\(p\)-adic ZZ_pX Element
#
A common superclass implementing features shared by all elements that
use NTL’s ZZ_pX
as the fundamental data type.
AUTHORS:
David Roe
- class sage.rings.padics.padic_ZZ_pX_element.pAdicZZpXElement#
Bases:
pAdicExtElement
Initialization
EXAMPLES:
sage: A = Zp(next_prime(50000),10) sage: S.<x> = A[] sage: B.<t> = A.ext(x^2+next_prime(50000)) #indirect doctest
- norm(base=None)#
Return the absolute or relative norm of this element.
Note
This is not the \(p\)-adic absolute value. This is a field theoretic norm down to a ground ring. If you want the \(p\)-adic absolute value, use the
abs()
function instead.If
base
is given thenbase
must be a subfield of the parent \(L\) ofself
, in which case the norm is the relative norm from L tobase
.In all other cases, the norm is the absolute norm down to \(\QQ_p\) or \(\ZZ_p\).
EXAMPLES:
sage: R = ZpCR(5,5) sage: S.<x> = R[] sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5 sage: W.<w> = R.ext(f) sage: ((1+2*w)^5).norm() 1 + 5^2 + O(5^5) sage: ((1+2*w)).norm()^5 1 + 5^2 + O(5^5)
- trace(base=None)#
Return the absolute or relative trace of this element.
If
base
is given thenbase
must be a subfield of the parent \(L\) ofself
, in which case the norm is the relative norm from \(L\) tobase
.In all other cases, the norm is the absolute norm down to \(\QQ_p\) or \(\ZZ_p\).
EXAMPLES:
sage: R = ZpCR(5,5) sage: S.<x> = R[] sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5 sage: W.<w> = R.ext(f) sage: a = (2+3*w)^7 sage: b = (6+w^3)^5 sage: a.trace() 3*5 + 2*5^2 + 3*5^3 + 2*5^4 + O(5^5) sage: a.trace() + b.trace() 4*5 + 5^2 + 5^3 + 2*5^4 + O(5^5) sage: (a+b).trace() 4*5 + 5^2 + 5^3 + 2*5^4 + O(5^5)