\(p\)-adic Generic Nodes#
This file contains a bunch of intermediate classes for the \(p\)-adic parents, allowing a function to be implemented at the right level of generality.
AUTHORS:
David Roe
- class sage.rings.padics.generic_nodes.CappedAbsoluteGeneric(base, prec, names, element_class, category=None)[source]#
Bases:
LocalGeneric
- is_capped_absolute()[source]#
Return whether this \(p\)-adic ring bounds precision in a capped absolute fashion.
The absolute precision of an element is the power of \(p\) modulo which that element is defined. In a capped absolute ring, the absolute precision of elements are bounded by a constant depending on the ring.
EXAMPLES:
sage: R = ZpCA(5, 15) sage: R.is_capped_absolute() True sage: R(5^7) 5^7 + O(5^15) sage: S = Zp(5, 15) sage: S.is_capped_absolute() False sage: S(5^7) 5^7 + O(5^22)
>>> from sage.all import * >>> R = ZpCA(Integer(5), Integer(15)) >>> R.is_capped_absolute() True >>> R(Integer(5)**Integer(7)) 5^7 + O(5^15) >>> S = Zp(Integer(5), Integer(15)) >>> S.is_capped_absolute() False >>> S(Integer(5)**Integer(7)) 5^7 + O(5^22)
- class sage.rings.padics.generic_nodes.CappedRelativeFieldGeneric(base, prec, names, element_class, category=None)[source]#
Bases:
CappedRelativeGeneric
- class sage.rings.padics.generic_nodes.CappedRelativeGeneric(base, prec, names, element_class, category=None)[source]#
Bases:
LocalGeneric
- is_capped_relative()[source]#
Return whether this \(p\)-adic ring bounds precision in a capped relative fashion.
The relative precision of an element is the power of p modulo which the unit part of that element is defined. In a capped relative ring, the relative precision of elements are bounded by a constant depending on the ring.
EXAMPLES:
sage: R = ZpCA(5, 15) sage: R.is_capped_relative() False sage: R(5^7) 5^7 + O(5^15) sage: S = Zp(5, 15) sage: S.is_capped_relative() True sage: S(5^7) 5^7 + O(5^22)
>>> from sage.all import * >>> R = ZpCA(Integer(5), Integer(15)) >>> R.is_capped_relative() False >>> R(Integer(5)**Integer(7)) 5^7 + O(5^15) >>> S = Zp(Integer(5), Integer(15)) >>> S.is_capped_relative() True >>> S(Integer(5)**Integer(7)) 5^7 + O(5^22)
- class sage.rings.padics.generic_nodes.CappedRelativeRingGeneric(base, prec, names, element_class, category=None)[source]#
Bases:
CappedRelativeGeneric
- class sage.rings.padics.generic_nodes.FixedModGeneric(base, prec, names, element_class, category=None)[source]#
Bases:
LocalGeneric
- is_fixed_mod()[source]#
Return whether this \(p\)-adic ring bounds precision in a fixed modulus fashion.
The absolute precision of an element is the power of p modulo which that element is defined. In a fixed modulus ring, the absolute precision of every element is defined to be the precision cap of the parent. This means that some operations, such as division by \(p\), don’t return a well defined answer.
EXAMPLES:
sage: R = ZpFM(5,15) sage: R.is_fixed_mod() True sage: R(5^7,absprec=9) 5^7 sage: S = ZpCA(5, 15) sage: S.is_fixed_mod() False sage: S(5^7,absprec=9) 5^7 + O(5^9)
>>> from sage.all import * >>> R = ZpFM(Integer(5),Integer(15)) >>> R.is_fixed_mod() True >>> R(Integer(5)**Integer(7),absprec=Integer(9)) 5^7 >>> S = ZpCA(Integer(5), Integer(15)) >>> S.is_fixed_mod() False >>> S(Integer(5)**Integer(7),absprec=Integer(9)) 5^7 + O(5^9)
- class sage.rings.padics.generic_nodes.FloatingPointFieldGeneric(base, prec, names, element_class, category=None)[source]#
Bases:
FloatingPointGeneric
- class sage.rings.padics.generic_nodes.FloatingPointGeneric(base, prec, names, element_class, category=None)[source]#
Bases:
LocalGeneric
- is_floating_point()[source]#
Return whether this \(p\)-adic ring uses a floating point precision model.
Elements in the floating point model are stored by giving a valuation and a unit part. Arithmetic is done where the unit part is truncated modulo a fixed power of the uniformizer, stored in the precision cap of the parent.
EXAMPLES:
sage: R = ZpFP(5,15) sage: R.is_floating_point() True sage: R(5^7,absprec=9) 5^7 sage: S = ZpCR(5,15) sage: S.is_floating_point() False sage: S(5^7,absprec=9) 5^7 + O(5^9)
>>> from sage.all import * >>> R = ZpFP(Integer(5),Integer(15)) >>> R.is_floating_point() True >>> R(Integer(5)**Integer(7),absprec=Integer(9)) 5^7 >>> S = ZpCR(Integer(5),Integer(15)) >>> S.is_floating_point() False >>> S(Integer(5)**Integer(7),absprec=Integer(9)) 5^7 + O(5^9)
- class sage.rings.padics.generic_nodes.FloatingPointRingGeneric(base, prec, names, element_class, category=None)[source]#
Bases:
FloatingPointGeneric
- class sage.rings.padics.generic_nodes.pAdicCappedAbsoluteRingGeneric(base, p, prec, print_mode, names, element_class, category=None)[source]#
- class sage.rings.padics.generic_nodes.pAdicCappedRelativeFieldGeneric(base, p, prec, print_mode, names, element_class, category=None)[source]#
- class sage.rings.padics.generic_nodes.pAdicCappedRelativeRingGeneric(base, p, prec, print_mode, names, element_class, category=None)[source]#
- class sage.rings.padics.generic_nodes.pAdicFieldBaseGeneric(p, prec, print_mode, names, element_class)[source]#
Bases:
pAdicBaseGeneric
,pAdicFieldGeneric
- composite(subfield1, subfield2)[source]#
Return the composite of two subfields of
self
, i.e., the largest subfield containing bothINPUT:
self
– a \(p\)-adic fieldsubfield1
– a subfieldsubfield2
– a subfield
OUTPUT:
the composite of
subfield1
andsubfield2
EXAMPLES:
sage: K = Qp(17); K.composite(K, K) is K True
>>> from sage.all import * >>> K = Qp(Integer(17)); K.composite(K, K) is K True
- construction(forbid_frac_field=False)[source]#
Return the functorial construction of
self
, namely, completion of the rational numbers with respect a given prime.Also preserves other information that makes this field unique (e.g., precision, rounding, print mode).
INPUT:
forbid_frac_field
– require a completion functor rather than a fraction field functor. This is used in thesage.rings.padics.local_generic.LocalGeneric.change()
method.
EXAMPLES:
sage: K = Qp(17, 8, print_mode='val-unit', print_sep='&') sage: c, L = K.construction(); L 17-adic Ring with capped relative precision 8 sage: c FractionField sage: c(L) 17-adic Field with capped relative precision 8 sage: K == c(L) True
>>> from sage.all import * >>> K = Qp(Integer(17), Integer(8), print_mode='val-unit', print_sep='&') >>> c, L = K.construction(); L 17-adic Ring with capped relative precision 8 >>> c FractionField >>> c(L) 17-adic Field with capped relative precision 8 >>> K == c(L) True
We can get a completion functor by forbidding the fraction field:
sage: c, L = K.construction(forbid_frac_field=True); L Rational Field sage: c Completion[17, prec=8] sage: c(L) 17-adic Field with capped relative precision 8 sage: K == c(L) True
>>> from sage.all import * >>> c, L = K.construction(forbid_frac_field=True); L Rational Field >>> c Completion[17, prec=8] >>> c(L) 17-adic Field with capped relative precision 8 >>> K == c(L) True
- subfield(list)[source]#
Return the subfield generated by the elements in
list
INPUT:
self
– a \(p\)-adic fieldlist
– a list of elements ofself
OUTPUT:
the subfield of
self
generated by the elements oflist
EXAMPLES:
sage: K = Qp(17); K.subfield([K(17), K(1827)]) is K True
>>> from sage.all import * >>> K = Qp(Integer(17)); K.subfield([K(Integer(17)), K(Integer(1827))]) is K True
- subfields_of_degree(n)[source]#
Return the number of subfields of
self
of degree \(n\)INPUT:
self
– a \(p\)-adic fieldn
– an integer
OUTPUT:
integer – the number of subfields of degree \(n\) over
self.base_ring()
EXAMPLES:
sage: K = Qp(17) sage: K.subfields_of_degree(1) 1
>>> from sage.all import * >>> K = Qp(Integer(17)) >>> K.subfields_of_degree(Integer(1)) 1
- class sage.rings.padics.generic_nodes.pAdicFieldGeneric(base, p, prec, print_mode, names, element_class, category=None)[source]#
Bases:
pAdicGeneric
,pAdicField
- class sage.rings.padics.generic_nodes.pAdicFixedModRingGeneric(base, p, prec, print_mode, names, element_class, category=None)[source]#
Bases:
pAdicRingGeneric
,FixedModGeneric
- class sage.rings.padics.generic_nodes.pAdicFloatingPointFieldGeneric(base, p, prec, print_mode, names, element_class, category=None)[source]#
- class sage.rings.padics.generic_nodes.pAdicFloatingPointRingGeneric(base, p, prec, print_mode, names, element_class, category=None)[source]#
- class sage.rings.padics.generic_nodes.pAdicLatticeGeneric(p, prec, print_mode, names, label=None)[source]#
Bases:
pAdicGeneric
An implementation of the \(p\)-adic rationals with lattice precision.
INPUT:
p
– the underlying prime numberprec
– the precisionsubtype
– either"cap"
or"float"
, specifying the precision model used for tracking precisionlabel
– a string orNone
(default:None
)
- convert_multiple(*elts)[source]#
Convert a list of elements to this parent.
NOTE:
This function tries to be sharp on precision as much as possible. In particular, if the precision of the input elements are handled by a lattice, diffused digits of precision are preserved during the conversion.
EXAMPLES:
sage: R = ZpLC(2) sage: x = R(1, 10); y = R(1, 5) sage: x,y = x+y, x-y
>>> from sage.all import * >>> R = ZpLC(Integer(2)) >>> x = R(Integer(1), Integer(10)); y = R(Integer(1), Integer(5)) >>> x,y = x+y, x-y
Remark that the pair \((x,y)\) has diffused digits of precision:
sage: x 2 + O(2^5) sage: y O(2^5) sage: x + y 2 + O(2^11) sage: R.precision().diffused_digits([x,y]) # needs sage.geometry.polyhedron 6
>>> from sage.all import * >>> x 2 + O(2^5) >>> y O(2^5) >>> x + y 2 + O(2^11) >>> R.precision().diffused_digits([x,y]) # needs sage.geometry.polyhedron 6
As a consequence, if we convert
x
andy
separately, we lose some precision:sage: R2 = ZpLC(2, label='copy') sage: x2 = R2(x); y2 = R2(y) sage: x2 2 + O(2^5) sage: y2 O(2^5) sage: x2 + y2 2 + O(2^5) sage: R2.precision().diffused_digits([x2,y2]) # needs sage.geometry.polyhedron 0
>>> from sage.all import * >>> R2 = ZpLC(Integer(2), label='copy') >>> x2 = R2(x); y2 = R2(y) >>> x2 2 + O(2^5) >>> y2 O(2^5) >>> x2 + y2 2 + O(2^5) >>> R2.precision().diffused_digits([x2,y2]) # needs sage.geometry.polyhedron 0
On the other hand, this issue disappears when we use multiple conversion:
sage: x2,y2 = R2.convert_multiple(x,y) # needs sage.geometry.polyhedron sage: x2 + y2 # needs sage.rings.padics 2 + O(2^11) sage: R2.precision().diffused_digits([x2,y2]) # needs sage.geometry.polyhedron 6
>>> from sage.all import * >>> x2,y2 = R2.convert_multiple(x,y) # needs sage.geometry.polyhedron >>> x2 + y2 # needs sage.rings.padics 2 + O(2^11) >>> R2.precision().diffused_digits([x2,y2]) # needs sage.geometry.polyhedron 6
- is_lattice_prec()[source]#
Return whether this \(p\)-adic ring bounds precision using a lattice model.
In lattice precision, relationships between elements are stored in a precision object of the parent, which allows for optimal precision tracking at the cost of increased memory usage and runtime.
EXAMPLES:
sage: R = ZpCR(5, 15) sage: R.is_lattice_prec() False sage: x = R(25, 8) sage: x - x O(5^8) sage: S = ZpLC(5, 15) sage: S.is_lattice_prec() True sage: x = S(25, 8) sage: x - x O(5^30)
>>> from sage.all import * >>> R = ZpCR(Integer(5), Integer(15)) >>> R.is_lattice_prec() False >>> x = R(Integer(25), Integer(8)) >>> x - x O(5^8) >>> S = ZpLC(Integer(5), Integer(15)) >>> S.is_lattice_prec() True >>> x = S(Integer(25), Integer(8)) >>> x - x O(5^30)
- label()[source]#
Return the label of this parent.
NOTE:
Labels can be used to distinguish between parents with the same defining data.
They are useful in the lattice precision framework in order to limit the size of the lattice modeling the precision (which is roughly the number of elements having this parent).
Elements of a parent with some label do not coerce to a parent with a different label. However conversions are allowed.
EXAMPLES:
sage: R = ZpLC(5) sage: R.label() # no label by default sage: R = ZpLC(5, label='mylabel') sage: R.label() 'mylabel'
>>> from sage.all import * >>> R = ZpLC(Integer(5)) >>> R.label() # no label by default >>> R = ZpLC(Integer(5), label='mylabel') >>> R.label() 'mylabel'
Labels are typically useful to isolate computations. For example, assume that we first want to do some calculations with matrices:
sage: R = ZpLC(5, label='matrices') sage: M = random_matrix(R, 4, 4) # needs sage.geometry.polyhedron sage: d = M.determinant() # needs sage.geometry.polyhedron
>>> from sage.all import * >>> R = ZpLC(Integer(5), label='matrices') >>> M = random_matrix(R, Integer(4), Integer(4)) # needs sage.geometry.polyhedron >>> d = M.determinant() # needs sage.geometry.polyhedron
Now, if we want to do another unrelated computation, we can use a different label:
sage: R = ZpLC(5, label='polynomials') sage: S.<x> = PolynomialRing(R) sage: P = (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
>>> from sage.all import * >>> R = ZpLC(Integer(5), label='polynomials') >>> S = PolynomialRing(R, names=('x',)); (x,) = S._first_ngens(1) >>> P = (x-Integer(1))*(x-Integer(2))*(x-Integer(3))*(x-Integer(4))*(x-Integer(5))
Without labels, the software would have modeled the precision on the matrices and on the polynomials using the same lattice (manipulating a lattice of higher dimension can have a significant impact on performance).
- precision()[source]#
Return the lattice precision object attached to this parent.
EXAMPLES:
sage: R = ZpLC(5, label='precision') sage: R.precision() Precision lattice on 0 objects (label: precision) sage: x = R(1, 10); y = R(1, 5) sage: R.precision() Precision lattice on 2 objects (label: precision)
>>> from sage.all import * >>> R = ZpLC(Integer(5), label='precision') >>> R.precision() Precision lattice on 0 objects (label: precision) >>> x = R(Integer(1), Integer(10)); y = R(Integer(1), Integer(5)) >>> R.precision() Precision lattice on 2 objects (label: precision)
See also
sage.rings.padics.lattice_precision.PrecisionLattice
- precision_cap()[source]#
Return the relative precision cap for this ring if it is finite. Otherwise return the absolute precision cap.
EXAMPLES:
sage: R = ZpLC(3) sage: R.precision_cap() 20 sage: R.precision_cap_relative() 20 sage: R = ZpLC(3, prec=(infinity,20)) sage: R.precision_cap() 20 sage: R.precision_cap_relative() +Infinity sage: R.precision_cap_absolute() 20
>>> from sage.all import * >>> R = ZpLC(Integer(3)) >>> R.precision_cap() 20 >>> R.precision_cap_relative() 20 >>> R = ZpLC(Integer(3), prec=(infinity,Integer(20))) >>> R.precision_cap() 20 >>> R.precision_cap_relative() +Infinity >>> R.precision_cap_absolute() 20
- precision_cap_absolute()[source]#
Return the absolute precision cap for this ring.
EXAMPLES:
sage: R = ZpLC(3) sage: R.precision_cap_absolute() 40 sage: R = ZpLC(3, prec=(infinity,20)) sage: R.precision_cap_absolute() 20
>>> from sage.all import * >>> R = ZpLC(Integer(3)) >>> R.precision_cap_absolute() 40 >>> R = ZpLC(Integer(3), prec=(infinity,Integer(20))) >>> R.precision_cap_absolute() 20
See also
- precision_cap_relative()[source]#
Return the relative precision cap for this ring.
EXAMPLES:
sage: R = ZpLC(3) sage: R.precision_cap_relative() 20 sage: R = ZpLC(3, prec=(infinity,20)) sage: R.precision_cap_relative() +Infinity
>>> from sage.all import * >>> R = ZpLC(Integer(3)) >>> R.precision_cap_relative() 20 >>> R = ZpLC(Integer(3), prec=(infinity,Integer(20))) >>> R.precision_cap_relative() +Infinity
See also
- class sage.rings.padics.generic_nodes.pAdicRelaxedGeneric(base, p, prec, print_mode, names, element_class, category=None)[source]#
Bases:
pAdicGeneric
Generic class for relaxed \(p\)-adics.
INPUT:
p
– the underlying prime numberprec
– the default precision
- an_element(unbounded=False)[source]#
Return an element in this ring.
EXAMPLES:
sage: R = ZpER(7, prec=5) # needs sage.libs.flint sage: R.an_element() # needs sage.libs.flint 7 + O(7^5) sage: R.an_element(unbounded=True) # needs sage.libs.flint 7 + ...
>>> from sage.all import * >>> R = ZpER(Integer(7), prec=Integer(5)) # needs sage.libs.flint >>> R.an_element() # needs sage.libs.flint 7 + O(7^5) >>> R.an_element(unbounded=True) # needs sage.libs.flint 7 + ...
- default_prec()[source]#
Return the default precision of this relaxed \(p\)-adic ring.
The default precision is mostly used for printing: it is the number of digits which are printed for unbounded elements (that is elements having infinite absolute precision).
EXAMPLES:
sage: # needs sage.libs.flint sage: R = ZpER(5, print_mode="digits") sage: R.default_prec() 20 sage: R(1/17) ...34024323104201213403 sage: S = ZpER(5, prec=10, print_mode="digits") sage: S.default_prec() 10 sage: S(1/17) ...4201213403
>>> from sage.all import * >>> # needs sage.libs.flint >>> R = ZpER(Integer(5), print_mode="digits") >>> R.default_prec() 20 >>> R(Integer(1)/Integer(17)) ...34024323104201213403 >>> S = ZpER(Integer(5), prec=Integer(10), print_mode="digits") >>> S.default_prec() 10 >>> S(Integer(1)/Integer(17)) ...4201213403
- halting_prec()[source]#
Return the default halting precision of this relaxed \(p\)-adic ring.
The halting precision is the precision at which elements of this parent are compared (unless more digits have been previously computed). By default, it is twice the default precision.
EXAMPLES:
sage: R = ZpER(5, print_mode="digits") # needs sage.libs.flint sage: R.halting_prec() # needs sage.libs.flint 40
>>> from sage.all import * >>> R = ZpER(Integer(5), print_mode="digits") # needs sage.libs.flint >>> R.halting_prec() # needs sage.libs.flint 40
- is_relaxed()[source]#
Return whether this \(p\)-adic ring is relaxed.
EXAMPLES:
sage: R = Zp(5) sage: R.is_relaxed() False sage: S = ZpER(5) # needs sage.libs.flint sage: S.is_relaxed() # needs sage.libs.flint True
>>> from sage.all import * >>> R = Zp(Integer(5)) >>> R.is_relaxed() False >>> S = ZpER(Integer(5)) # needs sage.libs.flint >>> S.is_relaxed() # needs sage.libs.flint True
- is_secure()[source]#
Return
False
if this \(p\)-adic relaxed ring is not secure (i.e., if indistinguishable elements at the working precision are considered as equal);True
otherwise (in which case, an error is raised when equality cannot be decided).EXAMPLES:
sage: # needs sage.libs.flint sage: R = ZpER(5) sage: R.is_secure() False sage: x = R(20/21) sage: y = x + 5^50 sage: x == y True sage: # needs sage.libs.flint sage: S = ZpER(5, secure=True) sage: S.is_secure() True sage: x = S(20/21) sage: y = x + 5^50 sage: x == y Traceback (most recent call last): ... PrecisionError: unable to decide equality; try to bound precision
>>> from sage.all import * >>> # needs sage.libs.flint >>> R = ZpER(Integer(5)) >>> R.is_secure() False >>> x = R(Integer(20)/Integer(21)) >>> y = x + Integer(5)**Integer(50) >>> x == y True >>> # needs sage.libs.flint >>> S = ZpER(Integer(5), secure=True) >>> S.is_secure() True >>> x = S(Integer(20)/Integer(21)) >>> y = x + Integer(5)**Integer(50) >>> x == y Traceback (most recent call last): ... PrecisionError: unable to decide equality; try to bound precision
- precision_cap()[source]#
Return the precision cap of this \(p\)-adic ring, which is infinite in the case of relaxed rings.
EXAMPLES:
sage: R = ZpER(5) # needs sage.libs.flint sage: R.precision_cap() # needs sage.libs.flint +Infinity
>>> from sage.all import * >>> R = ZpER(Integer(5)) # needs sage.libs.flint >>> R.precision_cap() # needs sage.libs.flint +Infinity
- random_element(integral=False, prec=None)[source]#
Return a random element in this ring.
INPUT:
integral
– a boolean (default:False
); ifTrue
, return a random element in the ring of integers of this ringprec
– an integer orNone
(default:None
); if given, bound the precision of the output toprec
EXAMPLES:
sage: R = ZpER(5, prec=10) # needs sage.libs.flint
>>> from sage.all import * >>> R = ZpER(Integer(5), prec=Integer(10)) # needs sage.libs.flint
By default, this method returns a unbounded element:
sage: a = R.random_element() # needs sage.libs.flint sage: a # random # needs sage.libs.flint 4 + 3*5 + 3*5^2 + 5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 5^7 + 5^9 + ... sage: a.precision_absolute() # needs sage.libs.flint +Infinity
>>> from sage.all import * >>> a = R.random_element() # needs sage.libs.flint >>> a # random # needs sage.libs.flint 4 + 3*5 + 3*5^2 + 5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 5^7 + 5^9 + ... >>> a.precision_absolute() # needs sage.libs.flint +Infinity
The precision can be bounded by passing in a precision:
sage: b = R.random_element(prec=15) # needs sage.libs.flint sage: b # random # needs sage.libs.flint 2 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + 3*5^8 + 3*5^9 + 4*5^10 + 5^11 + 4*5^12 + 5^13 + 2*5^14 + O(5^15) sage: b.precision_absolute() # needs sage.libs.flint 15
>>> from sage.all import * >>> b = R.random_element(prec=Integer(15)) # needs sage.libs.flint >>> b # random # needs sage.libs.flint 2 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + 3*5^8 + 3*5^9 + 4*5^10 + 5^11 + 4*5^12 + 5^13 + 2*5^14 + O(5^15) >>> b.precision_absolute() # needs sage.libs.flint 15
- some_elements(unbounded=False)[source]#
Return a list of elements in this ring.
This is typically used for running generic tests (see
TestSuite
).EXAMPLES:
sage: R = ZpER(7, prec=5) # needs sage.libs.flint sage: R.some_elements() # needs sage.libs.flint [O(7^5), 1 + O(7^5), 7 + O(7^5), 7 + O(7^5), 1 + 5*7 + 3*7^2 + 6*7^3 + O(7^5), 7 + 6*7^2 + 6*7^3 + 6*7^4 + O(7^5)] sage: R.some_elements(unbounded=True) # needs sage.libs.flint [0, 1 + ..., 7 + ..., 7 + ..., 1 + 5*7 + 3*7^2 + 6*7^3 + ..., 7 + 6*7^2 + 6*7^3 + 6*7^4 + ...]
>>> from sage.all import * >>> R = ZpER(Integer(7), prec=Integer(5)) # needs sage.libs.flint >>> R.some_elements() # needs sage.libs.flint [O(7^5), 1 + O(7^5), 7 + O(7^5), 7 + O(7^5), 1 + 5*7 + 3*7^2 + 6*7^3 + O(7^5), 7 + 6*7^2 + 6*7^3 + 6*7^4 + O(7^5)] >>> R.some_elements(unbounded=True) # needs sage.libs.flint [0, 1 + ..., 7 + ..., 7 + ..., 1 + 5*7 + 3*7^2 + 6*7^3 + ..., 7 + 6*7^2 + 6*7^3 + 6*7^4 + ...]
- teichmuller(x)[source]#
Return the Teichmuller representative of \(x\).
EXAMPLES:
sage: R = ZpER(5, print_mode="digits") # needs sage.libs.flint sage: R.teichmuller(2) # needs sage.libs.flint ...40423140223032431212
>>> from sage.all import * >>> R = ZpER(Integer(5), print_mode="digits") # needs sage.libs.flint >>> R.teichmuller(Integer(2)) # needs sage.libs.flint ...40423140223032431212
- teichmuller_system()[source]#
Return a set of teichmuller representatives for the invertible elements of \(\ZZ / p\ZZ\).
EXAMPLES:
sage: R = ZpER(7, print_mode="digits") # needs sage.libs.flint sage: R.teichmuller_system() # needs sage.libs.flint [...00000000000000000001, ...16412125443426203642, ...16412125443426203643, ...50254541223240463024, ...50254541223240463025, ...66666666666666666666]
>>> from sage.all import * >>> R = ZpER(Integer(7), print_mode="digits") # needs sage.libs.flint >>> R.teichmuller_system() # needs sage.libs.flint [...00000000000000000001, ...16412125443426203642, ...16412125443426203643, ...50254541223240463024, ...50254541223240463025, ...66666666666666666666]
- unknown(start_val=0, digits=None)[source]#
Return a self-referent number in this ring.
INPUT:
start_val
– an integer (default: 0); a lower bound on the valuation of the returned elementdigits
– an element, a list orNone
(default:None
); the first digit or the list of the digits of the returned element
NOTE:
Self-referent numbers are numbers whose digits are defined in terms of the previous ones. This method is used to declare a self-referent number (and optionally, to set its first digits). The definition of the number itself will be given afterwords using to method
sage.rings.padics.relaxed_template.RelaxedElement_unknown.set()
of the element.EXAMPLES:
sage: R = ZpER(5, prec=10) # needs sage.libs.flint
We declare a self-referent number:
sage: a = R.unknown() # needs sage.libs.flint
>>> from sage.all import * >>> a = R.unknown() # needs sage.libs.flint
So far, we do not know anything on \(a\) (except that it has nonnegative valuation):
sage: a # needs sage.libs.flint O(5^0)
>>> from sage.all import * >>> a # needs sage.libs.flint O(5^0)
We can now use the method
sage.rings.padics.relaxed_template.RelaxedElement_unknown.set()
to define \(a\). Below, for example, we say that the digits of \(a\) have to agree with the digits of \(1 + 5 a\). Note that the factor \(5\) shifts the digits; the \(n\)-th digit of \(a\) is then defined by the previous ones:sage: a.set(1 + 5*a) # needs sage.libs.flint True
>>> from sage.all import * >>> a.set(Integer(1) + Integer(5)*a) # needs sage.libs.flint True
After this, \(a\) contains the solution of the equation \(a = 1 + 5 a\), that is \(a = -1/4\):
sage: a # needs sage.libs.flint 1 + 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + 5^7 + 5^8 + 5^9 + ...
>>> from sage.all import * >>> a # needs sage.libs.flint 1 + 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + 5^7 + 5^8 + 5^9 + ...
Here is another example with an equation of degree \(2\):
sage: # needs sage.libs.flint sage: b = R.unknown() sage: b.set(1 - 5*b^2) True sage: b 1 + 4*5 + 5^2 + 3*5^4 + 4*5^6 + 4*5^8 + 2*5^9 + ... sage: (sqrt(R(21)) - 1) / 10 1 + 4*5 + 5^2 + 3*5^4 + 4*5^6 + 4*5^8 + 2*5^9 + ...
>>> from sage.all import * >>> # needs sage.libs.flint >>> b = R.unknown() >>> b.set(Integer(1) - Integer(5)*b**Integer(2)) True >>> b 1 + 4*5 + 5^2 + 3*5^4 + 4*5^6 + 4*5^8 + 2*5^9 + ... >>> (sqrt(R(Integer(21))) - Integer(1)) / Integer(10) 1 + 4*5 + 5^2 + 3*5^4 + 4*5^6 + 4*5^8 + 2*5^9 + ...
Cross self-referent definitions are also allowed:
sage: # needs sage.libs.flint sage: u = R.unknown() sage: v = R.unknown() sage: w = R.unknown() sage: u.set(1 + 2*v + 3*w^2 + 5*u*v*w) True sage: v.set(2 + 4*w + sqrt(1 + 5*u + 10*v + 15*w)) True sage: w.set(3 + 25*(u*v + v*w + u*w)) True sage: u 3 + 3*5 + 4*5^2 + 5^3 + 3*5^4 + 5^5 + 5^6 + 3*5^7 + 5^8 + 3*5^9 + ... sage: v 4*5 + 2*5^2 + 4*5^3 + 5^4 + 5^5 + 3*5^6 + 5^8 + 5^9 + ... sage: w 3 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 2*5^6 + 5^8 + 5^9 + ...
>>> from sage.all import * >>> # needs sage.libs.flint >>> u = R.unknown() >>> v = R.unknown() >>> w = R.unknown() >>> u.set(Integer(1) + Integer(2)*v + Integer(3)*w**Integer(2) + Integer(5)*u*v*w) True >>> v.set(Integer(2) + Integer(4)*w + sqrt(Integer(1) + Integer(5)*u + Integer(10)*v + Integer(15)*w)) True >>> w.set(Integer(3) + Integer(25)*(u*v + v*w + u*w)) True >>> u 3 + 3*5 + 4*5^2 + 5^3 + 3*5^4 + 5^5 + 5^6 + 3*5^7 + 5^8 + 3*5^9 + ... >>> v 4*5 + 2*5^2 + 4*5^3 + 5^4 + 5^5 + 3*5^6 + 5^8 + 5^9 + ... >>> w 3 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 2*5^6 + 5^8 + 5^9 + ...
- class sage.rings.padics.generic_nodes.pAdicRingBaseGeneric(p, prec, print_mode, names, element_class)[source]#
Bases:
pAdicBaseGeneric
,pAdicRingGeneric
- construction(forbid_frac_field=False)[source]#
Return the functorial construction of
self
, namely, completion of the rational numbers with respect to a given prime.Also preserves other information that makes this field unique (e.g., precision, rounding, print mode).
INPUT:
forbid_frac_field
– ignored, for compatibility with other p-adic types.
EXAMPLES:
sage: K = Zp(17, 8, print_mode='val-unit', print_sep='&') sage: c, L = K.construction(); L Integer Ring sage: c(L) 17-adic Ring with capped relative precision 8 sage: K == c(L) True
>>> from sage.all import * >>> K = Zp(Integer(17), Integer(8), print_mode='val-unit', print_sep='&') >>> c, L = K.construction(); L Integer Ring >>> c(L) 17-adic Ring with capped relative precision 8 >>> K == c(L) True
- random_element(algorithm='default')[source]#
Return a random element of
self
, optionally using thealgorithm
argument to decide how it generates the element. Algorithms currently implemented:'default'
: Choose \(a_i\), \(i \geq 0\), randomly between \(0\) and \(p-1\) until a nonzero choice is made. Then continue choosing \(a_i\) randomly between \(0\) and \(p-1\) until we reach precision_cap, and return \(\sum a_i p^i\).
EXAMPLES:
sage: Zp(5,6).random_element().parent() is Zp(5,6) True sage: ZpCA(5,6).random_element().parent() is ZpCA(5,6) True sage: ZpFM(5,6).random_element().parent() is ZpFM(5,6) True
>>> from sage.all import * >>> Zp(Integer(5),Integer(6)).random_element().parent() is Zp(Integer(5),Integer(6)) True >>> ZpCA(Integer(5),Integer(6)).random_element().parent() is ZpCA(Integer(5),Integer(6)) True >>> ZpFM(Integer(5),Integer(6)).random_element().parent() is ZpFM(Integer(5),Integer(6)) True
- class sage.rings.padics.generic_nodes.pAdicRingGeneric(base, p, prec, print_mode, names, element_class, category=None)[source]#
Bases:
pAdicGeneric
,pAdicRing