PowComputer#
A class for computing and caching powers of the same integer.
This class is designed to be used as a field of p-adic rings and fields. Since elements of p-adic rings and fields need to use powers of p over and over, this class precomputes and stores powers of p. There is no reason that the base has to be prime however.
EXAMPLES:
sage: X = PowComputer(3, 4, 10)
sage: X(3)
27
sage: X(10) == 3^10
True
>>> from sage.all import *
>>> X = PowComputer(Integer(3), Integer(4), Integer(10))
>>> X(Integer(3))
27
>>> X(Integer(10)) == Integer(3)**Integer(10)
True
AUTHORS:
David Roe
- sage.rings.padics.pow_computer.PowComputer(m, cache_limit, prec_cap, in_field=False, prec_type=None)[source]#
Returns a PowComputer that caches the values \(1, m, m^2, \ldots, m^{C}\), where \(C\) is
cache_limit
.Once you create a PowComputer, merely call it to get values out.
You can input any integer, even if it’s outside of the precomputed range.
INPUT:
m – An integer, the base that you want to exponentiate.
cache_limit – A positive integer that you want to cache powers up to.
EXAMPLES:
sage: PC = PowComputer(3, 5, 10) sage: PC PowComputer for 3 sage: PC(4) 81 sage: PC(6) 729 sage: PC(-1) 1/3
>>> from sage.all import * >>> PC = PowComputer(Integer(3), Integer(5), Integer(10)) >>> PC PowComputer for 3 >>> PC(Integer(4)) 81 >>> PC(Integer(6)) 729 >>> PC(-Integer(1)) 1/3
- class sage.rings.padics.pow_computer.PowComputer_base[source]#
Bases:
PowComputer_class
Initialization.
- class sage.rings.padics.pow_computer.PowComputer_class[source]#
Bases:
SageObject
Initializes self.
INPUT:
prime – the prime that is the base of the exponentials stored in this pow_computer.
cache_limit – how high to cache powers of prime.
prec_cap – data stored for p-adic elements using this pow_computer (so they have C-level access to fields common to all elements of the same parent).
ram_prec_cap – prec_cap * e
in_field – same idea as prec_cap
poly – same idea as prec_cap
shift_seed – same idea as prec_cap
EXAMPLES:
sage: PC = PowComputer(3, 5, 10) sage: PC.pow_Integer_Integer(2) 9
>>> from sage.all import * >>> PC = PowComputer(Integer(3), Integer(5), Integer(10)) >>> PC.pow_Integer_Integer(Integer(2)) 9
- pow_Integer_Integer(n)[source]#
Tests the pow_Integer function.
EXAMPLES:
sage: PC = PowComputer(3, 5, 10) sage: PC.pow_Integer_Integer(4) 81 sage: PC.pow_Integer_Integer(6) 729 sage: PC.pow_Integer_Integer(0) 1 sage: PC.pow_Integer_Integer(10) 59049 sage: # needs sage.libs.ntl sage: PC = PowComputer_ext_maker(3, 5, 10, 20, False, ntl.ZZ_pX([-3,0,1], 3^10), 'big','e',ntl.ZZ_pX([1],3^10)) sage: PC.pow_Integer_Integer(4) 81 sage: PC.pow_Integer_Integer(6) 729 sage: PC.pow_Integer_Integer(0) 1 sage: PC.pow_Integer_Integer(10) 59049
>>> from sage.all import * >>> PC = PowComputer(Integer(3), Integer(5), Integer(10)) >>> PC.pow_Integer_Integer(Integer(4)) 81 >>> PC.pow_Integer_Integer(Integer(6)) 729 >>> PC.pow_Integer_Integer(Integer(0)) 1 >>> PC.pow_Integer_Integer(Integer(10)) 59049 >>> # needs sage.libs.ntl >>> PC = PowComputer_ext_maker(Integer(3), Integer(5), Integer(10), Integer(20), False, ntl.ZZ_pX([-Integer(3),Integer(0),Integer(1)], Integer(3)**Integer(10)), 'big','e',ntl.ZZ_pX([Integer(1)],Integer(3)**Integer(10))) >>> PC.pow_Integer_Integer(Integer(4)) 81 >>> PC.pow_Integer_Integer(Integer(6)) 729 >>> PC.pow_Integer_Integer(Integer(0)) 1 >>> PC.pow_Integer_Integer(Integer(10)) 59049