\(p\)-adic Base Generic#
A superclass for implementations of \(\ZZ_p\) and \(\QQ_p\).
AUTHORS:
David Roe
- class sage.rings.padics.padic_base_generic.pAdicBaseGeneric(p, prec, print_mode, names, element_class)[source]#
Bases:
pAdicGeneric
Initialization
- absolute_discriminant()[source]#
Returns the absolute discriminant of this \(p\)-adic ring
EXAMPLES:
sage: Zp(5).absolute_discriminant() 1
>>> from sage.all import * >>> Zp(Integer(5)).absolute_discriminant() 1
- discriminant(K=None)[source]#
Returns the discriminant of this \(p\)-adic ring over
K
INPUT:
self
– a \(p\)-adic ringK
– a sub-ring ofself
orNone
(default:None
)
OUTPUT:
integer – the discriminant of this ring over
K
(or the absolute discriminant ifK
isNone
)
EXAMPLES:
sage: Zp(5).discriminant() 1
>>> from sage.all import * >>> Zp(Integer(5)).discriminant() 1
- exact_field()[source]#
Returns the rational field.
For compatibility with extensions of p-adics.
EXAMPLES:
sage: Zp(5).exact_field() Rational Field
>>> from sage.all import * >>> Zp(Integer(5)).exact_field() Rational Field
- exact_ring()[source]#
Returns the integer ring.
EXAMPLES:
sage: Zp(5).exact_ring() Integer Ring
>>> from sage.all import * >>> Zp(Integer(5)).exact_ring() Integer Ring
- gen(n=0)[source]#
Returns the
nth
generator of this extension. For base rings/fields, we consider the generator to be the prime.EXAMPLES:
sage: R = Zp(5); R.gen() 5 + O(5^21)
>>> from sage.all import * >>> R = Zp(Integer(5)); R.gen() 5 + O(5^21)
- has_pth_root()[source]#
Returns whether or not \(\ZZ_p\) has a primitive \(p^{th}\) root of unity.
EXAMPLES:
sage: Zp(2).has_pth_root() True sage: Zp(17).has_pth_root() False
>>> from sage.all import * >>> Zp(Integer(2)).has_pth_root() True >>> Zp(Integer(17)).has_pth_root() False
- has_root_of_unity(n)[source]#
Returns whether or not \(\ZZ_p\) has a primitive \(n^{th}\) root of unity.
INPUT:
self
– a \(p\)-adic ringn
– an integer
OUTPUT:
boolean
– whetherself
has primitive \(n^{th}\) root of unity
EXAMPLES:
sage: R=Zp(37) sage: R.has_root_of_unity(12) True sage: R.has_root_of_unity(11) False
>>> from sage.all import * >>> R=Zp(Integer(37)) >>> R.has_root_of_unity(Integer(12)) True >>> R.has_root_of_unity(Integer(11)) False
- is_abelian()[source]#
Returns whether the Galois group is abelian, i.e.
True
. #should this be automorphism group?EXAMPLES:
sage: R = Zp(3, 10,'fixed-mod'); R.is_abelian() True
>>> from sage.all import * >>> R = Zp(Integer(3), Integer(10),'fixed-mod'); R.is_abelian() True
- is_isomorphic(ring)[source]#
Returns whether
self
andring
are isomorphic, i.e. whetherring
is an implementation of \(\ZZ_p\) for the same prime asself
.INPUT:
self
– a \(p\)-adic ringring
– a ring
OUTPUT:
boolean
– whetherring
is an implementation of ZZ_p` for the same prime asself
.
EXAMPLES:
sage: R = Zp(5, 15, print_mode='digits'); S = Zp(5, 44, print_max_terms=4); R.is_isomorphic(S) True
>>> from sage.all import * >>> R = Zp(Integer(5), Integer(15), print_mode='digits'); S = Zp(Integer(5), Integer(44), print_max_terms=Integer(4)); R.is_isomorphic(S) True
- is_normal()[source]#
Returns whether or not this is a normal extension, i.e.
True
.EXAMPLES:
sage: R = Zp(3, 10,'fixed-mod'); R.is_normal() True
>>> from sage.all import * >>> R = Zp(Integer(3), Integer(10),'fixed-mod'); R.is_normal() True
- modulus(exact=False)[source]#
Returns the polynomial defining this extension.
For compatibility with extension fields; we define the modulus to be x-1.
INPUT:
exact
– boolean (defaultFalse
), whether to return a polynomial with integer entries.
EXAMPLES:
sage: Zp(5).modulus(exact=True) x
>>> from sage.all import * >>> Zp(Integer(5)).modulus(exact=True) x
- plot(max_points=2500, **args)[source]#
Create a visualization of this \(p\)-adic ring as a fractal similar to a generalization of the Sierpi'nski triangle.
The resulting image attempts to capture the algebraic and topological characteristics of \(\ZZ_p\).
INPUT:
max_points
– the maximum number or points to plot, which controls the depth of recursion (default 2500)**args
– color, size, etc. that are passed to the underlying point graphics objects
REFERENCES:
Cuoco, A. ‘’Visualizing the \(p\)-adic Integers’’, The American Mathematical Monthly, Vol. 98, No. 4 (Apr., 1991), pp. 355-364
EXAMPLES:
sage: Zp(3).plot() # needs sage.plot Graphics object consisting of 1 graphics primitive sage: Zp(5).plot(max_points=625) # needs sage.plot Graphics object consisting of 1 graphics primitive sage: Zp(23).plot(rgbcolor=(1,0,0)) # needs sage.plot Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> Zp(Integer(3)).plot() # needs sage.plot Graphics object consisting of 1 graphics primitive >>> Zp(Integer(5)).plot(max_points=Integer(625)) # needs sage.plot Graphics object consisting of 1 graphics primitive >>> Zp(Integer(23)).plot(rgbcolor=(Integer(1),Integer(0),Integer(0))) # needs sage.plot Graphics object consisting of 1 graphics primitive
- uniformizer()[source]#
Returns a uniformizer for this ring.
EXAMPLES:
sage: R = Zp(3,5,'fixed-mod', 'series') sage: R.uniformizer() 3
>>> from sage.all import * >>> R = Zp(Integer(3),Integer(5),'fixed-mod', 'series') >>> R.uniformizer() 3
- uniformizer_pow(n)[source]#
Returns the
nth
power of the uniformizer ofself
(as an element ofself
).EXAMPLES:
sage: R = Zp(5) sage: R.uniformizer_pow(5) 5^5 + O(5^25) sage: R.uniformizer_pow(infinity) 0
>>> from sage.all import * >>> R = Zp(Integer(5)) >>> R.uniformizer_pow(Integer(5)) 5^5 + O(5^25) >>> R.uniformizer_pow(infinity) 0
- zeta(n=None)[source]#
Returns a generator of the group of roots of unity.
INPUT:
self
– a \(p\)-adic ringn
– an integer orNone
(default:None
)
OUTPUT:
element
– a generator of the \(n^{th}\) roots of unity, or a generator of the full group of roots of unity ifn
isNone
EXAMPLES:
sage: R = Zp(37,5) sage: R.zeta(12) 8 + 24*37 + 37^2 + 29*37^3 + 23*37^4 + O(37^5)
>>> from sage.all import * >>> R = Zp(Integer(37),Integer(5)) >>> R.zeta(Integer(12)) 8 + 24*37 + 37^2 + 29*37^3 + 23*37^4 + O(37^5)