph(K) sage: G.is_brick() True
>>> from sage.all import * >>> K = graphs.CompleteGraph(Integer(4)) >>> G = MatchingCoveredGraph(K) >>> G.is_brick() True
The triangular cicular ladder (a graph on six vertices), aka \(\overline{C_6}\) is a brick:
sage: C6Bar = graphs.CircularLadderGraph(3) sage: G = MatchingCoveredGraph(C6Bar) sage: G.is_brick() True
>>> from sage.all import * >>> C6Bar = graphs.CircularLadderGraph(Integer(3)) >>> G = MatchingCoveredGraph(C6Bar) >>> G.is_brick() True
Each of Petersen graph, Bicorn graph, Tricorn graph, Cubeplex graph, Twinplex graph, Wagner graph is a brick:
sage: MatchingCoveredGraph(graphs.PetersenGraph()).is_brick() and \ ....: MatchingCoveredGraph(graphs.StaircaseGraph(4)).is_brick() and \ ....: MatchingCoveredGraph(graphs.TricornGraph()).is_brick() and \ ....: MatchingCoveredGraph(graphs.CubeplexGraph()).is_brick() and \ ....: MatchingCoveredGraph(graphs.TwinplexGraph()).is_brick() and \ ....: MatchingCoveredGraph(graphs.WagnerGraph()).is_brick() True
>>> from sage.all import * >>> MatchingCoveredGraph(graphs.PetersenGraph()).is_brick() and MatchingCoveredGraph(graphs.StaircaseGraph(Integer(4))).is_brick() and MatchingCoveredGraph(graphs.TricornGraph()).is_brick() and MatchingCoveredGraph(graphs.CubeplexGraph()).is_brick() and MatchingCoveredGraph(graphs.TwinplexGraph()).is_brick() and MatchingCoveredGraph(graphs.WagnerGraph()).is_brick() True
The Murty graph is the smallest simple brick that is not odd-intercyclic:
sage: M = graphs.MurtyGraph() sage: G = MatchingCoveredGraph(M) sage: G.is_brick() True
>>> from sage.all import * >>> M = graphs.MurtyGraph() >>> G = MatchingCoveredGraph(M) >>> G.is_brick() True
A circular ladder graph of order six or more on \(2n\) vertices for an odd \(n\) is a brick:
sage: n = 11 sage: CL = graphs.CircularLadderGraph(n) sage: G = MatchingCoveredGraph(CL) sage: G.is_brick() True
>>> from sage.all import * >>> n = Integer(11) >>> CL = graphs.CircularLadderGraph(n) >>> G = MatchingCoveredGraph(CL) >>> G.is_brick() True
A moebius ladder graph of order eight or more on \(2n\) vertices for an even \(n\) is a brick:
sage: n = 10 sage: ML = graphs.MoebiusLadderGraph(n) sage: G = MatchingCoveredGraph(ML) sage: G.is_brick() True
>>> from sage.all import * >>> n = Integer(10) >>> ML = graphs.MoebiusLadderGraph(n) >>> G = MatchingCoveredGraph(ML) >>> G.is_brick() True
A wheel graph of an even order is a brick:
sage: W = graphs.WheelGraph(10) sage: G = MatchingCoveredGraph(W) sage: G.is_brick() True
>>> from sage.all import * >>> W = graphs.WheelGraph(Integer(10)) >>> G = MatchingCoveredGraph(W) >>> G.is_brick() True
A graph that is isomorphic to a truncated biwheel graph is a brick:
sage: TB = graphs.TruncatedBiwheelGraph(15) sage: G = MatchingCoveredGraph(TB) sage: G.is_brick() True
>>> from sage.all import * >>> TB = graphs.TruncatedBiwheelGraph(Integer(15)) >>> G = MatchingCoveredGraph(TB) >>> G.is_brick() True
Each of the graphs in the staircase graph family with order eight or more is a brick:
sage: ST = graphs.StaircaseGraph(9) sage: G = MatchingCoveredGraph(ST) sage: G.is_brick() True
>>> from sage.all import * >>> ST = graphs.StaircaseGraph(Integer(9)) >>> G = MatchingCoveredGraph(ST) >>> G.is_brick() True
Bricks are 3-connected:
sage: P = graphs.PetersenGraph() sage: G = MatchingCoveredGraph(P) sage: G.is_brick() True sage: G.is_triconnected() True
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> G = MatchingCoveredGraph(P) >>> G.is_brick() True >>> G.is_triconnected() True
Bricks are bicritical:
sage: P = graphs.PetersenGraph() sage: G = MatchingCoveredGraph(P) sage: G.is_brick() True sage: G.is_bicritical() True
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> G = MatchingCoveredGraph(P) >>> G.is_brick() True >>> G.is_bicritical() True
Examples of nonbipartite matching covered graphs that are not bricks:
sage: H = Graph([ ....: (0, 3), (0, 4), (0, 7), ....: (1, 3), (1, 5), (1, 7), ....: (2, 3), (2, 6), (2, 7), ....: (4, 5), (4, 6), (5, 6) ....: ]) sage: G = MatchingCoveredGraph(H) sage: G.is_bipartite() False sage: G.is_bicritical() False sage: G.is_triconnected() True sage: G.is_brick() False sage: H = Graph([ ....: (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), ....: (1, 5), (2, 5), (3, 4), (3, 5), (4, 5) ....: ]) sage: G = MatchingCoveredGraph(H) sage: G.is_bipartite() False sage: G.is_bicritical() True sage: G.is_triconnected() False sage: G.is_brick() False
>>> from sage.all import * >>> H = Graph([ ... (Integer(0), Integer(3)), (Integer(0), Integer(4)), (Integer(0), Integer(7)), ... (Integer(1), Integer(3)), (Integer(1), Integer(5)), (Integer(1), Integer(7)), ... (Integer(2), Integer(3)), (Integer(2), Integer(6)), (Integer(2), Integer(7)), ... (Integer(4), Integer(5)), (Integer(4), Integer(6)), (Integer(5), Integer(6)) ... ]) >>> G = MatchingCoveredGraph(H) >>> G.is_bipartite() False >>> G.is_bicritical() False >>> G.is_triconnected() True >>> G.is_brick() False >>> H = Graph([ ... (Integer(0), Integer(1)), (Integer(0), Integer(2)), (Integer(0), Integer(3)), (Integer(0), Integer(4)), (Integer(1), Integer(2)), ... (Integer(1), Integer(5)), (Integer(2), Integer(5)), (Integer(3), Integer(4)), (Integer(3), Integer(5)), (Integer(4), Integer(5)) ... ]) >>> G = MatchingCoveredGraph(H) >>> G.is_bipartite() False >>> G.is_bicritical() True >>> G.is_triconnected() False >>> G.is_brick() False
One may set the
coNP_certificate
to beTrue
:sage: K4 = graphs.CompleteGraph(4) sage: G = MatchingCoveredGraph(K4) sage: G.is_brick(coNP_certificate=True) (True, None, None, None, None) sage: # K(4) ⊙ K(3, 3) is nonbipartite but not a brick sage: H = graphs.MurtyGraph(); H.delete_edge(0, 1) sage: G = MatchingCoveredGraph(H) sage: G.is_brick(coNP_certificate=True) (False, [[(5, 2, None), (6, 3, None), (7, 4, None)]], [{5, 6, 7}], 'nontrivial barrier cut', {2, 3, 4}) sage: H = Graph([ ....: (0, 12), (0, 13), (0, 15), (1, 4), (1, 13), (1, 14), ....: (1, 19), (2, 4), (2, 13), (2, 14), (2, 17), (3, 9), ....: (3, 13), (3, 16), (3, 21), (4, 6), (4, 7), (5, 7), ....: (5, 8), (5, 12), (6, 8), (6, 11), (7, 10), (8, 9), ....: (9, 10), (10, 11), (11, 12), (14, 15), (14, 16), (15, 16), ....: (17, 18), (17, 21), (18, 19), (18, 20), (19, 20), (20, 21) ....: ]) sage: G = MatchingCoveredGraph(H) sage: G.is_brick(coNP_certificate=True) (False, [[(12, 0, None), (4, 1, None), (4, 2, None), (9, 3, None)], [(19, 1, None), (17, 2, None), (21, 3, None)], [(15, 0, None), (14, 1, None), (14, 2, None), (16, 3, None)]], [{4, 5, 6, 7, 8, 9, 10, 11, 12}, {17, 18, 19, 20, 21}, {14, 15, 16}], 'nontrivial barrier cut', {0, 1, 2, 3}) sage: J = Graph([ ....: (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), ....: (0, 6), (0, 7), (0, 8), (0, 9), (0, 10), ....: (1, 2), (1, 11), (2, 11), (3, 4), (3, 11), ....: (4, 11), (5, 6), (5, 11), (6, 11), (7, 8), ....: (7, 11), (8, 11), (9, 10), (9, 11), (10, 11) ....: ]) sage: G = MatchingCoveredGraph(J) sage: G.is_brick(coNP_certificate=True) (False, [[(0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (0, 7, None), (0, 8, None), (0, 9, None), (0, 10, None), (1, 11, None), (2, 11, None)], [(0, 5, None), (0, 6, None), (0, 7, None), (0, 8, None), (0, 9, None), (0, 10, None), (1, 11, None), (2, 11, None), (3, 11, None), (4, 11, None)], [(0, 7, None), (0, 8, None), (0, 9, None), (0, 10, None), (1, 11, None), (2, 11, None), (3, 11, None), (4, 11, None), (5, 11, None), (6, 11, None)], [(0, 9, None), (0, 10, None), (1, 11, None), (2, 11, None), (3, 11, None), (4, 11, None), (5, 11, None), (6, 11, None), (7, 11, None), (8, 11, None)]], [{0, 1, 2}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4, 5, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8}], 'nontrivial 2-separation cut', {0, 11})
>>> from sage.all import * >>> K4 = graphs.CompleteGraph(Integer(4)) >>> G = MatchingCoveredGraph(K4) >>> G.is_brick(coNP_certificate=True) (True, None, None, None, None) >>> # K(4) ⊙ K(3, 3) is nonbipartite but not a brick >>> H = graphs.MurtyGraph(); H.delete_edge(Integer(0), Integer(1)) >>> G = MatchingCoveredGraph(H) >>> G.is_brick(coNP_certificate=True) (False, [[(5, 2, None), (6, 3, None), (7, 4, None)]], [{5, 6, 7}], 'nontrivial barrier cut', {2, 3, 4}) >>> H = Graph([ ... (Integer(0), Integer(12)), (Integer(0), Integer(13)), (Integer(0), Integer(15)), (Integer(1), Integer(4)), (Integer(1), Integer(13)), (Integer(1), Integer(14)), ... (Integer(1), Integer(19)), (Integer(2), Integer(4)), (Integer(2), Integer(13)), (Integer(2), Integer(14)), (Integer(2), Integer(17)), (Integer(3), Integer(9)), ... (Integer(3), Integer(13)), (Integer(3), Integer(16)), (Integer(3), Integer(21)), (Integer(4), Integer(6)), (Integer(4), Integer(7)), (Integer(5), Integer(7)), ... (Integer(5), Integer(8)), (Integer(5), Integer(12)), (Integer(6), Integer(8)), (Integer(6), Integer(11)), (Integer(7), Integer(10)), (Integer(8), Integer(9)), ... (Integer(9), Integer(10)), (Integer(10), Integer(11)), (Integer(11), Integer(12)), (Integer(14), Integer(15)), (Integer(14), Integer(16)), (Integer(15), Integer(16)), ... (Integer(17), Integer(18)), (Integer(17), Integer(21)), (Integer(18), Integer(19)), (Integer(18), Integer(20)), (Integer(19), Integer(20)), (Integer(20), Integer(21)) ... ]) >>> G = MatchingCoveredGraph(H) >>> G.is_brick(coNP_certificate=True) (False, [[(12, 0, None), (4, 1, None), (4, 2, None), (9, 3, None)], [(19, 1, None), (17, 2, None), (21, 3, None)], [(15, 0, None), (14, 1, None), (14, 2, None), (16, 3, None)]], [{4, 5, 6, 7, 8, 9, 10, 11, 12}, {17, 18, 19, 20, 21}, {14, 15, 16}], 'nontrivial barrier cut', {0, 1, 2, 3}) >>> J = Graph([ ... (Integer(0), Integer(1)), (Integer(0), Integer(2)), (Integer(0), Integer(3)), (Integer(0), Integer(4)), (Integer(0), Integer(5)), ... (Integer(0), Integer(6)), (Integer(0), Integer(7)), (Integer(0), Integer(8)), (Integer(0), Integer(9)), (Integer(0), Integer(10)), ... (Integer(1), Integer(2)), (Integer(1), Integer(11)), (Integer(2), Integer(11)), (Integer(3), Integer(4)), (Integer(3), Integer(11)), ... (Integer(4), Integer(11)), (Integer(5), Integer(6)), (Integer(5), Integer(11)), (Integer(6), Integer(11)), (Integer(7), Integer(8)), ... (Integer(7), Integer(11)), (Integer(8), Integer(11)), (Integer(9), Integer(10)), (Integer(9), Integer(11)), (Integer(10), Integer(11)) ... ]) >>> G = MatchingCoveredGraph(J) >>> G.is_brick(coNP_certificate=True) (False, [[(0, 3, None), (0, 4, None), (0, 5, None), (0, 6, None), (0, 7, None), (0, 8, None), (0, 9, None), (0, 10, None), (1, 11, None), (2, 11, None)], [(0, 5, None), (0, 6, None), (0, 7, None), (0, 8, None), (0, 9, None), (0, 10, None), (1, 11, None), (2, 11, None), (3, 11, None), (4, 11, None)], [(0, 7, None), (0, 8, None), (0, 9, None), (0, 10, None), (1, 11, None), (2, 11, None), (3, 11, None), (4, 11, None), (5, 11, None), (6, 11, None)], [(0, 9, None), (0, 10, None), (1, 11, None), (2, 11, None), (3, 11, None), (4, 11, None), (5, 11, None), (6, 11, None), (7, 11, None), (8, 11, None)]], [{0, 1, 2}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4, 5, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8}], 'nontrivial 2-separation cut', {0, 11})
If the input matching covered graph is bipartite, a
ValueError
is thrown:sage: H = graphs.HexahedralGraph() sage: G = MatchingCoveredGraph(H) sage: G.is_brick() Traceback (most recent call last): ... ValueError: the input graph is bipartite sage: J = graphs.HeawoodGraph() sage: G = MatchingCoveredGraph(J) sage: G.is_brick(coNP_certificate=True) Traceback (most recent call last): ... ValueError: the input graph is bipartite
>>> from sage.all import * >>> H = graphs.HexahedralGraph() >>> G = MatchingCoveredGraph(H) >>> G.is_brick() Traceback (most recent call last): ... ValueError: the input graph is bipartite >>> J = graphs.HeawoodGraph() >>> G = MatchingCoveredGraph(J) >>> G.is_brick(coNP_certificate=True) Traceback (most recent call last): ... ValueError: the input graph is bipartite
See also
bricks_and_braces()
number_of_bricks()
number_of_petersen_bricks()
- loop_edges(labels=True)[source]¶
Return a list of all loops in the (matching covered) graph.
Note
This method overwrites the
loop_edges()
method in order to return an empty list as matching covered graphs are free of looped edges.INPUT:
labels
– boolean (default:True
); whether returned edges have labels ((u,v,l)
) or not ((u,v)
).
OUTPUT:
A list capturing the edges that are loops in the matching covered graph; note that, the list is empty since matching covered graphs do not contain any looped edges.
EXAMPLES:
A matching covered graph, for instance the Heawood graph, by definition, is always free of loops:
sage: H = graphs.HeawoodGraph() sage: G = MatchingCoveredGraph(H) sage: G Matching covered heawood graph: graph on 14 vertices sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.loops() [] sage: G.loop_edges() []
>>> from sage.all import * >>> H = graphs.HeawoodGraph() >>> G = MatchingCoveredGraph(H) >>> G Matching covered heawood graph: graph on 14 vertices >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.loops() [] >>> G.loop_edges() []
A matching covered graph may support multiple edges, still no loops are allowed:
sage: C = graphs.CycleGraph(4) sage: G = MatchingCoveredGraph(C) sage: G.allow_multiple_edges(True) sage: G Matching covered cycle graph: multi-graph on 4 vertices sage: G.add_edge(0, 1, 'label') sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.edges(sort=False) [(0, 1, None), (0, 1, 'label'), (0, 3, None), (1, 2, None), (2, 3, None)] sage: G.loops() [] sage: G.loop_edges() []
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(4)) >>> G = MatchingCoveredGraph(C) >>> G.allow_multiple_edges(True) >>> G Matching covered cycle graph: multi-graph on 4 vertices >>> G.add_edge(Integer(0), Integer(1), 'label') >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.edges(sort=False) [(0, 1, None), (0, 1, 'label'), (0, 3, None), (1, 2, None), (2, 3, None)] >>> G.loops() [] >>> G.loop_edges() []
One may set the
label
to eitherTrue
orFalse
:sage: G.loop_edges(labels=False) [] sage: G.loops(labels=True) []
>>> from sage.all import * >>> G.loop_edges(labels=False) [] >>> G.loops(labels=True) []
- loop_vertices()[source]¶
Return a list of vertices with loops.
Note
This method overwrites the
loop_vertices()
method in order to return an empty list as matching covered graphs are free of vertices that have looped edges.OUTPUT:
A list capturing the vertices that have loops in the matching covered graph; note that, the list is empty since matching covered graphs do not contain any looped edges.
EXAMPLES:
A matching covered graph, for instance the Möbius graph of order 8, by definition, is always free of loops:
sage: M = graphs.MoebiusLadderGraph(4) sage: G = MatchingCoveredGraph(M) sage: G Matching covered moebius ladder graph: graph on 8 vertices sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.loop_vertices() []
>>> from sage.all import * >>> M = graphs.MoebiusLadderGraph(Integer(4)) >>> G = MatchingCoveredGraph(M) >>> G Matching covered moebius ladder graph: graph on 8 vertices >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.loop_vertices() []
A matching covered graph may support multiple edges, still no loops are allowed:
sage: S = graphs.StaircaseGraph(4) sage: G = MatchingCoveredGraph(S) sage: G.allow_multiple_edges(True) sage: G Matching covered staircase graph: multi-graph on 8 vertices sage: G.add_edge(0, 1, 'label') sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.edges(sort=False) [(0, 1, None), (0, 1, 'label'), (0, 3, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)] sage: G.loop_vertices() []
>>> from sage.all import * >>> S = graphs.StaircaseGraph(Integer(4)) >>> G = MatchingCoveredGraph(S) >>> G.allow_multiple_edges(True) >>> G Matching covered staircase graph: multi-graph on 8 vertices >>> G.add_edge(Integer(0), Integer(1), 'label') >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.edges(sort=False) [(0, 1, None), (0, 1, 'label'), (0, 3, None), (0, 6, None), (1, 2, None), (1, 4, None), (2, 5, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (5, 7, None), (6, 7, None)] >>> G.loop_vertices() []
- loops(labels=True)[source]¶
Return a list of all loops in the (matching covered) graph.
Note
This method overwrites the
loop_edges()
method in order to return an empty list as matching covered graphs are free of looped edges.INPUT:
labels
– boolean (default:True
); whether returned edges have labels ((u,v,l)
) or not ((u,v)
).
OUTPUT:
A list capturing the edges that are loops in the matching covered graph; note that, the list is empty since matching covered graphs do not contain any looped edges.
EXAMPLES:
A matching covered graph, for instance the Heawood graph, by definition, is always free of loops:
sage: H = graphs.HeawoodGraph() sage: G = MatchingCoveredGraph(H) sage: G Matching covered heawood graph: graph on 14 vertices sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.loops() [] sage: G.loop_edges() []
>>> from sage.all import * >>> H = graphs.HeawoodGraph() >>> G = MatchingCoveredGraph(H) >>> G Matching covered heawood graph: graph on 14 vertices >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.loops() [] >>> G.loop_edges() []
A matching covered graph may support multiple edges, still no loops are allowed:
sage: C = graphs.CycleGraph(4) sage: G = MatchingCoveredGraph(C) sage: G.allow_multiple_edges(True) sage: G Matching covered cycle graph: multi-graph on 4 vertices sage: G.add_edge(0, 1, 'label') sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.edges(sort=False) [(0, 1, None), (0, 1, 'label'), (0, 3, None), (1, 2, None), (2, 3, None)] sage: G.loops() [] sage: G.loop_edges() []
>>> from sage.all import * >>> C = graphs.CycleGraph(Integer(4)) >>> G = MatchingCoveredGraph(C) >>> G.allow_multiple_edges(True) >>> G Matching covered cycle graph: multi-graph on 4 vertices >>> G.add_edge(Integer(0), Integer(1), 'label') >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.edges(sort=False) [(0, 1, None), (0, 1, 'label'), (0, 3, None), (1, 2, None), (2, 3, None)] >>> G.loops() [] >>> G.loop_edges() []
One may set the
label
to eitherTrue
orFalse
:sage: G.loop_edges(labels=False) [] sage: G.loops(labels=True) []
>>> from sage.all import * >>> G.loop_edges(labels=False) [] >>> G.loops(labels=True) []
- maximal_barrier(vertex)[source]¶
Return the (unique) maximal barrier containing the vertex.
For a matching covered graph \(G\), a subset \(B\) of the vertex set \(V\) is a barrier if \(|B| = o(G - B)\), where \(|B|\) denotes the cardinality of the set \(B\) and \(o(G - B)\) denotes the number of odd components in the graph \(G - B\). And a barrier \(B\) is a maximal barrier if \(C\) is not a barrier for each \(C\) such that \(B \subset C \subseteq V\).
In a matching covered graph, each vertex belongs to a unique maximal barrier, which is a consequence of the following theorem.
Theorem [LM2024]:
Let \(u\) and \(v\) be any two vertices in a matchable graph \(G\). Then the graph \(G - u - v\) is matchable if and only if there is no barrier of \(G\) which contains both \(u\) and \(v\).
And in order to find the vertices that do not lie in the maximal barrier containing the provided vertex in linear time we take inspiration of the \(M\) alternating tree seach method [LR2004].
INPUT:
vertex
– a vertex of the graph
OUTPUT:
A
ValueError
is returned ifvertex
is not a vertex of the graph, otherwise a set of vertices that constitute the (unique) maximal barrier containing the vertex is returned.
EXAMPLES:
The graph \(K_4 \odot K_{3, 3}\) is matching covered. Show the set of vertices in the (unique) maximal barrier containing the vertex \(2\):
sage: G = Graph([ ....: (0, 2), (0, 3), (0, 4), (1, 2), ....: (1, 3), (1, 4), (2, 5), (3, 6), ....: (4, 7), (5, 6), (5, 7), (6, 7) ....: ]) sage: H = MatchingCoveredGraph(G) sage: B = H.maximal_barrier(2) sage: B {2, 3, 4}
>>> from sage.all import * >>> G = Graph([ ... (Integer(0), Integer(2)), (Integer(0), Integer(3)), (Integer(0), Integer(4)), (Integer(1), Integer(2)), ... (Integer(1), Integer(3)), (Integer(1), Integer(4)), (Integer(2), Integer(5)), (Integer(3), Integer(6)), ... (Integer(4), Integer(7)), (Integer(5), Integer(6)), (Integer(5), Integer(7)), (Integer(6), Integer(7)) ... ]) >>> H = MatchingCoveredGraph(G) >>> B = H.maximal_barrier(Integer(2)) >>> B {2, 3, 4}
Let \(B\) be a maximal barrier of a matching covered graph \(G\) (which is, of course, a matchable graph). The graph, \(J := G - B\) has no even component:
sage: J = G.copy() sage: J.delete_vertices(B) sage: all(len(K)%2 != 0 for K in J.connected_components(sort=True)) True
>>> from sage.all import * >>> J = G.copy() >>> J.delete_vertices(B) >>> all(len(K)%Integer(2) != Integer(0) for K in J.connected_components(sort=True)) True
Let \(B\) be a maximal barrier in a matching covered graph \(G\) and let \(M\) be a perfect matching of \(G\). If \(K\) is an odd component of \(J := G - B\), then \(M \cap \partial_G(K)\) has precisely one edge and if \(v\) is the end of that edge in \(V(K)\), then \(M \cap E(K)\) is a perfect matching of \(K - v\):
sage: K = J.subgraph(vertices=(J.connected_components(sort=True))[0]) sage: # Let F := \partial_G(K) and T := M \cap F sage: F = [edge for edge in G.edge_iterator() ....: if (edge[0] in K and edge[1] not in K) ....: or (edge[0] not in K and edge[1] in K) ....: ] sage: M = H.get_matching() sage: T = [edge for edge in F if edge in M] sage: len(T) == 1 True sage: v = T[0][0] if T[0][0] in K else T[0][1] sage: # Let N := M \cap E(K) and L := K - v sage: N = Graph([edge for edge in K.edge_iterator() if edge in M]) sage: L = K.copy() sage: L.delete_vertex(v) sage: # Check if N is a perfect matching of L sage: L.order() == 2*N.size() True
>>> from sage.all import * >>> K = J.subgraph(vertices=(J.connected_components(sort=True))[Integer(0)]) >>> # Let F := \partial_G(K) and T := M \cap F >>> F = [edge for edge in G.edge_iterator() ... if (edge[Integer(0)] in K and edge[Integer(1)] not in K) ... or (edge[Integer(0)] not in K and edge[Integer(1)] in K) ... ] >>> M = H.get_matching() >>> T = [edge for edge in F if edge in M] >>> len(T) == Integer(1) True >>> v = T[Integer(0)][Integer(0)] if T[Integer(0)][Integer(0)] in K else T[Integer(0)][Integer(1)] >>> # Let N := M \cap E(K) and L := K - v >>> N = Graph([edge for edge in K.edge_iterator() if edge in M]) >>> L = K.copy() >>> L.delete_vertex(v) >>> # Check if N is a perfect matching of L >>> L.order() == Integer(2)*N.size() True
Let \(B\) be a maximal barrier of a matching covered graph \(G\) (which is, of course, a matchable graph). The graph induced by each component of \(G - B\) is factor critical:
sage: all((K.subgraph(vertices=connected_component)).is_factor_critical() ....: for connected_component in K.connected_components(sort=True) ....: ) True
>>> from sage.all import * >>> all((K.subgraph(vertices=connected_component)).is_factor_critical() ... for connected_component in K.connected_components(sort=True) ... ) True
For a bicritical graph (for instance, the Petersen graph), for each vertex the maximal barrier is a singleton set containing only that vertex:
sage: P = graphs.PetersenGraph() sage: G = MatchingCoveredGraph(P) sage: u = 0 sage: set([u]) == G.maximal_barrier(u) True
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> G = MatchingCoveredGraph(P) >>> u = Integer(0) >>> set([u]) == G.maximal_barrier(u) True
In a bipartite matching covered graph (for instance, the Hexahedral graph), for a vertex, the maximal barrier is the set of vertices of the color class that the particular vertex belongs to. In other words, there are precisely two maximal barriers in a bipartite matching covered graph, that is, the vertex sets of the individual color class:
sage: G = graphs.HexahedralGraph() sage: H = MatchingCoveredGraph(G) sage: A, _ = H.bipartite_sets() sage: # needs random sage: import random sage: a = random.choice(list(A)) sage: A == H.maximal_barrier(a) True
>>> from sage.all import * >>> G = graphs.HexahedralGraph() >>> H = MatchingCoveredGraph(G) >>> A, _ = H.bipartite_sets() >>> # needs random >>> import random >>> a = random.choice(list(A)) >>> A == H.maximal_barrier(a) True
Maximal barriers of matching covered graph constitute a partition of its vertex set:
sage: S = set() sage: for v in H: ....: B = tuple(sorted(list(H.maximal_barrier(v)))) ....: S.add(B) sage: S = list(S) sage: # Check that S is a partition of the vertex set of H sage: # Part 1: Check if S spans the vertex set of H sage: sorted([u for B in S for u in B]) == sorted(list(H)) True sage: # Part 2: Check if each maximal barrier in S is disjoint sage: is_disjoint = True sage: for i in range(len(S)): ....: for j in range(i+1, len(S)): ....: c = [v for v in S[i] if v in S[j]] ....: is_disjoint = (len(c) == 0) sage: is_disjoint True
>>> from sage.all import * >>> S = set() >>> for v in H: ... B = tuple(sorted(list(H.maximal_barrier(v)))) ... S.add(B) >>> S = list(S) >>> # Check that S is a partition of the vertex set of H >>> # Part 1: Check if S spans the vertex set of H >>> sorted([u for B in S for u in B]) == sorted(list(H)) True >>> # Part 2: Check if each maximal barrier in S is disjoint >>> is_disjoint = True >>> for i in range(len(S)): ... for j in range(i+Integer(1), len(S)): ... c = [v for v in S[i] if v in S[j]] ... is_disjoint = (len(c) == Integer(0)) >>> is_disjoint True
REFERENCES:
- number_of_loops()[source]¶
Return the number of edges that are loops.
Note
This method overwrites the
number_of_loops()
method in order to return 0 as matching covered graphs are free of looped edges.OUTPUT:
An integer, 0 is returned, since matching covered graphs do not contain zero loops.
EXAMPLES:
A matching covered graph, for instance the Truncated biwheel graph, by definition, is always free of loops:
sage: T = graphs.TruncatedBiwheelGraph(5) sage: G = MatchingCoveredGraph(T) sage: G Matching covered truncated biwheel graph: graph on 10 vertices sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.loop_vertices() [] sage: G.number_of_loops() 0
>>> from sage.all import * >>> T = graphs.TruncatedBiwheelGraph(Integer(5)) >>> G = MatchingCoveredGraph(T) >>> G Matching covered truncated biwheel graph: graph on 10 vertices >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.loop_vertices() [] >>> G.number_of_loops() 0
A matching covered graph may support multiple edges, still no loops are allowed:
sage: B = graphs.BiwheelGraph(4) sage: G = MatchingCoveredGraph(B) sage: G.allow_multiple_edges(True) sage: G Matching covered biwheel graph: multi-graph on 8 vertices sage: G.add_edge(0, 1, 'label') sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.edges(sort=False) [(0, 1, None), (0, 1, 'label'), (0, 5, None), (0, 7, None), (1, 2, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (4, 7, None), (5, 6, None)] sage: G.loop_vertices() [] sage: G.number_of_loops() 0
>>> from sage.all import * >>> B = graphs.BiwheelGraph(Integer(4)) >>> G = MatchingCoveredGraph(B) >>> G.allow_multiple_edges(True) >>> G Matching covered biwheel graph: multi-graph on 8 vertices >>> G.add_edge(Integer(0), Integer(1), 'label') >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.edges(sort=False) [(0, 1, None), (0, 1, 'label'), (0, 5, None), (0, 7, None), (1, 2, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 4, None), (3, 6, None), (4, 5, None), (4, 7, None), (5, 6, None)] >>> G.loop_vertices() [] >>> G.number_of_loops() 0
- remove_loops(vertices=None)[source]¶
Remove loops on vertices in
vertices
.Note
This method overwrites the
remove_loops()
method in order to return without any alteration as matching covered graphs are free of looped edges.INPUT:
vertices
– (default:None
) iterator container of vertex labels corresponding to which the looped edges are to be removed. Ifvertices
isNone
, remove all loops.
OUTPUT:
Nothing is returned, as a matching covered graph is already devoid of any loops.
EXAMPLES:
A matching covered graph, for instance the Wheel graph of order six, is always free of loops:
sage: W = graphs.WheelGraph(6) sage: G = MatchingCoveredGraph(W) sage: G Matching covered wheel graph: graph on 6 vertices sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.remove_loops() sage: G.edges(sort=True) [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 5, None), (2, 3, None), (3, 4, None), (4, 5, None)]
>>> from sage.all import * >>> W = graphs.WheelGraph(Integer(6)) >>> G = MatchingCoveredGraph(W) >>> G Matching covered wheel graph: graph on 6 vertices >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.remove_loops() >>> G.edges(sort=True) [(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 5, None), (2, 3, None), (3, 4, None), (4, 5, None)]
A matching covered graph may support multiple edges, still no loops are allowed:
sage: K = graphs.CompleteGraph(2) sage: G = MatchingCoveredGraph(K) sage: G.allow_multiple_edges(True) sage: G Matching covered complete graph: multi-graph on 2 vertices sage: G.add_edge(0, 1, 'label') sage: G.add_edge(0, 0) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs sage: G.edges(sort=False) [(0, 1, None), (0, 1, 'label')] sage: G.remove_loops(vertices=[0, 1]) sage: G.edges(sort=False) [(0, 1, None), (0, 1, 'label')] sage: G.remove_loops(vertices=[0..100])
>>> from sage.all import * >>> K = graphs.CompleteGraph(Integer(2)) >>> G = MatchingCoveredGraph(K) >>> G.allow_multiple_edges(True) >>> G Matching covered complete graph: multi-graph on 2 vertices >>> G.add_edge(Integer(0), Integer(1), 'label') >>> G.add_edge(Integer(0), Integer(0)) Traceback (most recent call last): ... ValueError: loops are not allowed in matching covered graphs >>> G.edges(sort=False) [(0, 1, None), (0, 1, 'label')] >>> G.remove_loops(vertices=[Integer(0), Integer(1)]) >>> G.edges(sort=False) [(0, 1, None), (0, 1, 'label')] >>> G.remove_loops(vertices=(ellipsis_range(Integer(0),Ellipsis,Integer(100))))
Note that the parameter
vertices
must be eitherNone
or an iterable:sage: G.remove_loops(vertices='') sage: G.edges(sort=False) [(0, 1, None), (0, 1, 'label')] sage: G.remove_loops(vertices=None) sage: G.edges(sort=False) [(0, 1, None), (0, 1, 'label')] sage: G.remove_loops(vertices=0) Traceback (most recent call last): ... TypeError: 'Integer' object is not iterable sage: G.remove_loops(vertices=False) Traceback (most recent call last): ... TypeError: 'bool' object is not iterable
>>> from sage.all import * >>> G.remove_loops(vertices='') >>> G.edges(sort=False) [(0, 1, None), (0, 1, 'label')] >>> G.remove_loops(vertices=None) >>> G.edges(sort=False) [(0, 1, None), (0, 1, 'label')] >>> G.remove_loops(vertices=Integer(0)) Traceback (most recent call last): ... TypeError: 'Integer' object is not iterable >>> G.remove_loops(vertices=False) Traceback (most recent call last): ... TypeError: 'bool' object is not iterable
- update_matching(matching)[source]¶
Update the perfect matching captured in
self._matching
.INPUT:
matching
– a perfect matching of the graph, that can be given using any valid input format ofGraph
.
OUTPUT:
If
matching
is a valid perfect matching of the graph, thenself._matching
gets updated to this provided matching, or otherwise an exception is returned without any alterations toself._matching
.
EXAMPLES:
Providing with a valid perfect matching of the graph:
sage: P = graphs.PetersenGraph() sage: G = MatchingCoveredGraph(P) sage: sorted(G.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] sage: M = [(0, 1), (2, 3), (4, 9), (5, 7), (6, 8)] sage: G.update_matching(M) sage: sorted(G.get_matching()) [(0, 1, None), (2, 3, None), (4, 9, None), (5, 7, None), (6, 8, None)]
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> G = MatchingCoveredGraph(P) >>> sorted(G.get_matching()) [(0, 5, None), (1, 6, None), (2, 7, None), (3, 8, None), (4, 9, None)] >>> M = [(Integer(0), Integer(1)), (Integer(2), Integer(3)), (Integer(4), Integer(9)), (Integer(5), Integer(7)), (Integer(6), Integer(8))] >>> G.update_matching(M) >>> sorted(G.get_matching()) [(0, 1, None), (2, 3, None), (4, 9, None), (5, 7, None), (6, 8, None)]