Coordinate Charts on Differentiable Manifolds#

The class DiffChart implements coordinate charts on a differentiable manifold over a topological field \(K\) (in most applications, \(K = \RR\) or \(K = \CC\)).

The subclass RealDiffChart is devoted to the case \(K=\RR\), for which the concept of coordinate range is meaningful. Moreover, RealDiffChart is endowed with some plotting capabilities (cf. method plot()).

Transition maps between charts are implemented via the class DiffCoordChange.

AUTHORS:

  • Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

REFERENCES:

class sage.manifolds.differentiable.chart.DiffChart(domain, coordinates, calc_method=None, periods=None, coord_restrictions=None)[source]#

Bases: Chart

Chart on a differentiable manifold.

Given a differentiable manifold \(M\) of dimension \(n\) over a topological field \(K\), a chart is a member \((U,\varphi)\) of the manifold’s differentiable atlas; \(U\) is then an open subset of \(M\) and \(\varphi: U \rightarrow V \subset K^n\) is a homeomorphism from \(U\) to an open subset \(V\) of \(K^n\).

The components \((x^1,\ldots,x^n)\) of \(\varphi\), defined by \(\varphi(p) = (x^1(p),\ldots,x^n(p))\in K^n\) for any point \(p\in U\), are called the coordinates of the chart \((U,\varphi)\).

INPUT:

  • domain – open subset \(U\) on which the chart is defined

  • coordinates – (default: ‘’ (empty string)) single string defining the coordinate symbols, with ' ' (whitespace) as a separator; each item has at most three fields, separated by a colon (:):

    1. the coordinate symbol (a letter or a few letters)

    2. (optional) the period of the coordinate if the coordinate is periodic; the period field must be written as period=T, where T is the period (see examples below)

    3. (optional) the LaTeX spelling of the coordinate; if not provided the coordinate symbol given in the first field will be used

    The order of fields 2 and 3 does not matter and each of them can be omitted. If it contains any LaTeX expression, the string coordinates must be declared with the prefix ‘r’ (for “raw”) to allow for a proper treatment of LaTeX’s backslash character (see examples below). If no period and no LaTeX spelling are to be set for any coordinate, the argument coordinates can be omitted when the shortcut operator <,> is used to declare the chart (see examples below).

  • calc_method – (default: None) string defining the calculus method for computations involving coordinates of the chart; must be one of

    • 'SR': Sage’s default symbolic engine (Symbolic Ring)

    • 'sympy': SymPy

    • None: the default of CalculusMethod will be used

  • names – (default: None) unused argument, except if coordinates is not provided; it must then be a tuple containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used).

  • coord_restrictions: Additional restrictions on the coordinates. A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the list (or set or frozenset) coord_restrictions are combined with the and operator; if some restrictions are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the list (or set or frozenset) coord_restrictions. For example:

    coord_restrictions=[x > y, (x != 0, y != 0), z^2 < x]
    

    means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list coord_restrictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list [x > y]. If the chart variables have not been declared as variables yet, coord_restrictions must be lambda-quoted.

EXAMPLES:

A chart on a complex 2-dimensional differentiable manifold:

sage: M = Manifold(2, 'M', field='complex')
sage: X = M.chart('x y'); X
Chart (M, (x, y))
sage: latex(X)
\left(M,(x, y)\right)
sage: type(X)
<class 'sage.manifolds.differentiable.chart.DiffChart'>
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', field='complex')
>>> X = M.chart('x y'); X
Chart (M, (x, y))
>>> latex(X)
\left(M,(x, y)\right)
>>> type(X)
<class 'sage.manifolds.differentiable.chart.DiffChart'>

To manipulate the coordinates \((x,y)\) as global variables, one has to set:

sage: x,y = X[:]
>>> from sage.all import *
>>> x,y = X[:]

However, a shortcut is to use the declarator <x,y> in the left-hand side of the chart declaration (there is then no need to pass the string 'x y' to chart()):

sage: M = Manifold(2, 'M', field='complex')
sage: X.<x,y> = M.chart(); X
Chart (M, (x, y))
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', field='complex')
>>> X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2); X
Chart (M, (x, y))

The coordinates are then immediately accessible:

sage: y
y
sage: x is X[0] and y is X[1]
True
>>> from sage.all import *
>>> y
y
>>> x is X[Integer(0)] and y is X[Integer(1)]
True

The trick is performed by Sage preparser:

sage: preparse("X.<x,y> = M.chart()")
"X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)"
>>> from sage.all import *
>>> preparse("X.<x,y> = M.chart()")
"X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)"

Note that x and y declared in <x,y> are mere Python variable names and do not have to coincide with the coordinate symbols; for instance, one may write:

sage: M = Manifold(2, 'M', field='complex')
sage: X.<x1,y1> = M.chart('x y'); X
Chart (M, (x, y))
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', field='complex')
>>> X = M.chart('x y', names=('x1', 'y1',)); (x1, y1,) = X._first_ngens(2); X
Chart (M, (x, y))

Then y is not known as a global Python variable and the coordinate \(y\) is accessible only through the global variable y1:

sage: y1
y
sage: latex(y1)
y
sage: y1 is X[1]
True
>>> from sage.all import *
>>> y1
y
>>> latex(y1)
y
>>> y1 is X[Integer(1)]
True

However, having the name of the Python variable coincide with the coordinate symbol is quite convenient; so it is recommended to declare:

sage: M = Manifold(2, 'M', field='complex')
sage: X.<x,y> = M.chart()
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', field='complex')
>>> X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)

In the above example, the chart X covers entirely the manifold M:

sage: X.domain()
2-dimensional complex manifold M
>>> from sage.all import *
>>> X.domain()
2-dimensional complex manifold M

Of course, one may declare a chart only on an open subset of M:

sage: U = M.open_subset('U')
sage: Y.<z1, z2> = U.chart(r'z1:\zeta_1 z2:\zeta_2'); Y
Chart (U, (z1, z2))
sage: Y.domain()
Open subset U of the 2-dimensional complex manifold M
>>> from sage.all import *
>>> U = M.open_subset('U')
>>> Y = U.chart(r'z1:\zeta_1 z2:\zeta_2', names=('z1', 'z2',)); (z1, z2,) = Y._first_ngens(2); Y
Chart (U, (z1, z2))
>>> Y.domain()
Open subset U of the 2-dimensional complex manifold M

In the above declaration, we have also specified some LaTeX writing of the coordinates different from the text one:

sage: latex(z1)
{\zeta_1}
>>> from sage.all import *
>>> latex(z1)
{\zeta_1}

Note the prefix r in front of the string r'z1:\zeta_1 z2:\zeta_2'; it makes sure that the backslash character is treated as an ordinary character, to be passed to the LaTeX interpreter.

Periodic coordinates are declared through the keyword period= in the coordinate field:

sage: N = Manifold(2, 'N', field='complex')
sage: XN.<Z1,Z2> = N.chart('Z1:period=1+2*I Z2')
sage: XN.periods()
(2*I + 1, None)
>>> from sage.all import *
>>> N = Manifold(Integer(2), 'N', field='complex')
>>> XN = N.chart('Z1:period=1+2*I Z2', names=('Z1', 'Z2',)); (Z1, Z2,) = XN._first_ngens(2)
>>> XN.periods()
(2*I + 1, None)

Coordinates are Sage symbolic variables (see sage.symbolic.expression):

sage: type(z1)
<class 'sage.symbolic.expression.Expression'>
>>> from sage.all import *
>>> type(z1)
<class 'sage.symbolic.expression.Expression'>

In addition to the Python variable name provided in the operator <.,.>, the coordinates are accessible by their indices:

sage: Y[0], Y[1]
(z1, z2)
>>> from sage.all import *
>>> Y[Integer(0)], Y[Integer(1)]
(z1, z2)

The index range is that declared during the creation of the manifold. By default, it starts at 0, but this can be changed via the parameter start_index:

sage: M1 = Manifold(2, 'M_1', field='complex', start_index=1)
sage: Z.<u,v> = M1.chart()
sage: Z[1], Z[2]
(u, v)
>>> from sage.all import *
>>> M1 = Manifold(Integer(2), 'M_1', field='complex', start_index=Integer(1))
>>> Z = M1.chart(names=('u', 'v',)); (u, v,) = Z._first_ngens(2)
>>> Z[Integer(1)], Z[Integer(2)]
(u, v)

The full set of coordinates is obtained by means of the operator [:]:

sage: Y[:]
(z1, z2)
>>> from sage.all import *
>>> Y[:]
(z1, z2)

Each constructed chart is automatically added to the manifold’s user atlas:

sage: M.atlas()
[Chart (M, (x, y)), Chart (U, (z1, z2))]
>>> from sage.all import *
>>> M.atlas()
[Chart (M, (x, y)), Chart (U, (z1, z2))]

and to the atlas of the chart’s domain:

sage: U.atlas()
[Chart (U, (z1, z2))]
>>> from sage.all import *
>>> U.atlas()
[Chart (U, (z1, z2))]

Manifold subsets have a default chart, which, unless changed via the method set_default_chart(), is the first defined chart on the subset (or on a open subset of it):

sage: M.default_chart()
Chart (M, (x, y))
sage: U.default_chart()
Chart (U, (z1, z2))
>>> from sage.all import *
>>> M.default_chart()
Chart (M, (x, y))
>>> U.default_chart()
Chart (U, (z1, z2))

The default charts are not privileged charts on the manifold, but rather charts whose name can be skipped in the argument list of functions having an optional chart= argument.

The action of the chart map \(\varphi\) on a point is obtained by means of the call operator, i.e. the operator ():

sage: p = M.point((1+i, 2), chart=X); p
Point on the 2-dimensional complex manifold M
sage: X(p)
(I + 1, 2)
sage: X(p) == p.coord(X)
True
>>> from sage.all import *
>>> p = M.point((Integer(1)+i, Integer(2)), chart=X); p
Point on the 2-dimensional complex manifold M
>>> X(p)
(I + 1, 2)
>>> X(p) == p.coord(X)
True

A vector frame is naturally associated to each chart:

sage: X.frame()
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: Y.frame()
Coordinate frame (U, (∂/∂z1,∂/∂z2))
>>> from sage.all import *
>>> X.frame()
Coordinate frame (M, (∂/∂x,∂/∂y))
>>> Y.frame()
Coordinate frame (U, (∂/∂z1,∂/∂z2))

as well as a dual frame (basis of 1-forms):

sage: X.coframe()
Coordinate coframe (M, (dx,dy))
sage: Y.coframe()
Coordinate coframe (U, (dz1,dz2))
>>> from sage.all import *
>>> X.coframe()
Coordinate coframe (M, (dx,dy))
>>> Y.coframe()
Coordinate coframe (U, (dz1,dz2))

See also

RealDiffChart for charts on differentiable manifolds over \(\RR\).

coframe()[source]#

Return the coframe (basis of coordinate differentials) associated with self.

OUTPUT:

EXAMPLES:

Coordinate coframe associated with some chart on a 2-dimensional manifold:

sage: M = Manifold(2, 'M')
sage: c_xy.<x,y> = M.chart()
sage: c_xy.coframe()
Coordinate coframe (M, (dx,dy))
sage: type(c_xy.coframe())
<class 'sage.manifolds.differentiable.vectorframe.CoordCoFrame_with_category'>
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M')
>>> c_xy = M.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2)
>>> c_xy.coframe()
Coordinate coframe (M, (dx,dy))
>>> type(c_xy.coframe())
<class 'sage.manifolds.differentiable.vectorframe.CoordCoFrame_with_category'>

Check that c_xy.coframe() is indeed the coordinate coframe associated with the coordinates \((x, y)\):

sage: dx = c_xy.coframe()[0] ; dx
1-form dx on the 2-dimensional differentiable manifold M
sage: dy = c_xy.coframe()[1] ; dy
1-form dy on the 2-dimensional differentiable manifold M
sage: ex = c_xy.frame()[0] ; ex
Vector field ∂/∂x on the 2-dimensional differentiable manifold M
sage: ey = c_xy.frame()[1] ; ey
Vector field ∂/∂y on the 2-dimensional differentiable manifold M
sage: dx(ex).display()
dx(∂/∂x): M → ℝ
   (x, y) ↦ 1
sage: dx(ey).display()
dx(∂/∂y): M → ℝ
   (x, y) ↦ 0
sage: dy(ex).display()
dy(∂/∂x): M → ℝ
   (x, y) ↦ 0
sage: dy(ey).display()
dy(∂/∂y): M → ℝ
   (x, y) ↦ 1
>>> from sage.all import *
>>> dx = c_xy.coframe()[Integer(0)] ; dx
1-form dx on the 2-dimensional differentiable manifold M
>>> dy = c_xy.coframe()[Integer(1)] ; dy
1-form dy on the 2-dimensional differentiable manifold M
>>> ex = c_xy.frame()[Integer(0)] ; ex
Vector field ∂/∂x on the 2-dimensional differentiable manifold M
>>> ey = c_xy.frame()[Integer(1)] ; ey
Vector field ∂/∂y on the 2-dimensional differentiable manifold M
>>> dx(ex).display()
dx(∂/∂x): M → ℝ
   (x, y) ↦ 1
>>> dx(ey).display()
dx(∂/∂y): M → ℝ
   (x, y) ↦ 0
>>> dy(ex).display()
dy(∂/∂x): M → ℝ
   (x, y) ↦ 0
>>> dy(ey).display()
dy(∂/∂y): M → ℝ
   (x, y) ↦ 1
frame()[source]#

Return the vector frame (coordinate frame) associated with self.

OUTPUT:

EXAMPLES:

Coordinate frame associated with some chart on a 2-dimensional manifold:

sage: M = Manifold(2, 'M')
sage: c_xy.<x,y> = M.chart()
sage: c_xy.frame()
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: type(c_xy.frame())
<class 'sage.manifolds.differentiable.vectorframe.CoordFrame_with_category'>
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M')
>>> c_xy = M.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2)
>>> c_xy.frame()
Coordinate frame (M, (∂/∂x,∂/∂y))
>>> type(c_xy.frame())
<class 'sage.manifolds.differentiable.vectorframe.CoordFrame_with_category'>

Check that c_xy.frame() is indeed the coordinate frame associated with the coordinates \((x,y)\):

sage: ex = c_xy.frame()[0] ; ex
Vector field ∂/∂x on the 2-dimensional differentiable manifold M
sage: ey = c_xy.frame()[1] ; ey
Vector field ∂/∂y on the 2-dimensional differentiable manifold M
sage: ex(M.scalar_field(x)).display()
1: M → ℝ
   (x, y) ↦ 1
sage: ex(M.scalar_field(y)).display()
zero: M → ℝ
   (x, y) ↦ 0
sage: ey(M.scalar_field(x)).display()
zero: M → ℝ
   (x, y) ↦ 0
sage: ey(M.scalar_field(y)).display()
1: M → ℝ
   (x, y) ↦ 1
>>> from sage.all import *
>>> ex = c_xy.frame()[Integer(0)] ; ex
Vector field ∂/∂x on the 2-dimensional differentiable manifold M
>>> ey = c_xy.frame()[Integer(1)] ; ey
Vector field ∂/∂y on the 2-dimensional differentiable manifold M
>>> ex(M.scalar_field(x)).display()
1: M → ℝ
   (x, y) ↦ 1
>>> ex(M.scalar_field(y)).display()
zero: M → ℝ
   (x, y) ↦ 0
>>> ey(M.scalar_field(x)).display()
zero: M → ℝ
   (x, y) ↦ 0
>>> ey(M.scalar_field(y)).display()
1: M → ℝ
   (x, y) ↦ 1
restrict(subset, restrictions=None)[source]#

Return the restriction of self to some subset.

If the current chart is \((U, \varphi)\), a restriction (or subchart) is a chart \((V, \psi)\) such that \(V \subset U\) and \(\psi = \varphi |_V\).

If such subchart has not been defined yet, it is constructed here.

The coordinates of the subchart bare the same names as the coordinates of the original chart.

INPUT:

  • subset – open subset \(V\) of the chart domain \(U\)

  • restrictions – (default: None) list of coordinate restrictions defining the subset \(V\)

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list [x > y].

OUTPUT:

EXAMPLES:

Coordinates on the unit open ball of \(\CC^2\) as a subchart of the global coordinates of \(\CC^2\):

sage: M = Manifold(2, 'C^2', field='complex')
sage: X.<z1, z2> = M.chart()
sage: B = M.open_subset('B')
sage: X_B = X.restrict(B, abs(z1)^2 + abs(z2)^2 < 1); X_B
Chart (B, (z1, z2))
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'C^2', field='complex')
>>> X = M.chart(names=('z1', 'z2',)); (z1, z2,) = X._first_ngens(2)
>>> B = M.open_subset('B')
>>> X_B = X.restrict(B, abs(z1)**Integer(2) + abs(z2)**Integer(2) < Integer(1)); X_B
Chart (B, (z1, z2))
symbolic_velocities(left='D', right=None)[source]#

Return a list of symbolic variables ready to be used by the user as the derivatives of the coordinate functions with respect to a curve parameter (i.e. the velocities along the curve). It may actually serve to denote anything else than velocities, with a name including the coordinate functions. The choice of strings provided as ‘left’ and ‘right’ arguments is not entirely free since it must comply with Python prescriptions.

INPUT:

  • left – (default: D) string to concatenate to the left of each coordinate functions of the chart

  • right – (default: None) string to concatenate to the right of each coordinate functions of the chart

OUTPUT:

  • a list of symbolic expressions with the desired names

EXAMPLES:

Symbolic derivatives of the Cartesian coordinates of the 3-dimensional Euclidean space:

sage: R3 = Manifold(3, 'R3', start_index=1)
sage: cart.<X,Y,Z> = R3.chart()
sage: D = cart.symbolic_velocities(); D
[DX, DY, DZ]
sage: D = cart.symbolic_velocities(left='d', right="/dt"); D
Traceback (most recent call last):
...
ValueError: The name "dX/dt" is not a valid Python
 identifier.
sage: D = cart.symbolic_velocities(left='d', right="_dt"); D
[dX_dt, dY_dt, dZ_dt]
sage: D = cart.symbolic_velocities(left='', right="'"); D
Traceback (most recent call last):
...
ValueError: The name "X'" is not a valid Python
 identifier.
sage: D = cart.symbolic_velocities(left='', right="_dot"); D
[X_dot, Y_dot, Z_dot]
sage: R.<t> = manifolds.RealLine()
sage: canon_chart = R.default_chart()
sage: D = canon_chart.symbolic_velocities() ; D
[Dt]
>>> from sage.all import *
>>> R3 = Manifold(Integer(3), 'R3', start_index=Integer(1))
>>> cart = R3.chart(names=('X', 'Y', 'Z',)); (X, Y, Z,) = cart._first_ngens(3)
>>> D = cart.symbolic_velocities(); D
[DX, DY, DZ]
>>> D = cart.symbolic_velocities(left='d', right="/dt"); D
Traceback (most recent call last):
...
ValueError: The name "dX/dt" is not a valid Python
 identifier.
>>> D = cart.symbolic_velocities(left='d', right="_dt"); D
[dX_dt, dY_dt, dZ_dt]
>>> D = cart.symbolic_velocities(left='', right="'"); D
Traceback (most recent call last):
...
ValueError: The name "X'" is not a valid Python
 identifier.
>>> D = cart.symbolic_velocities(left='', right="_dot"); D
[X_dot, Y_dot, Z_dot]
>>> R = manifolds.RealLine(names=('t',)); (t,) = R._first_ngens(1)
>>> canon_chart = R.default_chart()
>>> D = canon_chart.symbolic_velocities() ; D
[Dt]
transition_map(other, transformations, intersection_name=None, restrictions1=None, restrictions2=None)[source]#

Construct the transition map between the current chart, \((U,\varphi)\) say, and another one, \((V,\psi)\) say.

If \(n\) is the manifold’s dimension, the transition map is the map

\[\psi\circ\varphi^{-1}: \varphi(U\cap V) \subset K^n \rightarrow \psi(U\cap V) \subset K^n,\]

where \(K\) is the manifold’s base field. In other words, the transition map expresses the coordinates \((y^1,\ldots,y^n)\) of \((V,\psi)\) in terms of the coordinates \((x^1,\ldots,x^n)\) of \((U,\varphi)\) on the open subset where the two charts intersect, i.e. on \(U\cap V\).

By definition, the transition map \(\psi\circ\varphi^{-1}\) must be of class \(C^k\), where \(k\) is the degree of differentiability of the manifold (cf. diff_degree()).

INPUT:

  • other – the chart \((V,\psi)\)

  • transformations – tuple (or list) \((Y_1,\ldots,Y_2)\), where \(Y_i\) is the symbolic expression of the coordinate \(y^i\) in terms of the coordinates \((x^1,\ldots,x^n)\)

  • intersection_name – (default: None) name to be given to the subset \(U\cap V\) if the latter differs from \(U\) or \(V\)

  • restrictions1 – (default: None) list of conditions on the coordinates of the current chart that define \(U\cap V\) if the latter differs from \(U\). restrictions1 must be a list of of symbolic equalities or inequalities involving the coordinates, such as x>y or x^2+y^2 != 0. The items of the list restrictions1 are combined with the and operator; if some restrictions are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the list restrictions1. For example, restrictions1 = [x>y, (x!=0, y!=0), z^2<x] means (x>y) and ((x!=0) or (y!=0)) and (z^2<x). If the list restrictions1 contains only one item, this item can be passed as such, i.e. writing x>y instead of the single-element list [x>y].

  • restrictions2 – (default: None) list of conditions on the coordinates of the chart \((V,\psi)\) that define \(U\cap V\) if the latter differs from \(V\) (see restrictions1 for the syntax)

OUTPUT:

  • The transition map \(\psi\circ\varphi^{-1}\) defined on \(U\cap V\), as an instance of DiffCoordChange.

EXAMPLES:

Transition map between two stereographic charts on the circle \(S^1\):

sage: M = Manifold(1, 'S^1')
sage: U = M.open_subset('U') # Complement of the North pole
sage: cU.<x> = U.chart() # Stereographic chart from the North pole
sage: V = M.open_subset('V') # Complement of the South pole
sage: cV.<y> = V.chart() # Stereographic chart from the South pole
sage: M.declare_union(U,V)   # S^1 is the union of U and V
sage: trans = cU.transition_map(cV, 1/x, intersection_name='W',
....:                           restrictions1= x!=0, restrictions2 = y!=0)
sage: trans
Change of coordinates from Chart (W, (x,)) to Chart (W, (y,))
sage: trans.display()
y = 1/x
>>> from sage.all import *
>>> M = Manifold(Integer(1), 'S^1')
>>> U = M.open_subset('U') # Complement of the North pole
>>> cU = U.chart(names=('x',)); (x,) = cU._first_ngens(1)# Stereographic chart from the North pole
>>> V = M.open_subset('V') # Complement of the South pole
>>> cV = V.chart(names=('y',)); (y,) = cV._first_ngens(1)# Stereographic chart from the South pole
>>> M.declare_union(U,V)   # S^1 is the union of U and V
>>> trans = cU.transition_map(cV, Integer(1)/x, intersection_name='W',
...                           restrictions1= x!=Integer(0), restrictions2 = y!=Integer(0))
>>> trans
Change of coordinates from Chart (W, (x,)) to Chart (W, (y,))
>>> trans.display()
y = 1/x

The subset \(W\), intersection of \(U\) and \(V\), has been created by transition_map():

sage: F = M.subset_family(); F
Set {S^1, U, V, W} of open subsets of the 1-dimensional differentiable manifold S^1
sage: W = F['W']
sage: W is U.intersection(V)
True
sage: M.atlas()
[Chart (U, (x,)), Chart (V, (y,)), Chart (W, (x,)), Chart (W, (y,))]
>>> from sage.all import *
>>> F = M.subset_family(); F
Set {S^1, U, V, W} of open subsets of the 1-dimensional differentiable manifold S^1
>>> W = F['W']
>>> W is U.intersection(V)
True
>>> M.atlas()
[Chart (U, (x,)), Chart (V, (y,)), Chart (W, (x,)), Chart (W, (y,))]

Transition map between the polar chart and the Cartesian one on \(\RR^2\):

sage: M = Manifold(2, 'R^2')
sage: c_cart.<x,y> = M.chart()
sage: U = M.open_subset('U') # the complement of the half line {y=0, x >= 0}
sage: c_spher.<r,phi> = U.chart(r'r:(0,+oo) phi:(0,2*pi):\phi')
sage: trans = c_spher.transition_map(c_cart, (r*cos(phi), r*sin(phi)),
....:                                restrictions2=(y!=0, x<0))
sage: trans
Change of coordinates from Chart (U, (r, phi)) to Chart (U, (x, y))
sage: trans.display()
x = r*cos(phi)
y = r*sin(phi)
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'R^2')
>>> c_cart = M.chart(names=('x', 'y',)); (x, y,) = c_cart._first_ngens(2)
>>> U = M.open_subset('U') # the complement of the half line {y=0, x >= 0}
>>> c_spher = U.chart(r'r:(0,+oo) phi:(0,2*pi):\phi', names=('r', 'phi',)); (r, phi,) = c_spher._first_ngens(2)
>>> trans = c_spher.transition_map(c_cart, (r*cos(phi), r*sin(phi)),
...                                restrictions2=(y!=Integer(0), x<Integer(0)))
>>> trans
Change of coordinates from Chart (U, (r, phi)) to Chart (U, (x, y))
>>> trans.display()
x = r*cos(phi)
y = r*sin(phi)

In this case, no new subset has been created since \(U\cap M = U\):

sage: M.subset_family()
Set {R^2, U} of open subsets of the 2-dimensional differentiable manifold R^2
>>> from sage.all import *
>>> M.subset_family()
Set {R^2, U} of open subsets of the 2-dimensional differentiable manifold R^2

but a new chart has been created: \((U, (x, y))\):

sage: M.atlas()
[Chart (R^2, (x, y)), Chart (U, (r, phi)), Chart (U, (x, y))]
>>> from sage.all import *
>>> M.atlas()
[Chart (R^2, (x, y)), Chart (U, (r, phi)), Chart (U, (x, y))]
class sage.manifolds.differentiable.chart.DiffCoordChange(chart1, chart2, *transformations)[source]#

Bases: CoordChange

Transition map between two charts of a differentiable manifold.

Giving two coordinate charts \((U,\varphi)\) and \((V,\psi)\) on a differentiable manifold \(M\) of dimension \(n\) over a topological field \(K\), the transition map from \((U,\varphi)\) to \((V,\psi)\) is the map

\[\psi\circ\varphi^{-1}: \varphi(U\cap V) \subset K^n \rightarrow \psi(U\cap V) \subset K^n,\]

In other words, the transition map \(\psi\circ\varphi^{-1}\) expresses the coordinates \((y^1,\ldots,y^n)\) of \((V,\psi)\) in terms of the coordinates \((x^1,\ldots,x^n)\) of \((U,\varphi)\) on the open subset where the two charts intersect, i.e. on \(U\cap V\).

By definition, the transition map \(\psi\circ\varphi^{-1}\) must be of class \(C^k\), where \(k\) is the degree of differentiability of the manifold (cf. diff_degree()).

INPUT:

  • chart1 – chart \((U,\varphi)\)

  • chart2 – chart \((V,\psi)\)

  • transformations – tuple (or list) \((Y_1,\ldots,Y_2)\), where \(Y_i\) is the symbolic expression of the coordinate \(y^i\) in terms of the coordinates \((x^1,\ldots,x^n)\)

EXAMPLES:

Transition map on a 2-dimensional differentiable manifold:

sage: M = Manifold(2, 'M')
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
sage: X_to_Y
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
sage: type(X_to_Y)
<class 'sage.manifolds.differentiable.chart.DiffCoordChange'>
sage: X_to_Y.display()
u = x + y
v = x - y
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M')
>>> X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> Y = M.chart(names=('u', 'v',)); (u, v,) = Y._first_ngens(2)
>>> X_to_Y = X.transition_map(Y, [x+y, x-y])
>>> X_to_Y
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
>>> type(X_to_Y)
<class 'sage.manifolds.differentiable.chart.DiffCoordChange'>
>>> X_to_Y.display()
u = x + y
v = x - y
jacobian()[source]#

Return the Jacobian matrix of self.

If self corresponds to the change of coordinates

\[y^i = Y^i(x^1,\ldots,x^n)\qquad 1\leq i \leq n\]

the Jacobian matrix \(J\) is given by

\[J_{ij} = \frac{\partial Y^i}{\partial x^j}\]

where \(i\) is the row index and \(j\) the column one.

OUTPUT:

  • Jacobian matrix \(J\), the elements \(J_{ij}\) of which being coordinate functions (cf. ChartFunction)

EXAMPLES:

Jacobian matrix of a 2-dimensional transition map:

sage: M = Manifold(2, 'M')
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y^2, 3*x-y])
sage: X_to_Y.jacobian()
[  1 2*y]
[  3  -1]
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M')
>>> X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> Y = M.chart(names=('u', 'v',)); (u, v,) = Y._first_ngens(2)
>>> X_to_Y = X.transition_map(Y, [x+y**Integer(2), Integer(3)*x-y])
>>> X_to_Y.jacobian()
[  1 2*y]
[  3  -1]

Each element of the Jacobian matrix is a coordinate function:

sage: parent(X_to_Y.jacobian()[0,0])
Ring of chart functions on Chart (M, (x, y))
>>> from sage.all import *
>>> parent(X_to_Y.jacobian()[Integer(0),Integer(0)])
Ring of chart functions on Chart (M, (x, y))
jacobian_det()[source]#

Return the Jacobian determinant of self.

The Jacobian determinant is the determinant of the Jacobian matrix (see jacobian()).

OUTPUT:

  • determinant of the Jacobian matrix \(J\) as a coordinate function (cf. ChartFunction)

EXAMPLES:

Jacobian determinant of a 2-dimensional transition map:

sage: M = Manifold(2, 'M')
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y^2, 3*x-y])
sage: X_to_Y.jacobian_det()
-6*y - 1
sage: X_to_Y.jacobian_det() == det(X_to_Y.jacobian())
True
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M')
>>> X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> Y = M.chart(names=('u', 'v',)); (u, v,) = Y._first_ngens(2)
>>> X_to_Y = X.transition_map(Y, [x+y**Integer(2), Integer(3)*x-y])
>>> X_to_Y.jacobian_det()
-6*y - 1
>>> X_to_Y.jacobian_det() == det(X_to_Y.jacobian())
True

The Jacobian determinant is a coordinate function:

sage: parent(X_to_Y.jacobian_det())
Ring of chart functions on Chart (M, (x, y))
>>> from sage.all import *
>>> parent(X_to_Y.jacobian_det())
Ring of chart functions on Chart (M, (x, y))
class sage.manifolds.differentiable.chart.RealDiffChart(domain, coordinates, calc_method=None, bounds=None, periods=None, coord_restrictions=None)[source]#

Bases: DiffChart, RealChart

Chart on a differentiable manifold over \(\RR\).

Given a differentiable manifold \(M\) of dimension \(n\) over \(\RR\), a chart is a member \((U,\varphi)\) of the manifold’s differentiable atlas; \(U\) is then an open subset of \(M\) and \(\varphi: U \rightarrow V \subset \RR^n\) is a homeomorphism from \(U\) to an open subset \(V\) of \(\RR^n\).

The components \((x^1,\ldots,x^n)\) of \(\varphi\), defined by \(\varphi(p) = (x^1(p),\ldots,x^n(p))\in \RR^n\) for any point \(p\in U\), are called the coordinates of the chart \((U,\varphi)\).

INPUT:

  • domain – open subset \(U\) on which the chart is defined

  • coordinates – (default: ‘’ (empty string)) single string defining the coordinate symbols, with ' ' (whitespace) as a separator; each item has at most four fields, separated by a colon (:):

    1. the coordinate symbol (a letter or a few letters)

    2. (optional) the interval \(I\) defining the coordinate range: if not provided, the coordinate is assumed to span all \(\RR\); otherwise \(I\) must be provided in the form (a,b) (or equivalently ]a,b[); the bounds a and b can be +/-Infinity, Inf, infinity, inf or oo; for singular coordinates, non-open intervals such as [a,b] and (a,b] (or equivalently ]a,b]) are allowed; note that the interval declaration must not contain any whitespace

    3. (optional) indicator of the periodic character of the coordinate, either as period=T, where T is the period, or as the keyword periodic (the value of the period is then deduced from the interval \(I\) declared in field 2; see examples below)

    4. (optional) the LaTeX spelling of the coordinate; if not provided the coordinate symbol given in the first field will be used

    The order of fields 2 to 4 does not matter and each of them can be omitted. If it contains any LaTeX expression, the string coordinates must be declared with the prefix ‘r’ (for “raw”) to allow for a proper treatment of LaTeX’s backslash character (see examples below). If interval range, no period and no LaTeX spelling are to be set for any coordinate, the argument coordinates can be omitted when the shortcut operator <,> is used to declare the chart (see examples below).

  • calc_method – (default: None) string defining the calculus method for computations involving coordinates of the chart; must be one of

    • 'SR': Sage’s default symbolic engine (Symbolic Ring)

    • 'sympy': SymPy

    • None: the default of CalculusMethod will be used

  • names – (default: None) unused argument, except if coordinates is not provided; it must then be a tuple containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used).

  • coord_restrictions: Additional restrictions on the coordinates. A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the list (or set or frozenset) coord_restrictions are combined with the and operator; if some restrictions are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the list (or set or frozenset) coord_restrictions. For example:

    coord_restrictions=[x > y, (x != 0, y != 0), z^2 < x]
    

    means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list coord_restrictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list [x > y]. If the chart variables have not been declared as variables yet, coord_restrictions must be lambda-quoted.

EXAMPLES:

Cartesian coordinates on \(\RR^3\):

sage: M = Manifold(3, 'R^3', r'\RR^3', start_index=1)
sage: c_cart = M.chart('x y z'); c_cart
Chart (R^3, (x, y, z))
sage: type(c_cart)
<class 'sage.manifolds.differentiable.chart.RealDiffChart'>
>>> from sage.all import *
>>> M = Manifold(Integer(3), 'R^3', r'\RR^3', start_index=Integer(1))
>>> c_cart = M.chart('x y z'); c_cart
Chart (R^3, (x, y, z))
>>> type(c_cart)
<class 'sage.manifolds.differentiable.chart.RealDiffChart'>

To have the coordinates accessible as global variables, one has to set:

sage: (x,y,z) = c_cart[:]
>>> from sage.all import *
>>> (x,y,z) = c_cart[:]

However, a shortcut is to use the declarator <x,y,z> in the left-hand side of the chart declaration (there is then no need to pass the string 'x y z' to chart()):

sage: M = Manifold(3, 'R^3', r'\RR^3', start_index=1)
sage: c_cart.<x,y,z> = M.chart(); c_cart
Chart (R^3, (x, y, z))
>>> from sage.all import *
>>> M = Manifold(Integer(3), 'R^3', r'\RR^3', start_index=Integer(1))
>>> c_cart = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_cart._first_ngens(3); c_cart
Chart (R^3, (x, y, z))

The coordinates are then immediately accessible:

sage: y
y
sage: y is c_cart[2]
True
>>> from sage.all import *
>>> y
y
>>> y is c_cart[Integer(2)]
True

The trick is performed by Sage preparser:

sage: preparse("c_cart.<x,y,z> = M.chart()")
"c_cart = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_cart._first_ngens(3)"
>>> from sage.all import *
>>> preparse("c_cart.<x,y,z> = M.chart()")
"c_cart = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_cart._first_ngens(3)"

Note that x, y, z declared in <x,y,z> are mere Python variable names and do not have to coincide with the coordinate symbols; for instance, one may write:

sage: M = Manifold(3, 'R^3', r'\RR^3', start_index=1)
sage: c_cart.<x1,y1,z1> = M.chart('x y z'); c_cart
Chart (R^3, (x, y, z))
>>> from sage.all import *
>>> M = Manifold(Integer(3), 'R^3', r'\RR^3', start_index=Integer(1))
>>> c_cart = M.chart('x y z', names=('x1', 'y1', 'z1',)); (x1, y1, z1,) = c_cart._first_ngens(3); c_cart
Chart (R^3, (x, y, z))

Then y is not known as a global variable and the coordinate \(y\) is accessible only through the global variable y1:

sage: y1
y
sage: y1 is c_cart[2]
True
>>> from sage.all import *
>>> y1
y
>>> y1 is c_cart[Integer(2)]
True

However, having the name of the Python variable coincide with the coordinate symbol is quite convenient; so it is recommended to declare:

sage: forget()   # for doctests only
sage: M = Manifold(3, 'R^3', r'\RR^3', start_index=1)
sage: c_cart.<x,y,z> = M.chart()
>>> from sage.all import *
>>> forget()   # for doctests only
>>> M = Manifold(Integer(3), 'R^3', r'\RR^3', start_index=Integer(1))
>>> c_cart = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_cart._first_ngens(3)

Spherical coordinates on the subset \(U\) of \(\RR^3\) that is the complement of the half-plane \(\{y=0, x\geq 0\}\):

sage: U = M.open_subset('U')
sage: c_spher.<r,th,ph> = U.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi')
sage: c_spher
Chart (U, (r, th, ph))
>>> from sage.all import *
>>> U = M.open_subset('U')
>>> c_spher = U.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi', names=('r', 'th', 'ph',)); (r, th, ph,) = c_spher._first_ngens(3)
>>> c_spher
Chart (U, (r, th, ph))

Note the prefix ‘r’ for the string defining the coordinates in the arguments of chart.

Coordinates are Sage symbolic variables (see sage.symbolic.expression):

sage: type(th)
<class 'sage.symbolic.expression.Expression'>
sage: latex(th)
{\theta}
sage: assumptions(th)
[th is real, th > 0, th < pi]
>>> from sage.all import *
>>> type(th)
<class 'sage.symbolic.expression.Expression'>
>>> latex(th)
{\theta}
>>> assumptions(th)
[th is real, th > 0, th < pi]

Coordinate are also accessible by their indices:

sage: x1 = c_spher[1]; x2 = c_spher[2]; x3 = c_spher[3]
sage: [x1, x2, x3]
[r, th, ph]
sage: (x1, x2, x3) == (r, th, ph)
True
>>> from sage.all import *
>>> x1 = c_spher[Integer(1)]; x2 = c_spher[Integer(2)]; x3 = c_spher[Integer(3)]
>>> [x1, x2, x3]
[r, th, ph]
>>> (x1, x2, x3) == (r, th, ph)
True

The full set of coordinates is obtained by means of the operator [:]:

sage: c_cart[:]
(x, y, z)
sage: c_spher[:]
(r, th, ph)
>>> from sage.all import *
>>> c_cart[:]
(x, y, z)
>>> c_spher[:]
(r, th, ph)

Let us check that the declared coordinate ranges have been taken into account:

sage: c_cart.coord_range()
x: (-oo, +oo); y: (-oo, +oo); z: (-oo, +oo)
sage: c_spher.coord_range()
r: (0, +oo); th: (0, pi); ph: (0, 2*pi)
sage: bool(th>0 and th<pi)
True
sage: assumptions()  # list all current symbolic assumptions
[x is real, y is real, z is real, r is real, r > 0, th is real,
 th > 0, th < pi, ph is real, ph > 0, ph < 2*pi]
>>> from sage.all import *
>>> c_cart.coord_range()
x: (-oo, +oo); y: (-oo, +oo); z: (-oo, +oo)
>>> c_spher.coord_range()
r: (0, +oo); th: (0, pi); ph: (0, 2*pi)
>>> bool(th>Integer(0) and th<pi)
True
>>> assumptions()  # list all current symbolic assumptions
[x is real, y is real, z is real, r is real, r > 0, th is real,
 th > 0, th < pi, ph is real, ph > 0, ph < 2*pi]

The coordinate ranges are used for simplifications:

sage: simplify(abs(r)) # r has been declared to lie in the interval (0,+oo)
r
sage: simplify(abs(x)) # no positive range has been declared for x
abs(x)
>>> from sage.all import *
>>> simplify(abs(r)) # r has been declared to lie in the interval (0,+oo)
r
>>> simplify(abs(x)) # no positive range has been declared for x
abs(x)

A coordinate can be declared periodic by adding the keyword periodic to its range:

sage: V = M.open_subset('V')
sage: c_spher1.<r,th,ph1> = \
....: V.chart(r'r:(0,+oo) th:(0,pi):\theta ph1:(0,2*pi):periodic:\phi_1')
sage: c_spher1.periods()
(None, None, 2*pi)
sage: c_spher1.coord_range()
r: (0, +oo); th: (0, pi); ph1: [0, 2*pi] (periodic)
>>> from sage.all import *
>>> V = M.open_subset('V')
>>> c_spher1 = V.chart(r'r:(0,+oo) th:(0,pi):\theta ph1:(0,2*pi):periodic:\phi_1', names=('r', 'th', 'ph1',)); (r, th, ph1,) = c_spher1._first_ngens(3)
>>> c_spher1.periods()
(None, None, 2*pi)
>>> c_spher1.coord_range()
r: (0, +oo); th: (0, pi); ph1: [0, 2*pi] (periodic)

It is equivalent to give the period as period=2*pi, skipping the coordinate range:

sage: c_spher2.<r,th,ph2> = \
....: V.chart(r'r:(0,+oo) th:(0,pi):\theta ph2:period=2*pi:\phi_2')
sage: c_spher2.periods()
(None, None, 2*pi)
sage: c_spher2.coord_range()
r: (0, +oo); th: (0, pi); ph2: [0, 2*pi] (periodic)
>>> from sage.all import *
>>> c_spher2 = V.chart(r'r:(0,+oo) th:(0,pi):\theta ph2:period=2*pi:\phi_2', names=('r', 'th', 'ph2',)); (r, th, ph2,) = c_spher2._first_ngens(3)
>>> c_spher2.periods()
(None, None, 2*pi)
>>> c_spher2.coord_range()
r: (0, +oo); th: (0, pi); ph2: [0, 2*pi] (periodic)

Each constructed chart is automatically added to the manifold’s user atlas:

sage: M.atlas()
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)),
 Chart (V, (r, th, ph1)), Chart (V, (r, th, ph2))]
>>> from sage.all import *
>>> M.atlas()
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)),
 Chart (V, (r, th, ph1)), Chart (V, (r, th, ph2))]

and to the atlas of its domain:

sage: U.atlas()
[Chart (U, (r, th, ph))]
>>> from sage.all import *
>>> U.atlas()
[Chart (U, (r, th, ph))]

Manifold subsets have a default chart, which, unless changed via the method set_default_chart(), is the first defined chart on the subset (or on a open subset of it):

sage: M.default_chart()
Chart (R^3, (x, y, z))
sage: U.default_chart()
Chart (U, (r, th, ph))
>>> from sage.all import *
>>> M.default_chart()
Chart (R^3, (x, y, z))
>>> U.default_chart()
Chart (U, (r, th, ph))

The default charts are not privileged charts on the manifold, but rather charts whose name can be skipped in the argument list of functions having an optional chart= argument.

The action of the chart map \(\varphi\) on a point is obtained by means of the call operator, i.e. the operator ():

sage: p = M.point((1,0,-2)); p
Point on the 3-dimensional differentiable manifold R^3
sage: c_cart(p)
(1, 0, -2)
sage: c_cart(p) == p.coord(c_cart)
True
sage: q = M.point((2,pi/2,pi/3), chart=c_spher) # point defined by its spherical coordinates
sage: c_spher(q)
(2, 1/2*pi, 1/3*pi)
sage: c_spher(q) == q.coord(c_spher)
True
sage: a = U.point((1,pi/2,pi)) # the default coordinates on U are the spherical ones
sage: c_spher(a)
(1, 1/2*pi, pi)
sage: c_spher(a) == a.coord(c_spher)
True
>>> from sage.all import *
>>> p = M.point((Integer(1),Integer(0),-Integer(2))); p
Point on the 3-dimensional differentiable manifold R^3
>>> c_cart(p)
(1, 0, -2)
>>> c_cart(p) == p.coord(c_cart)
True
>>> q = M.point((Integer(2),pi/Integer(2),pi/Integer(3)), chart=c_spher) # point defined by its spherical coordinates
>>> c_spher(q)
(2, 1/2*pi, 1/3*pi)
>>> c_spher(q) == q.coord(c_spher)
True
>>> a = U.point((Integer(1),pi/Integer(2),pi)) # the default coordinates on U are the spherical ones
>>> c_spher(a)
(1, 1/2*pi, pi)
>>> c_spher(a) == a.coord(c_spher)
True

Cartesian coordinates on \(U\) as an example of chart construction with coordinate restrictions: since \(U\) is the complement of the half-plane \(\{y=0, x\geq 0\}\), we must have \(y\not=0\) or \(x<0\) on U. Accordingly, we set:

sage: c_cartU.<x,y,z> = U.chart(coord_restrictions=lambda x,y,z: (y!=0, x<0))
....:    # the tuple (y!=0, x<0) means y!=0 or x<0
....:    #           [y!=0, x<0] would have meant y!=0 AND x<0
sage: U.atlas()
[Chart (U, (r, th, ph)), Chart (U, (x, y, z))]
sage: M.atlas()
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)),
 Chart (V, (r, th, ph1)), Chart (V, (r, th, ph2)),
 Chart (U, (x, y, z))]
sage: c_cartU.valid_coordinates(-1,0,2)
True
sage: c_cartU.valid_coordinates(1,0,2)
False
sage: c_cart.valid_coordinates(1,0,2)
True
>>> from sage.all import *
>>> c_cartU = U.chart(coord_restrictions=lambda x,y,z: (y!=Integer(0), x<Integer(0)), names=('x', 'y', 'z',)); (x, y, z,) = c_cartU._first_ngens(3)
...    # the tuple (y!=0, x<0) means y!=0 or x<0
...    #           [y!=0, x<0] would have meant y!=0 AND x<0
>>> U.atlas()
[Chart (U, (r, th, ph)), Chart (U, (x, y, z))]
>>> M.atlas()
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)),
 Chart (V, (r, th, ph1)), Chart (V, (r, th, ph2)),
 Chart (U, (x, y, z))]
>>> c_cartU.valid_coordinates(-Integer(1),Integer(0),Integer(2))
True
>>> c_cartU.valid_coordinates(Integer(1),Integer(0),Integer(2))
False
>>> c_cart.valid_coordinates(Integer(1),Integer(0),Integer(2))
True

A vector frame is naturally associated to each chart:

sage: c_cart.frame()
Coordinate frame (R^3, (∂/∂x,∂/∂y,∂/∂z))
sage: c_spher.frame()
Coordinate frame (U, (∂/∂r,∂/∂th,∂/∂ph))
>>> from sage.all import *
>>> c_cart.frame()
Coordinate frame (R^3, (∂/∂x,∂/∂y,∂/∂z))
>>> c_spher.frame()
Coordinate frame (U, (∂/∂r,∂/∂th,∂/∂ph))

as well as a dual frame (basis of 1-forms):

sage: c_cart.coframe()
Coordinate coframe (R^3, (dx,dy,dz))
sage: c_spher.coframe()
Coordinate coframe (U, (dr,dth,dph))
>>> from sage.all import *
>>> c_cart.coframe()
Coordinate coframe (R^3, (dx,dy,dz))
>>> c_spher.coframe()
Coordinate coframe (U, (dr,dth,dph))

Chart grids can be drawn in 2D or 3D graphics thanks to the method plot().

restrict(subset, restrictions=None)[source]#

Return the restriction of the chart to some subset.

If the current chart is \((U, \varphi)\), a restriction (or subchart) is a chart \((V, \psi)\) such that \(V \subset U\) and \(\psi = \varphi |_V\).

If such subchart has not been defined yet, it is constructed here.

The coordinates of the subchart bare the same names as the coordinates of the original chart.

INPUT:

  • subset – open subset \(V\) of the chart domain \(U\)

  • restrictions – (default: None) list of coordinate restrictions defining the subset \(V\)

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list [x > y].

OUTPUT:

EXAMPLES:

Cartesian coordinates on the unit open disc in \(\RR^2\) as a subchart of the global Cartesian coordinates:

sage: M = Manifold(2, 'R^2')
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: D = M.open_subset('D') # the unit open disc
sage: c_cart_D = c_cart.restrict(D, x^2+y^2<1)
sage: p = M.point((1/2, 0))
sage: p in D
True
sage: q = M.point((1, 2))
sage: q in D
False
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'R^2')
>>> c_cart = M.chart(names=('x', 'y',)); (x, y,) = c_cart._first_ngens(2)# Cartesian coordinates on R^2
>>> D = M.open_subset('D') # the unit open disc
>>> c_cart_D = c_cart.restrict(D, x**Integer(2)+y**Integer(2)<Integer(1))
>>> p = M.point((Integer(1)/Integer(2), Integer(0)))
>>> p in D
True
>>> q = M.point((Integer(1), Integer(2)))
>>> q in D
False

Cartesian coordinates on the annulus \(1 < \sqrt{x^2+y^2} < 2\):

sage: A = M.open_subset('A')
sage: c_cart_A = c_cart.restrict(A, [x^2+y^2>1, x^2+y^2<4])
sage: p in A, q in A
(False, False)
sage: a = M.point((3/2,0))
sage: a in A
True
>>> from sage.all import *
>>> A = M.open_subset('A')
>>> c_cart_A = c_cart.restrict(A, [x**Integer(2)+y**Integer(2)>Integer(1), x**Integer(2)+y**Integer(2)<Integer(4)])
>>> p in A, q in A
(False, False)
>>> a = M.point((Integer(3)/Integer(2),Integer(0)))
>>> a in A
True