ASCII Art

This file contains:

  • AsciiArt a simple implementation of an ASCII art object,

  • ascii_art() a function to get the ASCII art representation of any object in Sage,

AUTHOR:

  • Jean-Baptiste Priez (2013-04): initial version

EXAMPLES:

sage: # needs sage.symbolic
sage: n = var('n')
sage: integrate(n^2/x, x)
n^2*log(x)
sage: ascii_art(integrate(n^2/x, x))
 2
n *log(x)
sage: ascii_art(integrate(n^2/(pi*x), x))
 2
n *log(x)
---------
    pi

sage: ascii_art(list(Partitions(6)))                                                # needs sage.combinat sage.libs.flint
[                                                       * ]
[                                                   **  * ]
[                                      ***      **  *   * ]
[                      ****       ***  *    **  **  *   * ]
[         *****  ****  *     ***  **   *    **  *   *   * ]
[ ******, *    , **  , *   , ***, *  , *  , **, * , * , * ]
>>> from sage.all import *
>>> # needs sage.symbolic
>>> n = var('n')
>>> integrate(n**Integer(2)/x, x)
n^2*log(x)
>>> ascii_art(integrate(n**Integer(2)/x, x))
 2
n *log(x)
>>> ascii_art(integrate(n**Integer(2)/(pi*x), x))
 2
n *log(x)
---------
    pi

>>> ascii_art(list(Partitions(Integer(6))))                                                # needs sage.combinat sage.libs.flint
[                                                       * ]
[                                                   **  * ]
[                                      ***      **  *   * ]
[                      ****       ***  *    **  **  *   * ]
[         *****  ****  *     ***  **   *    **  *   *   * ]
[ ******, *    , **  , *   , ***, *  , *  , **, * , * , * ]

This method ascii_art() could be automatically use by the display hook manager activated by the magic function: %display ascii_art:

sage: from sage.repl.interpreter import get_test_shell
sage: shell = get_test_shell()
sage: shell.run_cell('%display ascii_art')
sage: shell.run_cell("i = var('i')")                                                # needs sage.symbolic
sage: shell.run_cell('sum(factorial(i)*x^i, i, 0, 10)')                             # needs sage.symbolic
         10           9          8         7        6        5       4      3...
3628800*x   + 362880*x  + 40320*x  + 5040*x  + 720*x  + 120*x  + 24*x  + 6*x...

...2
...+ 2*x  + x + 1

sage: shell.run_cell('3/(7*x)')                                                     # needs sage.symbolic
 3
---
7*x
sage: shell.run_cell('list(Compositions(5))')                                       # needs sage.combinat
[ *
[ *  **   *        *                   *
[ *  *   **  ***   *   **    *         *   **    *          *
[ *  *   *   *    **  **   ***  ****   *   *    **   ***    *    **     *
[ *, * , * , *  , * , *  , *  , *   , **, ** , ** , **  , ***, *** , ****,

      ]
      ]
      ]
      ]
***** ]
sage: shell.run_cell('%display simple')
sage: shell.quit()
>>> from sage.all import *
>>> from sage.repl.interpreter import get_test_shell
>>> shell = get_test_shell()
>>> shell.run_cell('%display ascii_art')
>>> shell.run_cell("i = var('i')")                                                # needs sage.symbolic
>>> shell.run_cell('sum(factorial(i)*x^i, i, 0, 10)')                             # needs sage.symbolic
         10           9          8         7        6        5       4      3...
3628800*x   + 362880*x  + 40320*x  + 5040*x  + 720*x  + 120*x  + 24*x  + 6*x...
<BLANKLINE>
...2
...+ 2*x  + x + 1

>>> shell.run_cell('3/(7*x)')                                                     # needs sage.symbolic
 3
---
7*x
>>> shell.run_cell('list(Compositions(5))')                                       # needs sage.combinat
[ *
[ *  **   *        *                   *
[ *  *   **  ***   *   **    *         *   **    *          *
[ *  *   *   *    **  **   ***  ****   *   *    **   ***    *    **     *
[ *, * , * , *  , * , *  , *  , *   , **, ** , ** , **  , ***, *** , ****,
<BLANKLINE>
      ]
      ]
      ]
      ]
***** ]
>>> shell.run_cell('%display simple')
>>> shell.quit()
                            .      ,    ,              ...
                            .?  .~?$NNO.II7.        ..GOGG
                             ., ~7NNI7NDG$       ...~~~MGG
              ..:IG..       ...G7:DDGNNDO..   ...7:~~~~GNN
              .~~GGGGG...   .O .=$+OD7GI$ ...GG:~+~~~~MG?M.7?
              .~~~D~~GGGGDGOM$..~+IN=NDG.G::D~~~?~~~7?NDI:???G
              .~~~~G:~~G~D:~NONGMMOGD$ND~~::I77~~$?++MN7G GI?D.
               7+I~~DG~~~N:GNGGOD$7OIOOMII::~:I7?G+OGN7G $III?.
                .7==I~~~++IN?+++?$7ND$==$G:G??????N$OG$  ~III?7
                 .$$+++?GG=+G?GDM?GOG:NGMGN7??????D$D~GODIII???.
                   D++++NG+DD$+=GGONGI$DNGDN??????,IN=DOGODN???.
                 , +~+++N??D$I+I=GNMDGDGNIINN??D+:::O~$GGGDIG?7
                :DD.:::OG?G=I~~G7GNM7777NIGODDNNG:::I$GGGGG7??O.
               ~GDDM:::GGMG+?+~$NNN$7IG7NMNMMMN, =::I7GGGGGO???~
              :GDND7?::OOM.D+O~GGDI77777DMGNM$.  ~:,$IGGGGGO???DO.
             OGDDNN.D77OO. $?7==GG777$7GNGMGO.     NOIGGGGGO???G$.
           .OODNNN,DIGDM$GGGGG==GGGGIGNDMDMG,      IGIGGGDON???GG:
          .GODNDM.G$I$IOIOMG$G$?GGGIO,7OD7GG.     ,GDIGGG??????GGG.
         .DGDNI7I7MDI+OOODN$$O,$7DMIN,,IOO77O.   G?$DIGGG?ID???OGG
         GGDNNMMO7GD+OOOGIMOG7::NN====:?MMNGIDD,..IINIGGG?I??DIOGG?
       .7ODMMMN.G7IOGOOODIMG,,:::$=~==::7OGG~IGOMDGMNIGGG????.OG$G.
       ?ODDMNNNO,II$OGODMGDMM?:DMG==~MDINNM$.7$IONDGI?GGG????:$GGG.
    .$MDMNNNNN..:?7GDDDGG,GGM?~:GGGDNND.GIM7D+GI$ON.:?GGG????$$OGG.
  .7DNDDDNMDOGG.=IGGND=7II+N??::$GIIO,IIGMG?7I7G$ON?,IGGG????7GIGG.
  ~GGGDNMMOOGGG$MGMMGDGMDGM?,G:GNG,:IIIGDG7IGGGGG$+NMIGGO?????IGGG.
 .GGGDDMM7OGNGMODMNDDDOO.MII?GI$7IIIIING7GGDMM.IGDG.G7GGGG??$?7GGG
.IGDDDDOINNGMGMDMNDDGDO...$OI+??7OIIIDDGN+$==I=GD ?,NGGGGN7????GGG
 7GGNDM$GONDGDD$MMGNDN. G.:$$G$?$7II$GOO,O=+7O7O~N?OM?GGGGGD+??$GG
 OOGDOI7DGMG..=~DG$DD.  $,,$$$D??7ODOOOODG$777$G OGMM:GGGGGG??GGG.
.$GDDG?7DMOGDNNMGGDGG ..,=O7$GG$+O$$OG=+O:GI77G$. ...DIGGGGI?$GGG.
.OGGGGO7OGDGGNGGGDGG.  O:,77$O$$$D     $GN:7777GD   ..$GGGG??GGG$.
.GGGGDI GD.~NOGDGGG    MG,777G77D7      +$~D77777=   ..7GGG???GGO.
  GGD.   .~NODN...   ..D::77O$7G77      .OG:G???G7.    7$NOM??GG=.
    .     . .      .+~~DD~77$G7OD7      .?GGO?$OM$D     ?????DGG...
                   7I77DN$II7$M.G$G      . .:G?==$G     .?????D??~
                 . .:IIIGO7O$GN..O$         7I=~+?I.    =???7? GGIG
                  $,III7NGGNNNG, .O.         O====7I.  .DG??$?. GG?G
                  .$7III$77777$$~  .          +====D$GG ~$???:  .$GIG.
                 :.+IIII$77$G$$O,+            OI==+7I$7=.:???     .GG$.
                 ,,III$I7?I7$$OG7D            ?+,==+77G?$,???.      GG?
                 ?IIIII=+$I77777             .:++=+++O77:,??:         GG.
                 .IIIIG+III77777.             7,=,++?II7$,?G          .GO .
                  $OII7?OIIIIIO              .I:++??IIIII???.           I$ .
                  .DNGDMOIG777.                +~++?I$IIMN?,             .G,
                   .G.I?IIDGII~                .OG??$$MIMGI.               G,
                    N+?II7OGI7.                  DD?$GGDGID.                 :
                     =?IIOOI$.                    ?~~GGG$II                  .+.
                    ,7=IINGI                       ?=IGGGI?.
                    G,+IGOII                        ?+II7??+
                   .,:?IGOII                         ?+GIOII
                 .:N+=?IMGI7=.                       .~:$I?IO.
               .$:IGO?$IIIII7+.                       O::I7I?.
              .:::=IIGIIIIIII.                        .~,$IG?IO
             .+:$IIIIMIII7G$?.                         I::I7IIG7
             .$I$+7IIIMMMG7I7                          ?G,DGGNII.
             .$~:$IIGMNGND77I:                          +I$GOD=?=
            ?=?IIIIGIIIINI7777?                        .7~=~===?.
          ONGNDG??IG?III$N7I777                          D~====I
        .:$??7IIIIIII.....,....                          O::==~$D.
        .,........ ..                                  ..M:I.==$7G.
                                                        I?::IIIII7.
                                                       .~:G:IIIIIG.
                                                       .$:,O7III$$O
                                                         ::~DOGGNNO
                                                         .::,IOODI,
                                                           .7????$.
                                                             ... .
class sage.typeset.ascii_art.AsciiArt(lines=[], breakpoints=[], baseline=None)[source]

Bases: CharacterArt

An Ascii art object is an object with some specific representation for printing.

INPUT:

  • lines – the list of lines of the representation of the ascii art object

  • breakpoints – the list of points where the representation can be split

  • baseline – the reference line (from the bottom)

EXAMPLES:

sage: i = var('i')                                                              # needs sage.symbolic
sage: ascii_art(sum(pi^i/factorial(i)*x^i, i, 0, oo))                           # needs sage.symbolic
 pi*x
e
>>> from sage.all import *
>>> i = var('i')                                                              # needs sage.symbolic
>>> ascii_art(sum(pi**i/factorial(i)*x**i, i, Integer(0), oo))                           # needs sage.symbolic
 pi*x
e
sage.typeset.ascii_art.ascii_art(*obj, **kwds)[source]

Return an ASCII art representation.

INPUT:

  • *obj – any number of positional arguments, of arbitrary type. The objects whose ascii art representation we want.

  • sep – (optional) 'sep=...' keyword argument (or 'separator'). Anything that can be converted to ascii art (default: empty ascii art). The separator in-between a list of objects. Only used if more than one object given.

  • baseline – (default: 0) the baseline for the object

  • sep_baseline – (default: 0) the baseline for the separator

OUTPUT: AsciiArt instance

EXAMPLES:

sage: result = ascii_art(integral(exp(x+x^2)/(x+1), x))                         # needs sage.symbolic
...
sage: result                                                                    # needs sage.symbolic
    /
   |
   |   2
   |  x  + x
   | e
   | ------- dx
   |  x + 1
   |
  /
>>> from sage.all import *
>>> result = ascii_art(integral(exp(x+x**Integer(2))/(x+Integer(1)), x))                         # needs sage.symbolic
...
>>> result                                                                    # needs sage.symbolic
    /
   |
   |   2
   |  x  + x
   | e
   | ------- dx
   |  x + 1
   |
  /

We can specify a separator object:

sage: ident = lambda n: identity_matrix(ZZ, n)
sage: ascii_art(ident(1), ident(2), ident(3), sep=' : ')                        # needs sage.modules
              [1 0 0]
      [1 0]   [0 1 0]
[1] : [0 1] : [0 0 1]
>>> from sage.all import *
>>> ident = lambda n: identity_matrix(ZZ, n)
>>> ascii_art(ident(Integer(1)), ident(Integer(2)), ident(Integer(3)), sep=' : ')                        # needs sage.modules
              [1 0 0]
      [1 0]   [0 1 0]
[1] : [0 1] : [0 0 1]

We can specify the baseline:

sage: ascii_art(ident(2), baseline=-1) + ascii_art(ident(3))                    # needs sage.modules
[1 0][1 0 0]
[0 1][0 1 0]
     [0 0 1]
>>> from sage.all import *
>>> ascii_art(ident(Integer(2)), baseline=-Integer(1)) + ascii_art(ident(Integer(3)))                    # needs sage.modules
[1 0][1 0 0]
[0 1][0 1 0]
     [0 0 1]

We can determine the baseline of the separator:

sage: ascii_art(ident(1), ident(2), ident(3), sep=' -- ', sep_baseline=-1)      # needs sage.modules
                [1 0 0]
    -- [1 0] -- [0 1 0]
[1]    [0 1]    [0 0 1]
>>> from sage.all import *
>>> ascii_art(ident(Integer(1)), ident(Integer(2)), ident(Integer(3)), sep=' -- ', sep_baseline=-Integer(1))      # needs sage.modules
                [1 0 0]
    -- [1 0] -- [0 1 0]
[1]    [0 1]    [0 0 1]

If specified, the sep_baseline overrides the baseline of an ascii art separator:

sage: sep_line = ascii_art('\n'.join(' | ' for _ in range(6)), baseline=6)
sage: ascii_art(*Partitions(6), separator=sep_line, sep_baseline=0)             # needs sage.combinat sage.libs.flint
       |       |      |      |     |     |     |    |    |    | *
       |       |      |      |     |     |     |    |    | ** | *
       |       |      |      |     |     | *** |    | ** | *  | *
       |       |      | **** |     | *** | *   | ** | ** | *  | *
       | ***** | **** | *    | *** | **  | *   | ** | *  | *  | *
****** | *     | **   | *    | *** | *   | *   | ** | *  | *  | *
>>> from sage.all import *
>>> sep_line = ascii_art('\n'.join(' | ' for _ in range(Integer(6))), baseline=Integer(6))
>>> ascii_art(*Partitions(Integer(6)), separator=sep_line, sep_baseline=Integer(0))             # needs sage.combinat sage.libs.flint
       |       |      |      |     |     |     |    |    |    | *
       |       |      |      |     |     |     |    |    | ** | *
       |       |      |      |     |     | *** |    | ** | *  | *
       |       |      | **** |     | *** | *   | ** | ** | *  | *
       | ***** | **** | *    | *** | **  | *   | ** | *  | *  | *
****** | *     | **   | *    | *** | *   | *   | ** | *  | *  | *