\(p\)-adic Printing#
This file contains code for printing p-adic elements.
It has been moved here to prevent code duplication and make finding the relevant code easier.
AUTHORS:
David Roe
- sage.rings.padics.padic_printing.pAdicPrinter(ring, options={})[source]#
Create a
pAdicPrinter
.INPUT:
ring – a p-adic ring or field.
options – a dictionary, with keys in
'mode'
,'pos'
,'ram_name'
,'unram_name'
,'var_name'
,'max_ram_terms'
,'max_unram_terms'
,'max_terse_terms'
,'sep'
,'alphabet'
; seepAdicPrinter_class
for the meanings of these keywords.
EXAMPLES:
sage: from sage.rings.padics.padic_printing import pAdicPrinter sage: R = Zp(5) sage: pAdicPrinter(R, {'sep': '&'}) series printer for 5-adic Ring with capped relative precision 20
>>> from sage.all import * >>> from sage.rings.padics.padic_printing import pAdicPrinter >>> R = Zp(Integer(5)) >>> pAdicPrinter(R, {'sep': '&'}) series printer for 5-adic Ring with capped relative precision 20
- class sage.rings.padics.padic_printing.pAdicPrinterDefaults(mode='series', pos=True, max_ram_terms=-1, max_unram_terms=-1, max_terse_terms=-1, sep='|', alphabet=None)[source]#
Bases:
SageObject
This class stores global defaults for p-adic printing.
- allow_negatives(neg=None)[source]#
Controls whether or not to display a balanced representation.
neg=None
returns the current value.EXAMPLES:
sage: padic_printing.allow_negatives(True) sage: padic_printing.allow_negatives() True sage: Qp(29)(-1) -1 + O(29^20) sage: Qp(29)(-1000) -14 - 5*29 - 29^2 + O(29^20) sage: padic_printing.allow_negatives(False)
>>> from sage.all import * >>> padic_printing.allow_negatives(True) >>> padic_printing.allow_negatives() True >>> Qp(Integer(29))(-Integer(1)) -1 + O(29^20) >>> Qp(Integer(29))(-Integer(1000)) -14 - 5*29 - 29^2 + O(29^20) >>> padic_printing.allow_negatives(False)
- alphabet(alphabet=None)[source]#
Controls the alphabet used to translate p-adic digits into strings (so that no separator need be used in
'digits'
mode).alphabet
should be passed in as a list or tuple.alphabet=None
returns the current value.EXAMPLES:
sage: padic_printing.alphabet("abc") sage: padic_printing.mode('digits') sage: repr(Qp(3)(1234)) '...bcaacab' sage: padic_printing.mode('series') sage: padic_printing.alphabet(('0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'))
>>> from sage.all import * >>> padic_printing.alphabet("abc") >>> padic_printing.mode('digits') >>> repr(Qp(Integer(3))(Integer(1234))) '...bcaacab' >>> padic_printing.mode('series') >>> padic_printing.alphabet(('0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'))
- max_poly_terms(max=None)[source]#
Controls the number of terms appearing when printing polynomial representations in
'terse'
or'val-unit'
modes.max=None
returns the current value.max=-1
encodes ‘no limit.’EXAMPLES:
sage: padic_printing.max_poly_terms(3) sage: padic_printing.max_poly_terms() 3 sage: padic_printing.mode('terse') sage: Zq(7^5, 5, names='a')([2,3,4])^8 # needs sage.libs.ntl 2570 + 15808*a + 9018*a^2 + ... + O(7^5) sage: padic_printing.max_poly_terms(-1) sage: padic_printing.mode('series')
>>> from sage.all import * >>> padic_printing.max_poly_terms(Integer(3)) >>> padic_printing.max_poly_terms() 3 >>> padic_printing.mode('terse') >>> Zq(Integer(7)**Integer(5), Integer(5), names='a')([Integer(2),Integer(3),Integer(4)])**Integer(8) # needs sage.libs.ntl 2570 + 15808*a + 9018*a^2 + ... + O(7^5) >>> padic_printing.max_poly_terms(-Integer(1)) >>> padic_printing.mode('series')
- max_series_terms(max=None)[source]#
Controls the maximum number of terms shown when printing in
'series'
,'digits'
or'bars'
mode.max=None
returns the current value.max=-1
encodes ‘no limit.’EXAMPLES:
sage: padic_printing.max_series_terms(2) sage: padic_printing.max_series_terms() 2 sage: Qp(31)(1000) 8 + 31 + ... + O(31^20) sage: padic_printing.max_series_terms(-1) sage: Qp(37)(100000) 26 + 37 + 36*37^2 + 37^3 + O(37^20)
>>> from sage.all import * >>> padic_printing.max_series_terms(Integer(2)) >>> padic_printing.max_series_terms() 2 >>> Qp(Integer(31))(Integer(1000)) 8 + 31 + ... + O(31^20) >>> padic_printing.max_series_terms(-Integer(1)) >>> Qp(Integer(37))(Integer(100000)) 26 + 37 + 36*37^2 + 37^3 + O(37^20)
- max_unram_terms(max=None)[source]#
For rings with non-prime residue fields, controls how many terms appear in the coefficient of each
pi^n
when printing in'series'
or'bar'
modes.max=None
returns the current value.max=-1
encodes ‘no limit.’EXAMPLES:
sage: padic_printing.max_unram_terms(2) sage: padic_printing.max_unram_terms() 2 sage: Zq(5^6, 5, names='a')([1,2,3,-1])^17 # needs sage.libs.ntl (3*a^4 + ... + 3) + (a^5 + ... + a)*5 + (3*a^3 + ... + 2)*5^2 + (3*a^5 + ... + 2)*5^3 + (4*a^5 + ... + 4)*5^4 + O(5^5) sage: padic_printing.max_unram_terms(-1)
>>> from sage.all import * >>> padic_printing.max_unram_terms(Integer(2)) >>> padic_printing.max_unram_terms() 2 >>> Zq(Integer(5)**Integer(6), Integer(5), names='a')([Integer(1),Integer(2),Integer(3),-Integer(1)])**Integer(17) # needs sage.libs.ntl (3*a^4 + ... + 3) + (a^5 + ... + a)*5 + (3*a^3 + ... + 2)*5^2 + (3*a^5 + ... + 2)*5^3 + (4*a^5 + ... + 4)*5^4 + O(5^5) >>> padic_printing.max_unram_terms(-Integer(1))
- mode(mode=None)[source]#
Set the default printing mode.
mode=None
returns the current value.The allowed values for mode are:
'val-unit'
,'series'
,'terse'
,'digits'
and'bars'
.EXAMPLES:
sage: padic_printing.mode('terse') sage: padic_printing.mode() 'terse' sage: Qp(7)(100) 100 + O(7^20) sage: padic_printing.mode('series') sage: Qp(11)(100) 1 + 9*11 + O(11^20) sage: padic_printing.mode('val-unit') sage: Qp(13)(130) 13 * 10 + O(13^21) sage: padic_printing.mode('digits') sage: repr(Qp(17)(100)) '...5F' sage: repr(Qp(17)(1000)) '...37E' sage: padic_printing.mode('bars') sage: repr(Qp(19)(1000)) '...2|14|12' sage: padic_printing.mode('series')
>>> from sage.all import * >>> padic_printing.mode('terse') >>> padic_printing.mode() 'terse' >>> Qp(Integer(7))(Integer(100)) 100 + O(7^20) >>> padic_printing.mode('series') >>> Qp(Integer(11))(Integer(100)) 1 + 9*11 + O(11^20) >>> padic_printing.mode('val-unit') >>> Qp(Integer(13))(Integer(130)) 13 * 10 + O(13^21) >>> padic_printing.mode('digits') >>> repr(Qp(Integer(17))(Integer(100))) '...5F' >>> repr(Qp(Integer(17))(Integer(1000))) '...37E' >>> padic_printing.mode('bars') >>> repr(Qp(Integer(19))(Integer(1000))) '...2|14|12' >>> padic_printing.mode('series')
- sep(sep=None)[source]#
Controls the separator used in
'bars'
mode.sep=None
returns the current value.EXAMPLES:
sage: padic_printing.sep('][') sage: padic_printing.sep() '][' sage: padic_printing.mode('bars') sage: repr(Qp(61)(-1)) '...60][60][60][60][60][60][60][60][60][60][60][60][60][60][60][60][60][60][60][60' sage: padic_printing.sep('|') sage: padic_printing.mode('series')
>>> from sage.all import * >>> padic_printing.sep('][') >>> padic_printing.sep() '][' >>> padic_printing.mode('bars') >>> repr(Qp(Integer(61))(-Integer(1))) '...60][60][60][60][60][60][60][60][60][60][60][60][60][60][60][60][60][60][60][60' >>> padic_printing.sep('|') >>> padic_printing.mode('series')
- class sage.rings.padics.padic_printing.pAdicPrinter_class[source]#
Bases:
SageObject
This class stores the printing options for a specific p-adic ring or field, and uses these to compute the representations of elements.
- dict()[source]#
Return a dictionary storing all of
self
’s printing options.EXAMPLES:
sage: D = Zp(5)._printer.dict(); D['sep'] '|'
>>> from sage.all import * >>> D = Zp(Integer(5))._printer.dict(); D['sep'] '|'
- repr_gen(elt, do_latex, pos=None, mode=None, ram_name=None)[source]#
The entry point for printing an element.
INPUT:
elt
– a p-adic element of the appropriate ring to print.do_latex
– whether to return a latex representation or a normal one.
EXAMPLES:
sage: R = Zp(5,5); P = R._printer; a = R(-5); a 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6) sage: P.repr_gen(a, False, pos=False) '-5 + O(5^6)' sage: P.repr_gen(a, False, ram_name='p') '4*p + 4*p^2 + 4*p^3 + 4*p^4 + 4*p^5 + O(p^6)'
>>> from sage.all import * >>> R = Zp(Integer(5),Integer(5)); P = R._printer; a = R(-Integer(5)); a 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6) >>> P.repr_gen(a, False, pos=False) '-5 + O(5^6)' >>> P.repr_gen(a, False, ram_name='p') '4*p + 4*p^2 + 4*p^3 + 4*p^4 + 4*p^5 + O(p^6)'
- richcmp_modes(other, op)[source]#
Return a comparison of the printing modes of
self
andother
.Return 0 if and only if all relevant modes are equal (
max_unram_terms
is irrelevant if the ring is totally ramified over the base, for example). This does not check if the rings are equal (to prevent infinite recursion in the comparison functions of p-adic rings), but it does check if the primes are the same (since the prime affects whetherpos
is relevant).EXAMPLES:
sage: R = Qp(7, print_mode='digits', print_pos=True) sage: S = Qp(7, print_mode='digits', print_pos=False) sage: R._printer == S._printer True sage: R = Qp(7) sage: S = Qp(7, print_mode='val-unit') sage: R == S False sage: R._printer < S._printer True
>>> from sage.all import * >>> R = Qp(Integer(7), print_mode='digits', print_pos=True) >>> S = Qp(Integer(7), print_mode='digits', print_pos=False) >>> R._printer == S._printer True >>> R = Qp(Integer(7)) >>> S = Qp(Integer(7), print_mode='val-unit') >>> R == S False >>> R._printer < S._printer True