Multivector Fields¶
Let \(U\) and \(M\) be two differentiable manifolds. Given a positive integer \(p\) and a differentiable map \(\Phi: U \rightarrow M\), a multivector field of degree \(p\), or \(p\)-vector field, along \(U\) with values on \(M\) is a field along \(U\) of alternating contravariant tensors of rank \(p\) in the tangent spaces to \(M\). The standard case of a multivector field on a differentiable manifold corresponds to \(U = M\) and \(\Phi = \mathrm{Id}_M\). Other common cases are \(\Phi\) being an immersion and \(\Phi\) being a curve in \(M\) (\(U\) is then an open interval of \(\RR\)).
Two classes implement multivector fields, depending whether the manifold \(M\) is parallelizable:
MultivectorFieldParal
when \(M\) is parallelizableMultivectorField
when \(M\) is not assumed parallelizable.
AUTHORS:
Eric Gourgoulhon (2017): initial version
REFERENCES:
- class sage.manifolds.differentiable.multivectorfield.MultivectorField(vector_field_module, degree, name=None, latex_name=None)[source]¶
Bases:
TensorField
Multivector field with values on a generic (i.e. a priori not parallelizable) differentiable manifold.
Given a differentiable manifold \(U\), a differentiable map \(\Phi: U \rightarrow M\) to a differentiable manifold \(M\) and a positive integer \(p\), a multivector field of degree \(p\) (or \(p\)-vector field) along \(U\) with values on \(M\supset\Phi(U)\) is a differentiable map
\[a:\ U \longrightarrow T^{(p,0)}M\](\(T^{(p,0)}M\) being the tensor bundle of type \((p,0)\) over \(M\)) such that
\[\forall x \in U,\quad a(x) \in \Lambda^p(T_{\Phi(x)} M) ,\]where \(T_{\Phi(x)} M\) is the vector space tangent to \(M\) at \(\Phi(x)\) and \(\Lambda^p\) stands for the exterior power of degree \(p\) (cf.
ExtPowerFreeModule
). In other words, \(a(x)\) is an alternating contravariant tensor of degree \(p\) of the tangent vector space \(T_{\Phi(x)} M\).The standard case of a multivector field on a manifold \(M\) corresponds to \(U = M\) and \(\Phi = \mathrm{Id}_M\). Other common cases are \(\Phi\) being an immersion and \(\Phi\) being a curve in \(M\) (\(U\) is then an open interval of \(\RR\)).
Note
If \(M\) is parallelizable, the class
MultivectorFieldParal
must be used instead.INPUT:
vector_field_module
– module \(\mathfrak{X}(U,\Phi)\) of vector fields along \(U\) with values on \(M\) via the map \(\Phi\)degree
– the degree of the multivector field (i.e. its tensor rank)name
– (default:None
) name given to the multivector fieldlatex_name
– (default:None
) LaTeX symbol to denote the multivector field; if none is provided, the LaTeX symbol is set toname
EXAMPLES:
Multivector field of degree 2 on a non-parallelizable 2-dimensional manifold:
sage: M = Manifold(2, 'M') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y), ....: intersection_name='W', ....: restrictions1= x>0, restrictions2= u+v>0) sage: uv_to_xy = xy_to_uv.inverse() sage: W = U.intersection(V) sage: eU = c_xy.frame() ; eV = c_uv.frame() sage: a = M.multivector_field(2, name='a') ; a 2-vector field a on the 2-dimensional differentiable manifold M sage: a.parent() Module A^2(M) of 2-vector fields on the 2-dimensional differentiable manifold M sage: a.degree() 2
>>> from sage.all import * >>> M = Manifold(Integer(2), 'M') >>> U = M.open_subset('U') ; V = M.open_subset('V') >>> M.declare_union(U,V) # M is the union of U and V >>> c_xy = U.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2); c_uv = V.chart(names=('u', 'v',)); (u, v,) = c_uv._first_ngens(2) >>> xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y), ... intersection_name='W', ... restrictions1= x>Integer(0), restrictions2= u+v>Integer(0)) >>> uv_to_xy = xy_to_uv.inverse() >>> W = U.intersection(V) >>> eU = c_xy.frame() ; eV = c_uv.frame() >>> a = M.multivector_field(Integer(2), name='a') ; a 2-vector field a on the 2-dimensional differentiable manifold M >>> a.parent() Module A^2(M) of 2-vector fields on the 2-dimensional differentiable manifold M >>> a.degree() 2
Setting the components of
a
:sage: a[eU,0,1] = x*y^2 + 2*x sage: a.add_comp_by_continuation(eV, W, c_uv) sage: a.display(eU) a = (x*y^2 + 2*x) ∂/∂x∧∂/∂y sage: a.display(eV) a = (-1/4*u^3 + 1/4*u*v^2 - 1/4*v^3 + 1/4*(u^2 - 8)*v - 2*u) ∂/∂u∧∂/∂v
>>> from sage.all import * >>> a[eU,Integer(0),Integer(1)] = x*y**Integer(2) + Integer(2)*x >>> a.add_comp_by_continuation(eV, W, c_uv) >>> a.display(eU) a = (x*y^2 + 2*x) ∂/∂x∧∂/∂y >>> a.display(eV) a = (-1/4*u^3 + 1/4*u*v^2 - 1/4*v^3 + 1/4*(u^2 - 8)*v - 2*u) ∂/∂u∧∂/∂v
It is also possible to set the components while defining the 2-vector field definition, via a dictionary whose keys are the vector frames:
sage: a1 = M.multivector_field(2, {eU: [[0, x*y^2 + 2*x], ....: [-x*y^2 - 2*x, 0]]}, name='a') sage: a1.add_comp_by_continuation(eV, W, c_uv) sage: a1 == a True
>>> from sage.all import * >>> a1 = M.multivector_field(Integer(2), {eU: [[Integer(0), x*y**Integer(2) + Integer(2)*x], ... [-x*y**Integer(2) - Integer(2)*x, Integer(0)]]}, name='a') >>> a1.add_comp_by_continuation(eV, W, c_uv) >>> a1 == a True
The exterior product of two vector fields is a 2-vector field:
sage: a = M.vector_field({eU: [-y, x]}, name='a') sage: a.add_comp_by_continuation(eV, W, c_uv) sage: b = M.vector_field({eU: [1+x*y, x^2]}, name='b') sage: b.add_comp_by_continuation(eV, W, c_uv) sage: s = a.wedge(b) ; s 2-vector field a∧b on the 2-dimensional differentiable manifold M sage: s.display(eU) a∧b = (-2*x^2*y - x) ∂/∂x∧∂/∂y sage: s.display(eV) a∧b = (1/2*u^3 - 1/2*u*v^2 - 1/2*v^3 + 1/2*(u^2 + 2)*v + u) ∂/∂u∧∂/∂v
>>> from sage.all import * >>> a = M.vector_field({eU: [-y, x]}, name='a') >>> a.add_comp_by_continuation(eV, W, c_uv) >>> b = M.vector_field({eU: [Integer(1)+x*y, x**Integer(2)]}, name='b') >>> b.add_comp_by_continuation(eV, W, c_uv) >>> s = a.wedge(b) ; s 2-vector field a∧b on the 2-dimensional differentiable manifold M >>> s.display(eU) a∧b = (-2*x^2*y - x) ∂/∂x∧∂/∂y >>> s.display(eV) a∧b = (1/2*u^3 - 1/2*u*v^2 - 1/2*v^3 + 1/2*(u^2 + 2)*v + u) ∂/∂u∧∂/∂v
Multiplying a 2-vector field by a scalar field results in another 2-vector field:
sage: f = M.scalar_field({c_xy: (x+y)^2, c_uv: u^2}, name='f') sage: s = f*s ; s 2-vector field f*(a∧b) on the 2-dimensional differentiable manifold M sage: s.display(eU) f*(a∧b) = (-2*x^2*y^3 - x^3 - (4*x^3 + x)*y^2 - 2*(x^4 + x^2)*y) ∂/∂x∧∂/∂y sage: s.display(eV) f*(a∧b) = (1/2*u^5 - 1/2*u^3*v^2 - 1/2*u^2*v^3 + u^3 + 1/2*(u^4 + 2*u^2)*v) ∂/∂u∧∂/∂v
>>> from sage.all import * >>> f = M.scalar_field({c_xy: (x+y)**Integer(2), c_uv: u**Integer(2)}, name='f') >>> s = f*s ; s 2-vector field f*(a∧b) on the 2-dimensional differentiable manifold M >>> s.display(eU) f*(a∧b) = (-2*x^2*y^3 - x^3 - (4*x^3 + x)*y^2 - 2*(x^4 + x^2)*y) ∂/∂x∧∂/∂y >>> s.display(eV) f*(a∧b) = (1/2*u^5 - 1/2*u^3*v^2 - 1/2*u^2*v^3 + u^3 + 1/2*(u^4 + 2*u^2)*v) ∂/∂u∧∂/∂v
- bracket(other)[source]¶
Return the Schouten-Nijenhuis bracket of
self
with another multivector field.The Schouten-Nijenhuis bracket extends the Lie bracket of vector fields (cf.
bracket()
) to multivector fields.Denoting by \(A^p(M)\) the \(C^k(M)\)-module of \(p\)-vector fields on the \(C^k\)-differentiable manifold \(M\) over the field \(K\) (cf.
MultivectorModule
), the Schouten-Nijenhuis bracket is a \(K\)-bilinear map\[\begin{split}\begin{array}{ccc} A^p(M)\times A^q(M) & \longrightarrow & A^{p+q-1}(M) \\ (a,b) & \longmapsto & [a,b] \end{array}\end{split}\]which obeys the following properties:
if \(p=0\) and \(q=0\), (i.e. \(a\) and \(b\) are two scalar fields), \([a,b]=0\)
if \(p=0\) (i.e. \(a\) is a scalar field) and \(q\geq 1\), \([a,b] = - \iota_{\mathrm{d}a} b\) (minus the interior product of the differential of \(a\) by \(b\))
if \(p=1\) (i.e. \(a\) is a vector field), \([a,b] = \mathcal{L}_a b\) (the Lie derivative of \(b\) along \(a\))
\([a,b] = -(-1)^{(p-1)(q-1)} [b,a]\)
for any multivector field \(c\) and \((a,b) \in A^p(M)\times A^q(M)\), \([a,.]\) obeys the graded Leibniz rule
\[[a,b\wedge c] = [a,b]\wedge c + (-1)^{(p-1)q} b\wedge [a,c]\]for \((a,b,c) \in A^p(M)\times A^q(M)\times A^r(M)\), the graded Jacobi identity holds:
\[(-1)^{(p-1)(r-1)}[a,[b,c]] + (-1)^{(q-1)(p-1)}[b,[c,a]] + (-1)^{(r-1)(q-1)}[c,[a,b]] = 0\]Note
There are two definitions of the Schouten-Nijenhuis bracket in the literature, which differ from each other when \(p\) is even by an overall sign. The definition adopted here is that of [Mar1997], [Kos1985] and Wikipedia article Schouten-Nijenhuis_bracket. The other definition, adopted e.g. by [Nij1955], [Lic1977] and [Vai1994], is \([a,b]' = (-1)^{p+1} [a,b]\).
INPUT:
other
– a multivector field
OUTPUT:
instance of
MultivectorField
(or ofDiffScalarField
if \(p=1\) and \(q=0\)) representing the Schouten-Nijenhuis bracket \([a,b]\), where \(a\) isself
and \(b\) isother
EXAMPLES:
Bracket of two vector fields on the 2-sphere:
sage: M = Manifold(2, 'S^2', start_index=1) # the sphere S^2 sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # S^2 is the union of U and V sage: c_xy.<x,y> = U.chart() # stereographic coord. North sage: c_uv.<u,v> = V.chart() # stereographic coord. South sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)), ....: intersection_name='W', restrictions1= x^2+y^2!=0, ....: restrictions2= u^2+v^2!=0) sage: uv_to_xy = xy_to_uv.inverse() sage: W = U.intersection(V) # The complement of the two poles sage: e_xy = c_xy.frame() ; e_uv = c_uv.frame() sage: a = M.vector_field({e_xy: [y, x]}, name='a') sage: a.add_comp_by_continuation(e_uv, W, c_uv) sage: b = M.vector_field({e_xy: [x*y, x-y]}, name='b') sage: b.add_comp_by_continuation(e_uv, W, c_uv) sage: s = a.bracket(b); s Vector field [a,b] on the 2-dimensional differentiable manifold S^2 sage: s.display(e_xy) [a,b] = (x^2 + y^2 - x + y) ∂/∂x + (-(x - 1)*y - x) ∂/∂y
>>> from sage.all import * >>> M = Manifold(Integer(2), 'S^2', start_index=Integer(1)) # the sphere S^2 >>> U = M.open_subset('U') ; V = M.open_subset('V') >>> M.declare_union(U,V) # S^2 is the union of U and V >>> c_xy = U.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2)# stereographic coord. North >>> c_uv = V.chart(names=('u', 'v',)); (u, v,) = c_uv._first_ngens(2)# stereographic coord. South >>> xy_to_uv = c_xy.transition_map(c_uv, (x/(x**Integer(2)+y**Integer(2)), y/(x**Integer(2)+y**Integer(2))), ... intersection_name='W', restrictions1= x**Integer(2)+y**Integer(2)!=Integer(0), ... restrictions2= u**Integer(2)+v**Integer(2)!=Integer(0)) >>> uv_to_xy = xy_to_uv.inverse() >>> W = U.intersection(V) # The complement of the two poles >>> e_xy = c_xy.frame() ; e_uv = c_uv.frame() >>> a = M.vector_field({e_xy: [y, x]}, name='a') >>> a.add_comp_by_continuation(e_uv, W, c_uv) >>> b = M.vector_field({e_xy: [x*y, x-y]}, name='b') >>> b.add_comp_by_continuation(e_uv, W, c_uv) >>> s = a.bracket(b); s Vector field [a,b] on the 2-dimensional differentiable manifold S^2 >>> s.display(e_xy) [a,b] = (x^2 + y^2 - x + y) ∂/∂x + (-(x - 1)*y - x) ∂/∂y
For two vector fields, the bracket coincides with the Lie derivative:
sage: s == b.lie_derivative(a) True
>>> from sage.all import * >>> s == b.lie_derivative(a) True
Schouten-Nijenhuis bracket of a 2-vector field and a 1-vector field:
sage: c = a.wedge(b); c 2-vector field a∧b on the 2-dimensional differentiable manifold S^2 sage: s = c.bracket(a); s 2-vector field [a∧b,a] on the 2-dimensional differentiable manifold S^2 sage: s.display(e_xy) [a∧b,a] = (x^3 + (2*x - 1)*y^2 - x^2 + 2*x*y) ∂/∂x∧∂/∂y
>>> from sage.all import * >>> c = a.wedge(b); c 2-vector field a∧b on the 2-dimensional differentiable manifold S^2 >>> s = c.bracket(a); s 2-vector field [a∧b,a] on the 2-dimensional differentiable manifold S^2 >>> s.display(e_xy) [a∧b,a] = (x^3 + (2*x - 1)*y^2 - x^2 + 2*x*y) ∂/∂x∧∂/∂y
Since \(a\) is a vector field, we have in this case:
sage: s == - c.lie_derivative(a) True
>>> from sage.all import * >>> s == - c.lie_derivative(a) True
See also
MultivectorFieldParal.bracket()
for more examples and check of standards identities involving the Schouten-Nijenhuis bracket
- degree()[source]¶
Return the degree of
self
.OUTPUT: integer \(p\) such that
self
is a \(p\)-vector fieldEXAMPLES:
sage: M = Manifold(3, 'M') sage: a = M.multivector_field(2); a 2-vector field on the 3-dimensional differentiable manifold M sage: a.degree() 2 sage: b = M.vector_field(); b Vector field on the 3-dimensional differentiable manifold M sage: b.degree() 1
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M') >>> a = M.multivector_field(Integer(2)); a 2-vector field on the 3-dimensional differentiable manifold M >>> a.degree() 2 >>> b = M.vector_field(); b Vector field on the 3-dimensional differentiable manifold M >>> b.degree() 1
- interior_product(form)[source]¶
Interior product with a differential form.
If
self
is a multivector field \(A\) of degree \(p\) and \(B\) is a differential form of degree \(q\geq p\) on the same manifold as \(A\), the interior product of \(A\) by \(B\) is the differential form \(\iota_A B\) of degree \(q-p\) defined by\[(\iota_A B)_{i_1\ldots i_{q-p}} = A^{k_1\ldots k_p} B_{k_1\ldots k_p i_1\ldots i_{q-p}}\]Note
A.interior_product(B)
yields the same result asA.contract(0,..., p-1, B, 0,..., p-1)
(cf.contract()
), butinterior_product
is more efficient, the alternating character of \(A\) being not used to reduce the computation incontract()
INPUT:
form
– differential form \(B\) (instance ofDiffForm
); the degree of \(B\) must be at least equal to the degree ofself
OUTPUT:
scalar field (case \(p=q\)) or
DiffForm
(case \(p<q\)) representing the interior product \(\iota_A B\), where \(A\) isself
See also
interior_product()
for the interior product of a differential form with a multivector fieldEXAMPLES:
Interior product of a vector field (\(p=1\)) with a 2-form (\(q=2\)) on the 2-sphere:
sage: M = Manifold(2, 'S^2', start_index=1) # the sphere S^2 sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # S^2 is the union of U and V sage: c_xy.<x,y> = U.chart() # stereographic coord. North sage: c_uv.<u,v> = V.chart() # stereographic coord. South sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)), ....: intersection_name='W', restrictions1= x^2+y^2!=0, ....: restrictions2= u^2+v^2!=0) sage: uv_to_xy = xy_to_uv.inverse() sage: W = U.intersection(V) # The complement of the two poles sage: e_xy = c_xy.frame() ; e_uv = c_uv.frame() sage: a = M.vector_field({e_xy: [-y, x]}, name='a') sage: a.add_comp_by_continuation(e_uv, W, c_uv) sage: b = M.diff_form(2, name='b') sage: b[e_xy,1,2] = 4/(x^2+y^2+1)^2 # the standard area 2-form sage: b.add_comp_by_continuation(e_uv, W, c_uv) sage: b.display(e_xy) b = 4/(x^2 + y^2 + 1)^2 dx∧dy sage: b.display(e_uv) b = -4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) du∧dv sage: s = a.interior_product(b); s 1-form i_a b on the 2-dimensional differentiable manifold S^2 sage: s.display(e_xy) i_a b = -4*x/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) dx - 4*y/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) dy sage: s.display(e_uv) i_a b = 4*u/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) du + 4*v/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) dv sage: s == a.contract(b) True
>>> from sage.all import * >>> M = Manifold(Integer(2), 'S^2', start_index=Integer(1)) # the sphere S^2 >>> U = M.open_subset('U') ; V = M.open_subset('V') >>> M.declare_union(U,V) # S^2 is the union of U and V >>> c_xy = U.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2)# stereographic coord. North >>> c_uv = V.chart(names=('u', 'v',)); (u, v,) = c_uv._first_ngens(2)# stereographic coord. South >>> xy_to_uv = c_xy.transition_map(c_uv, (x/(x**Integer(2)+y**Integer(2)), y/(x**Integer(2)+y**Integer(2))), ... intersection_name='W', restrictions1= x**Integer(2)+y**Integer(2)!=Integer(0), ... restrictions2= u**Integer(2)+v**Integer(2)!=Integer(0)) >>> uv_to_xy = xy_to_uv.inverse() >>> W = U.intersection(V) # The complement of the two poles >>> e_xy = c_xy.frame() ; e_uv = c_uv.frame() >>> a = M.vector_field({e_xy: [-y, x]}, name='a') >>> a.add_comp_by_continuation(e_uv, W, c_uv) >>> b = M.diff_form(Integer(2), name='b') >>> b[e_xy,Integer(1),Integer(2)] = Integer(4)/(x**Integer(2)+y**Integer(2)+Integer(1))**Integer(2) # the standard area 2-form >>> b.add_comp_by_continuation(e_uv, W, c_uv) >>> b.display(e_xy) b = 4/(x^2 + y^2 + 1)^2 dx∧dy >>> b.display(e_uv) b = -4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) du∧dv >>> s = a.interior_product(b); s 1-form i_a b on the 2-dimensional differentiable manifold S^2 >>> s.display(e_xy) i_a b = -4*x/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) dx - 4*y/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) dy >>> s.display(e_uv) i_a b = 4*u/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) du + 4*v/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) dv >>> s == a.contract(b) True
Example with \(p=2\) and \(q=2\):
sage: a = M.multivector_field(2, name='a') sage: a[e_xy,1,2] = x*y sage: a.add_comp_by_continuation(e_uv, W, c_uv) sage: a.display(e_xy) a = x*y ∂/∂x∧∂/∂y sage: a.display(e_uv) a = -u*v ∂/∂u∧∂/∂v sage: s = a.interior_product(b); s Scalar field i_a b on the 2-dimensional differentiable manifold S^2 sage: s.display() i_a b: S^2 → ℝ on U: (x, y) ↦ 8*x*y/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) on V: (u, v) ↦ 8*u*v/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1)
>>> from sage.all import * >>> a = M.multivector_field(Integer(2), name='a') >>> a[e_xy,Integer(1),Integer(2)] = x*y >>> a.add_comp_by_continuation(e_uv, W, c_uv) >>> a.display(e_xy) a = x*y ∂/∂x∧∂/∂y >>> a.display(e_uv) a = -u*v ∂/∂u∧∂/∂v >>> s = a.interior_product(b); s Scalar field i_a b on the 2-dimensional differentiable manifold S^2 >>> s.display() i_a b: S^2 → ℝ on U: (x, y) ↦ 8*x*y/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) on V: (u, v) ↦ 8*u*v/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1)
Some checks:
sage: s == a.contract(0, 1, b, 0, 1) True sage: s.restrict(U) == 2 * a[[e_xy,1,2]] * b[[e_xy,1,2]] True sage: s.restrict(V) == 2 * a[[e_uv,1,2]] * b[[e_uv,1,2]] True
>>> from sage.all import * >>> s == a.contract(Integer(0), Integer(1), b, Integer(0), Integer(1)) True >>> s.restrict(U) == Integer(2) * a[[e_xy,Integer(1),Integer(2)]] * b[[e_xy,Integer(1),Integer(2)]] True >>> s.restrict(V) == Integer(2) * a[[e_uv,Integer(1),Integer(2)]] * b[[e_uv,Integer(1),Integer(2)]] True
- wedge(other)[source]¶
Exterior product with another multivector field.
INPUT:
other
– another multivector field (on the same manifold)
OUTPUT:
instance of
MultivectorField
representing the exterior productself ∧ other
EXAMPLES:
Exterior product of two vector fields on the 2-sphere:
sage: M = Manifold(2, 'S^2', start_index=1) # the sphere S^2 sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # S^2 is the union of U and V sage: c_xy.<x,y> = U.chart() # stereographic coord. North sage: c_uv.<u,v> = V.chart() # stereographic coord. South sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)), ....: intersection_name='W', restrictions1= x^2+y^2!=0, ....: restrictions2= u^2+v^2!=0) sage: uv_to_xy = xy_to_uv.inverse() sage: W = U.intersection(V) # The complement of the two poles sage: e_xy = c_xy.frame() ; e_uv = c_uv.frame() sage: a = M.vector_field({e_xy: [y, x]}, name='a') sage: a.add_comp_by_continuation(e_uv, W, c_uv) sage: b = M.vector_field({e_xy: [x^2 + y^2, y]}, name='b') sage: b.add_comp_by_continuation(e_uv, W, c_uv) sage: c = a.wedge(b); c 2-vector field a∧b on the 2-dimensional differentiable manifold S^2 sage: c.display(e_xy) a∧b = (-x^3 - (x - 1)*y^2) ∂/∂x∧∂/∂y sage: c.display(e_uv) a∧b = (-v^2 + u) ∂/∂u∧∂/∂v
>>> from sage.all import * >>> M = Manifold(Integer(2), 'S^2', start_index=Integer(1)) # the sphere S^2 >>> U = M.open_subset('U') ; V = M.open_subset('V') >>> M.declare_union(U,V) # S^2 is the union of U and V >>> c_xy = U.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2)# stereographic coord. North >>> c_uv = V.chart(names=('u', 'v',)); (u, v,) = c_uv._first_ngens(2)# stereographic coord. South >>> xy_to_uv = c_xy.transition_map(c_uv, (x/(x**Integer(2)+y**Integer(2)), y/(x**Integer(2)+y**Integer(2))), ... intersection_name='W', restrictions1= x**Integer(2)+y**Integer(2)!=Integer(0), ... restrictions2= u**Integer(2)+v**Integer(2)!=Integer(0)) >>> uv_to_xy = xy_to_uv.inverse() >>> W = U.intersection(V) # The complement of the two poles >>> e_xy = c_xy.frame() ; e_uv = c_uv.frame() >>> a = M.vector_field({e_xy: [y, x]}, name='a') >>> a.add_comp_by_continuation(e_uv, W, c_uv) >>> b = M.vector_field({e_xy: [x**Integer(2) + y**Integer(2), y]}, name='b') >>> b.add_comp_by_continuation(e_uv, W, c_uv) >>> c = a.wedge(b); c 2-vector field a∧b on the 2-dimensional differentiable manifold S^2 >>> c.display(e_xy) a∧b = (-x^3 - (x - 1)*y^2) ∂/∂x∧∂/∂y >>> c.display(e_uv) a∧b = (-v^2 + u) ∂/∂u∧∂/∂v
- class sage.manifolds.differentiable.multivectorfield.MultivectorFieldParal(vector_field_module, degree, name=None, latex_name=None)[source]¶
Bases:
AlternatingContrTensor
,TensorFieldParal
Multivector field with values on a parallelizable manifold.
Given a differentiable manifold \(U\), a differentiable map \(\Phi: U \rightarrow M\) to a parallelizable manifold \(M\) and a positive integer \(p\), a multivector field of degree \(p\) (or \(p\)-vector field) along \(U\) with values on \(M\supset\Phi(U)\) is a differentiable map
\[a:\ U \longrightarrow T^{(p,0)}M\](\(T^{(p,0)}M\) being the tensor bundle of type \((p,0)\) over \(M\)) such that
\[\forall x \in U,\quad a(x) \in \Lambda^p(T_{\Phi(x)} M) ,\]where \(T_{\Phi(x)} M\) is the vector space tangent to \(M\) at \(\Phi(x)\) and \(\Lambda^p\) stands for the exterior power of degree \(p\) (cf.
ExtPowerFreeModule
). In other words, \(a(x)\) is an alternating contravariant tensor of degree \(p\) of the tangent vector space \(T_{\Phi(x)} M\).The standard case of a multivector field on a manifold \(M\) corresponds to \(U = M\) and \(\Phi = \mathrm{Id}_M\). Other common cases are \(\Phi\) being an immersion and \(\Phi\) being a curve in \(M\) (\(U\) is then an open interval of \(\RR\)).
Note
If \(M\) is not parallelizable, the class
MultivectorField
must be used instead.INPUT:
vector_field_module
– free module \(\mathfrak{X}(U,\Phi)\) of vector fields along \(U\) with values on \(M\) via the map \(\Phi\)degree
– the degree of the multivector field (i.e. its tensor rank)name
– (default:None
) name given to the multivector fieldlatex_name
– (default:None
) LaTeX symbol to denote the multivector field; if none is provided, the LaTeX symbol is set toname
EXAMPLES:
A 2-vector field on a 4-dimensional manifold:
sage: M = Manifold(4, 'M') sage: c_txyz.<t,x,y,z> = M.chart() sage: a = M.multivector_field(2, name='a') ; a 2-vector field a on the 4-dimensional differentiable manifold M sage: a.parent() Free module A^2(M) of 2-vector fields on the 4-dimensional differentiable manifold M
>>> from sage.all import * >>> M = Manifold(Integer(4), 'M') >>> c_txyz = M.chart(names=('t', 'x', 'y', 'z',)); (t, x, y, z,) = c_txyz._first_ngens(4) >>> a = M.multivector_field(Integer(2), name='a') ; a 2-vector field a on the 4-dimensional differentiable manifold M >>> a.parent() Free module A^2(M) of 2-vector fields on the 4-dimensional differentiable manifold M
A multivector field is a tensor field of purely contravariant type:
sage: a.tensor_type() (2, 0)
>>> from sage.all import * >>> a.tensor_type() (2, 0)
It is antisymmetric, its components being
CompFullyAntiSym
:sage: a.symmetries() no symmetry; antisymmetry: (0, 1) sage: a[0,1] = 2*x sage: a[1,0] -2*x sage: a.comp() Fully antisymmetric 2-indices components w.r.t. Coordinate frame (M, (∂/∂t,∂/∂x,∂/∂y,∂/∂z)) sage: type(a.comp()) <class 'sage.tensor.modules.comp.CompFullyAntiSym'>
>>> from sage.all import * >>> a.symmetries() no symmetry; antisymmetry: (0, 1) >>> a[Integer(0),Integer(1)] = Integer(2)*x >>> a[Integer(1),Integer(0)] -2*x >>> a.comp() Fully antisymmetric 2-indices components w.r.t. Coordinate frame (M, (∂/∂t,∂/∂x,∂/∂y,∂/∂z)) >>> type(a.comp()) <class 'sage.tensor.modules.comp.CompFullyAntiSym'>
Setting a component with repeated indices to a nonzero value results in an error:
sage: a[1,1] = 3 Traceback (most recent call last): ... ValueError: by antisymmetry, the component cannot have a nonzero value for the indices (1, 1) sage: a[1,1] = 0 # OK, albeit useless sage: a[1,2] = 3 # OK
>>> from sage.all import * >>> a[Integer(1),Integer(1)] = Integer(3) Traceback (most recent call last): ... ValueError: by antisymmetry, the component cannot have a nonzero value for the indices (1, 1) >>> a[Integer(1),Integer(1)] = Integer(0) # OK, albeit useless >>> a[Integer(1),Integer(2)] = Integer(3) # OK
The expansion of a multivector field with respect to a given frame is displayed via the method
display()
:sage: a.display() # expansion w.r.t. the default frame a = 2*x ∂/∂t∧∂/∂x + 3 ∂/∂x∧∂/∂y sage: latex(a.display()) # output for the notebook a = 2 \, x \frac{\partial}{\partial t }\wedge \frac{\partial}{\partial x } + 3 \frac{\partial}{\partial x }\wedge \frac{\partial}{\partial y }
>>> from sage.all import * >>> a.display() # expansion w.r.t. the default frame a = 2*x ∂/∂t∧∂/∂x + 3 ∂/∂x∧∂/∂y >>> latex(a.display()) # output for the notebook a = 2 \, x \frac{\partial}{\partial t }\wedge \frac{\partial}{\partial x } + 3 \frac{\partial}{\partial x }\wedge \frac{\partial}{\partial y }
Multivector fields can be added or subtracted:
sage: b = M.multivector_field(2) sage: b[0,1], b[0,2], b[0,3] = y, 2, x+z sage: s = a + b ; s 2-vector field on the 4-dimensional differentiable manifold M sage: s.display() (2*x + y) ∂/∂t∧∂/∂x + 2 ∂/∂t∧∂/∂y + (x + z) ∂/∂t∧∂/∂z + 3 ∂/∂x∧∂/∂y sage: s = a - b ; s 2-vector field on the 4-dimensional differentiable manifold M sage: s.display() (2*x - y) ∂/∂t∧∂/∂x - 2 ∂/∂t∧∂/∂y + (-x - z) ∂/∂t∧∂/∂z + 3 ∂/∂x∧∂/∂y
>>> from sage.all import * >>> b = M.multivector_field(Integer(2)) >>> b[Integer(0),Integer(1)], b[Integer(0),Integer(2)], b[Integer(0),Integer(3)] = y, Integer(2), x+z >>> s = a + b ; s 2-vector field on the 4-dimensional differentiable manifold M >>> s.display() (2*x + y) ∂/∂t∧∂/∂x + 2 ∂/∂t∧∂/∂y + (x + z) ∂/∂t∧∂/∂z + 3 ∂/∂x∧∂/∂y >>> s = a - b ; s 2-vector field on the 4-dimensional differentiable manifold M >>> s.display() (2*x - y) ∂/∂t∧∂/∂x - 2 ∂/∂t∧∂/∂y + (-x - z) ∂/∂t∧∂/∂z + 3 ∂/∂x∧∂/∂y
An example of 3-vector field in \(\RR^3\) with Cartesian coordinates:
sage: M = Manifold(3, 'R3', latex_name=r'\RR^3', start_index=1) sage: c_cart.<x,y,z> = M.chart() sage: a = M.multivector_field(3, name='a') sage: a[1,2,3] = x^2+y^2+z^2 # the only independent component sage: a[:] # all the components are set from the previous line: [[[0, 0, 0], [0, 0, x^2 + y^2 + z^2], [0, -x^2 - y^2 - z^2, 0]], [[0, 0, -x^2 - y^2 - z^2], [0, 0, 0], [x^2 + y^2 + z^2, 0, 0]], [[0, x^2 + y^2 + z^2, 0], [-x^2 - y^2 - z^2, 0, 0], [0, 0, 0]]] sage: a.display() a = (x^2 + y^2 + z^2) ∂/∂x∧∂/∂y∧∂/∂z
>>> from sage.all import * >>> M = Manifold(Integer(3), 'R3', latex_name=r'\RR^3', start_index=Integer(1)) >>> c_cart = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_cart._first_ngens(3) >>> a = M.multivector_field(Integer(3), name='a') >>> a[Integer(1),Integer(2),Integer(3)] = x**Integer(2)+y**Integer(2)+z**Integer(2) # the only independent component >>> a[:] # all the components are set from the previous line: [[[0, 0, 0], [0, 0, x^2 + y^2 + z^2], [0, -x^2 - y^2 - z^2, 0]], [[0, 0, -x^2 - y^2 - z^2], [0, 0, 0], [x^2 + y^2 + z^2, 0, 0]], [[0, x^2 + y^2 + z^2, 0], [-x^2 - y^2 - z^2, 0, 0], [0, 0, 0]]] >>> a.display() a = (x^2 + y^2 + z^2) ∂/∂x∧∂/∂y∧∂/∂z
Spherical components from the tensorial change-of-frame formula:
sage: c_spher.<r,th,ph> = M.chart(r'r:[0,+oo) th:[0,pi]:\theta ph:[0,2*pi):\phi') sage: spher_to_cart = c_spher.transition_map(c_cart, ....: [r*sin(th)*cos(ph), r*sin(th)*sin(ph), r*cos(th)]) sage: cart_to_spher = spher_to_cart.set_inverse(sqrt(x^2+y^2+z^2), ....: atan2(sqrt(x^2+y^2),z), atan2(y, x)) Check of the inverse coordinate transformation: r == r *passed* th == arctan2(r*sin(th), r*cos(th)) **failed** ph == arctan2(r*sin(ph)*sin(th), r*cos(ph)*sin(th)) **failed** x == x *passed* y == y *passed* z == z *passed* NB: a failed report can reflect a mere lack of simplification. sage: a.comp(c_spher.frame()) # computation of components w.r.t. spherical frame Fully antisymmetric 3-indices components w.r.t. Coordinate frame (R3, (∂/∂r,∂/∂th,∂/∂ph)) sage: a.comp(c_spher.frame())[1,2,3, c_spher] 1/sin(th) sage: a.display(c_spher.frame()) a = sqrt(x^2 + y^2 + z^2)/sqrt(x^2 + y^2) ∂/∂r∧∂/∂th∧∂/∂ph sage: a.display(c_spher.frame(), c_spher) a = 1/sin(th) ∂/∂r∧∂/∂th∧∂/∂ph
>>> from sage.all import * >>> c_spher = M.chart(r'r:[0,+oo) th:[0,pi]:\theta ph:[0,2*pi):\phi', names=('r', 'th', 'ph',)); (r, th, ph,) = c_spher._first_ngens(3) >>> spher_to_cart = c_spher.transition_map(c_cart, ... [r*sin(th)*cos(ph), r*sin(th)*sin(ph), r*cos(th)]) >>> cart_to_spher = spher_to_cart.set_inverse(sqrt(x**Integer(2)+y**Integer(2)+z**Integer(2)), ... atan2(sqrt(x**Integer(2)+y**Integer(2)),z), atan2(y, x)) Check of the inverse coordinate transformation: r == r *passed* th == arctan2(r*sin(th), r*cos(th)) **failed** ph == arctan2(r*sin(ph)*sin(th), r*cos(ph)*sin(th)) **failed** x == x *passed* y == y *passed* z == z *passed* NB: a failed report can reflect a mere lack of simplification. >>> a.comp(c_spher.frame()) # computation of components w.r.t. spherical frame Fully antisymmetric 3-indices components w.r.t. Coordinate frame (R3, (∂/∂r,∂/∂th,∂/∂ph)) >>> a.comp(c_spher.frame())[Integer(1),Integer(2),Integer(3), c_spher] 1/sin(th) >>> a.display(c_spher.frame()) a = sqrt(x^2 + y^2 + z^2)/sqrt(x^2 + y^2) ∂/∂r∧∂/∂th∧∂/∂ph >>> a.display(c_spher.frame(), c_spher) a = 1/sin(th) ∂/∂r∧∂/∂th∧∂/∂ph
As a shortcut of the above command, on can pass just the chart
c_spher
todisplay
, the vector frame being then assumed to be the coordinate frame associated with the chart:sage: a.display(c_spher) a = 1/sin(th) ∂/∂r∧∂/∂th∧∂/∂ph
>>> from sage.all import * >>> a.display(c_spher) a = 1/sin(th) ∂/∂r∧∂/∂th∧∂/∂ph
The exterior product of two multivector fields is performed via the method
wedge()
:sage: a = M.vector_field([x*y, -z*x, y], name='A') sage: b = M.vector_field([y, z+y, x^2-z^2], name='B') sage: ab = a.wedge(b) ; ab 2-vector field A∧B on the 3-dimensional differentiable manifold R3 sage: ab.display() A∧B = (x*y^2 + 2*x*y*z) ∂/∂x∧∂/∂y + (x^3*y - x*y*z^2 - y^2) ∂/∂x∧∂/∂z + (x*z^3 - y^2 - (x^3 + y)*z) ∂/∂y∧∂/∂z
>>> from sage.all import * >>> a = M.vector_field([x*y, -z*x, y], name='A') >>> b = M.vector_field([y, z+y, x**Integer(2)-z**Integer(2)], name='B') >>> ab = a.wedge(b) ; ab 2-vector field A∧B on the 3-dimensional differentiable manifold R3 >>> ab.display() A∧B = (x*y^2 + 2*x*y*z) ∂/∂x∧∂/∂y + (x^3*y - x*y*z^2 - y^2) ∂/∂x∧∂/∂z + (x*z^3 - y^2 - (x^3 + y)*z) ∂/∂y∧∂/∂z
Let us check the formula relating the exterior product to the tensor product for vector fields:
sage: a.wedge(b) == a*b - b*a True
>>> from sage.all import * >>> a.wedge(b) == a*b - b*a True
The tensor product of a vector field and a 2-vector field is not a 3-vector field but a tensor field of type \((3,0)\) with less symmetries:
sage: c = a*ab ; c Tensor field A⊗(A∧B) of type (3,0) on the 3-dimensional differentiable manifold R3 sage: c.symmetries() # the antisymmetry is only w.r.t. the last 2 arguments: no symmetry; antisymmetry: (1, 2)
>>> from sage.all import * >>> c = a*ab ; c Tensor field A⊗(A∧B) of type (3,0) on the 3-dimensional differentiable manifold R3 >>> c.symmetries() # the antisymmetry is only w.r.t. the last 2 arguments: no symmetry; antisymmetry: (1, 2)
The Lie derivative of a 2-vector field is a 2-vector field:
sage: ab.lie_der(a) 2-vector field on the 3-dimensional differentiable manifold R3
>>> from sage.all import * >>> ab.lie_der(a) 2-vector field on the 3-dimensional differentiable manifold R3
- bracket(other)[source]¶
Return the Schouten-Nijenhuis bracket of
self
with another multivector field.The Schouten-Nijenhuis bracket extends the Lie bracket of vector fields (cf.
bracket()
) to multivector fields.Denoting by \(A^p(M)\) the \(C^k(M)\)-module of \(p\)-vector fields on the \(C^k\)-differentiable manifold \(M\) over the field \(K\) (cf.
MultivectorModule
), the Schouten-Nijenhuis bracket is a \(K\)-bilinear map\[\begin{split}\begin{array}{ccc} A^p(M)\times A^q(M) & \longrightarrow & A^{p+q-1}(M) \\ (a,b) & \longmapsto & [a,b] \end{array}\end{split}\]which obeys the following properties:
if \(p=0\) and \(q=0\), (i.e. \(a\) and \(b\) are two scalar fields), \([a,b]=0\)
if \(p=0\) (i.e. \(a\) is a scalar field) and \(q\geq 1\), \([a,b] = - \iota_{\mathrm{d}a} b\) (minus the interior product of the differential of \(a\) by \(b\))
if \(p=1\) (i.e. \(a\) is a vector field), \([a,b] = \mathcal{L}_a b\) (the Lie derivative of \(b\) along \(a\))
\([a,b] = -(-1)^{(p-1)(q-1)} [b,a]\)
for any multivector field \(c\) and \((a,b) \in A^p(M)\times A^q(M)\), \([a,.]\) obeys the graded Leibniz rule
\[[a,b\wedge c] = [a,b]\wedge c + (-1)^{(p-1)q} b\wedge [a,c]\]for \((a,b,c) \in A^p(M)\times A^q(M)\times A^r(M)\), the graded Jacobi identity holds:
\[(-1)^{(p-1)(r-1)}[a,[b,c]] + (-1)^{(q-1)(p-1)}[b,[c,a]] + (-1)^{(r-1)(q-1)}[c,[a,b]] = 0\]Note
There are two definitions of the Schouten-Nijenhuis bracket in the literature, which differ from each other when \(p\) is even by an overall sign. The definition adopted here is that of [Mar1997], [Kos1985] and Wikipedia article Schouten-Nijenhuis_bracket. The other definition, adopted e.g. by [Nij1955], [Lic1977] and [Vai1994], is \([a,b]' = (-1)^{p+1} [a,b]\).
INPUT:
other
– a multivector field
OUTPUT:
instance of
MultivectorFieldParal
(or ofDiffScalarField
if \(p=1\) and \(q=0\)) representing the Schouten-Nijenhuis bracket \([a,b]\), where \(a\) isself
and \(b\) isother
EXAMPLES:
Let us consider two vector fields on a 3-dimensional manifold:
sage: M = Manifold(3, 'M') sage: X.<x,y,z> = M.chart() sage: a = M.vector_field([x*y+z, x+y-z, z-2*x+y], name='a') sage: b = M.vector_field([y+2*z-x, x^2-y+z, z-x], name='b')
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M') >>> X = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = X._first_ngens(3) >>> a = M.vector_field([x*y+z, x+y-z, z-Integer(2)*x+y], name='a') >>> b = M.vector_field([y+Integer(2)*z-x, x**Integer(2)-y+z, z-x], name='b')
and form their Schouten-Nijenhuis bracket:
sage: s = a.bracket(b); s Vector field [a,b] on the 3-dimensional differentiable manifold M sage: s.display() [a,b] = (-x^3 + (x + 3)*y - y^2 - (x + 2*y + 1)*z - 2*x) ∂/∂x + (2*x^2*y - x^2 + 2*x*z - 3*x) ∂/∂y + (-x^2 - (x - 4)*y - 3*x + 2*z) ∂/∂z
>>> from sage.all import * >>> s = a.bracket(b); s Vector field [a,b] on the 3-dimensional differentiable manifold M >>> s.display() [a,b] = (-x^3 + (x + 3)*y - y^2 - (x + 2*y + 1)*z - 2*x) ∂/∂x + (2*x^2*y - x^2 + 2*x*z - 3*x) ∂/∂y + (-x^2 - (x - 4)*y - 3*x + 2*z) ∂/∂z
Check that \([a,b]\) is actually the Lie bracket:
sage: f = M.scalar_field({X: x+y*z}, name='f') sage: s(f) == a(b(f)) - b(a(f)) True
>>> from sage.all import * >>> f = M.scalar_field({X: x+y*z}, name='f') >>> s(f) == a(b(f)) - b(a(f)) True
Check that \([a,b]\) coincides with the Lie derivative of \(b\) along \(a\):
sage: s == b.lie_derivative(a) True
>>> from sage.all import * >>> s == b.lie_derivative(a) True
Schouten-Nijenhuis bracket for \(p=0\) and \(q=1\):
sage: s = f.bracket(a); s Scalar field -i_df a on the 3-dimensional differentiable manifold M sage: s.display() -i_df a: M → ℝ (x, y, z) ↦ x*y - y^2 - (x + 2*y + 1)*z + z^2
>>> from sage.all import * >>> s = f.bracket(a); s Scalar field -i_df a on the 3-dimensional differentiable manifold M >>> s.display() -i_df a: M → ℝ (x, y, z) ↦ x*y - y^2 - (x + 2*y + 1)*z + z^2
Check that \([f,a] = - \iota_{\mathrm{d}f} a = - \mathrm{d}f(a)\):
sage: s == - f.differential()(a) True
>>> from sage.all import * >>> s == - f.differential()(a) True
Schouten-Nijenhuis bracket for \(p=0\) and \(q=2\):
sage: c = M.multivector_field(2, name='c') sage: c[0,1], c[0,2], c[1,2] = x+z+1, x*y+z, x-y sage: s = f.bracket(c); s Vector field -i_df c on the 3-dimensional differentiable manifold M sage: s.display() -i_df c = (x*y^2 + (x + y + 1)*z + z^2) ∂/∂x + (x*y - y^2 - x - z - 1) ∂/∂y + (-x*y - (x - y + 1)*z) ∂/∂z
>>> from sage.all import * >>> c = M.multivector_field(Integer(2), name='c') >>> c[Integer(0),Integer(1)], c[Integer(0),Integer(2)], c[Integer(1),Integer(2)] = x+z+Integer(1), x*y+z, x-y >>> s = f.bracket(c); s Vector field -i_df c on the 3-dimensional differentiable manifold M >>> s.display() -i_df c = (x*y^2 + (x + y + 1)*z + z^2) ∂/∂x + (x*y - y^2 - x - z - 1) ∂/∂y + (-x*y - (x - y + 1)*z) ∂/∂z
Check that \([f,c] = - \iota_{\mathrm{d}f} c\):
sage: s == - f.differential().interior_product(c) True
>>> from sage.all import * >>> s == - f.differential().interior_product(c) True
Schouten-Nijenhuis bracket for \(p=1\) and \(q=2\):
sage: s = a.bracket(c); s 2-vector field [a,c] on the 3-dimensional differentiable manifold M sage: s.display() [a,c] = ((x - 1)*y - (y - 2)*z - 2*x - 1) ∂/∂x∧∂/∂y + ((x + 1)*y - (x + 1)*z - 3*x - 1) ∂/∂x∧∂/∂z + (-5*x + y - z - 2) ∂/∂y∧∂/∂z
>>> from sage.all import * >>> s = a.bracket(c); s 2-vector field [a,c] on the 3-dimensional differentiable manifold M >>> s.display() [a,c] = ((x - 1)*y - (y - 2)*z - 2*x - 1) ∂/∂x∧∂/∂y + ((x + 1)*y - (x + 1)*z - 3*x - 1) ∂/∂x∧∂/∂z + (-5*x + y - z - 2) ∂/∂y∧∂/∂z
Again, since \(a\) is a vector field, the Schouten-Nijenhuis bracket coincides with the Lie derivative:
sage: s == c.lie_derivative(a) True
>>> from sage.all import * >>> s == c.lie_derivative(a) True
Schouten-Nijenhuis bracket for \(p=2\) and \(q=2\):
sage: d = M.multivector_field(2, name='d') sage: d[0,1], d[0,2], d[1,2] = x-y^2, x+z, z-x-1 sage: s = c.bracket(d); s 3-vector field [c,d] on the 3-dimensional differentiable manifold M sage: s.display() [c,d] = (-y^3 + (3*x + 1)*y - y^2 - x - z + 2) ∂/∂x∧∂/∂y∧∂/∂z
>>> from sage.all import * >>> d = M.multivector_field(Integer(2), name='d') >>> d[Integer(0),Integer(1)], d[Integer(0),Integer(2)], d[Integer(1),Integer(2)] = x-y**Integer(2), x+z, z-x-Integer(1) >>> s = c.bracket(d); s 3-vector field [c,d] on the 3-dimensional differentiable manifold M >>> s.display() [c,d] = (-y^3 + (3*x + 1)*y - y^2 - x - z + 2) ∂/∂x∧∂/∂y∧∂/∂z
Let us check the component formula (with respect to the manifold’s default coordinate chart, i.e.
X
) for \(p=q=2\), taking into account the tensor antisymmetries:sage: s[0,1,2] == - sum(c[i,0]*d[1,2].diff(i) ....: + c[i,1]*d[2,0].diff(i) + c[i,2]*d[0,1].diff(i) ....: + d[i,0]*c[1,2].diff(i) + d[i,1]*c[2,0].diff(i) ....: + d[i,2]*c[0,1].diff(i) for i in M.irange()) True
>>> from sage.all import * >>> s[Integer(0),Integer(1),Integer(2)] == - sum(c[i,Integer(0)]*d[Integer(1),Integer(2)].diff(i) ... + c[i,Integer(1)]*d[Integer(2),Integer(0)].diff(i) + c[i,Integer(2)]*d[Integer(0),Integer(1)].diff(i) ... + d[i,Integer(0)]*c[Integer(1),Integer(2)].diff(i) + d[i,Integer(1)]*c[Integer(2),Integer(0)].diff(i) ... + d[i,Integer(2)]*c[Integer(0),Integer(1)].diff(i) for i in M.irange()) True
Schouten-Nijenhuis bracket for \(p=1\) and \(q=3\):
sage: e = M.multivector_field(3, name='e') sage: e[0,1,2] = x+y*z+1 sage: s = a.bracket(e); s 3-vector field [a,e] on the 3-dimensional differentiable manifold M sage: s.display() [a,e] = (-(2*x + 1)*y + y^2 - (y^2 - x - 1)*z - z^2 - 2*x - 2) ∂/∂x∧∂/∂y∧∂/∂z
>>> from sage.all import * >>> e = M.multivector_field(Integer(3), name='e') >>> e[Integer(0),Integer(1),Integer(2)] = x+y*z+Integer(1) >>> s = a.bracket(e); s 3-vector field [a,e] on the 3-dimensional differentiable manifold M >>> s.display() [a,e] = (-(2*x + 1)*y + y^2 - (y^2 - x - 1)*z - z^2 - 2*x - 2) ∂/∂x∧∂/∂y∧∂/∂z
Again, since \(p=1\), the bracket coincides with the Lie derivative:
sage: s == e.lie_derivative(a) True
>>> from sage.all import * >>> s == e.lie_derivative(a) True
Schouten-Nijenhuis bracket for \(p=2\) and \(q=3\):
sage: s = c.bracket(e); s 4-vector field [c,e] on the 3-dimensional differentiable manifold M
>>> from sage.all import * >>> s = c.bracket(e); s 4-vector field [c,e] on the 3-dimensional differentiable manifold M
Since on a 3-dimensional manifold, any 4-vector field is zero, we have:
sage: s.display() [c,e] = 0
>>> from sage.all import * >>> s.display() [c,e] = 0
Let us check the graded commutation law \([a,b] = -(-1)^{(p-1)(q-1)} [b,a]\) for various values of \(p\) and \(q\):
sage: f.bracket(a) == - a.bracket(f) # p=0 and q=1 True sage: f.bracket(c) == c.bracket(f) # p=0 and q=2 True sage: a.bracket(b) == - b.bracket(a) # p=1 and q=1 True sage: a.bracket(c) == - c.bracket(a) # p=1 and q=2 True sage: c.bracket(d) == d.bracket(c) # p=2 and q=2 True
>>> from sage.all import * >>> f.bracket(a) == - a.bracket(f) # p=0 and q=1 True >>> f.bracket(c) == c.bracket(f) # p=0 and q=2 True >>> a.bracket(b) == - b.bracket(a) # p=1 and q=1 True >>> a.bracket(c) == - c.bracket(a) # p=1 and q=2 True >>> c.bracket(d) == d.bracket(c) # p=2 and q=2 True
Let us check the graded Leibniz rule for \(p=1\) and \(q=1\):
sage: a.bracket(b.wedge(c)) == a.bracket(b).wedge(c) + b.wedge(a.bracket(c)) # long time True
>>> from sage.all import * >>> a.bracket(b.wedge(c)) == a.bracket(b).wedge(c) + b.wedge(a.bracket(c)) # long time True
as well as for \(p=2\) and \(q=1\):
sage: c.bracket(a.wedge(b)) == c.bracket(a).wedge(b) - a.wedge(c.bracket(b)) # long time True
>>> from sage.all import * >>> c.bracket(a.wedge(b)) == c.bracket(a).wedge(b) - a.wedge(c.bracket(b)) # long time True
Finally let us check the graded Jacobi identity for \(p=1\), \(q=1\) and \(r=2\):
sage: # long time sage: a_bc = a.bracket(b.bracket(c)) sage: b_ca = b.bracket(c.bracket(a)) sage: c_ab = c.bracket(a.bracket(b)) sage: a_bc + b_ca + c_ab == 0 True
>>> from sage.all import * >>> # long time >>> a_bc = a.bracket(b.bracket(c)) >>> b_ca = b.bracket(c.bracket(a)) >>> c_ab = c.bracket(a.bracket(b)) >>> a_bc + b_ca + c_ab == Integer(0) True
as well as for \(p=1\), \(q=2\) and \(r=2\):
sage: # long time sage: a_cd = a.bracket(c.bracket(d)) sage: c_da = c.bracket(d.bracket(a)) sage: d_ac = d.bracket(a.bracket(c)) sage: a_cd + c_da - d_ac == 0 True
>>> from sage.all import * >>> # long time >>> a_cd = a.bracket(c.bracket(d)) >>> c_da = c.bracket(d.bracket(a)) >>> d_ac = d.bracket(a.bracket(c)) >>> a_cd + c_da - d_ac == Integer(0) True
- interior_product(form)[source]¶
Interior product with a differential form.
If
self
is a multivector field \(A\) of degree \(p\) and \(B\) is a differential form of degree \(q\geq p\) on the same manifold as \(A\), the interior product of \(A\) by \(B\) is the differential form \(\iota_A B\) of degree \(q-p\) defined by\[(\iota_A B)_{i_1\ldots i_{q-p}} = A^{k_1\ldots k_p} B_{k_1\ldots k_p i_1\ldots i_{q-p}}\]Note
A.interior_product(B)
yields the same result asA.contract(0,..., p-1, B, 0,..., p-1)
(cf.contract()
), butinterior_product
is more efficient, the alternating character of \(A\) being not used to reduce the computation incontract()
INPUT:
form
– differential form \(B\) (instance ofDiffFormParal
); the degree of \(B\) must be at least equal to the degree ofself
OUTPUT:
scalar field (case \(p=q\)) or
DiffFormParal
(case \(p<q\)) representing the interior product \(\iota_A B\), where \(A\) isself
See also
interior_product()
for the interior product of a differential form with a multivector fieldEXAMPLES:
Interior product with \(p=1\) and \(q=1\) on 4-dimensional manifold:
sage: M = Manifold(4, 'M') sage: X.<t,x,y,z> = M.chart() sage: a = M.vector_field([x, 1+t^2, x*z, y-3], name='a') sage: b = M.one_form([-z^2, 2, x, x-y], name='b') sage: s = a.interior_product(b); s Scalar field i_a b on the 4-dimensional differentiable manifold M sage: s.display() i_a b: M → ℝ (t, x, y, z) ↦ x^2*z - x*z^2 + 2*t^2 + (x + 3)*y - y^2 - 3*x + 2
>>> from sage.all import * >>> M = Manifold(Integer(4), 'M') >>> X = M.chart(names=('t', 'x', 'y', 'z',)); (t, x, y, z,) = X._first_ngens(4) >>> a = M.vector_field([x, Integer(1)+t**Integer(2), x*z, y-Integer(3)], name='a') >>> b = M.one_form([-z**Integer(2), Integer(2), x, x-y], name='b') >>> s = a.interior_product(b); s Scalar field i_a b on the 4-dimensional differentiable manifold M >>> s.display() i_a b: M → ℝ (t, x, y, z) ↦ x^2*z - x*z^2 + 2*t^2 + (x + 3)*y - y^2 - 3*x + 2
In this case, we have \(\iota_a b = a^i b_i = a(b) = b(a)\):
sage: all([s == a.contract(b), s == a(b), s == b(a)]) True
>>> from sage.all import * >>> all([s == a.contract(b), s == a(b), s == b(a)]) True
Case \(p=1\) and \(q=3\):
sage: c = M.diff_form(3, name='c') sage: c[0,1,2], c[0,1,3] = x*y - z, -3*t sage: c[0,2,3], c[1,2,3] = t+x, y sage: s = a.interior_product(c); s 2-form i_a c on the 4-dimensional differentiable manifold M sage: s.display() i_a c = (x^2*y*z - x*z^2 - 3*t*y + 9*t) dt∧dx + (-(t^2*x - t)*y + (t^2 + 1)*z - 3*t - 3*x) dt∧dy + (3*t^3 - (t*x + x^2)*z + 3*t) dt∧dz + ((x^2 - 3)*y + y^2 - x*z) dx∧dy + (-x*y*z - 3*t*x) dx∧dz + (t*x + x^2 + (t^2 + 1)*y) dy∧dz sage: s == a.contract(c) True
>>> from sage.all import * >>> c = M.diff_form(Integer(3), name='c') >>> c[Integer(0),Integer(1),Integer(2)], c[Integer(0),Integer(1),Integer(3)] = x*y - z, -Integer(3)*t >>> c[Integer(0),Integer(2),Integer(3)], c[Integer(1),Integer(2),Integer(3)] = t+x, y >>> s = a.interior_product(c); s 2-form i_a c on the 4-dimensional differentiable manifold M >>> s.display() i_a c = (x^2*y*z - x*z^2 - 3*t*y + 9*t) dt∧dx + (-(t^2*x - t)*y + (t^2 + 1)*z - 3*t - 3*x) dt∧dy + (3*t^3 - (t*x + x^2)*z + 3*t) dt∧dz + ((x^2 - 3)*y + y^2 - x*z) dx∧dy + (-x*y*z - 3*t*x) dx∧dz + (t*x + x^2 + (t^2 + 1)*y) dy∧dz >>> s == a.contract(c) True
Case \(p=2\) and \(q=3\):
sage: d = M.multivector_field(2, name='d') sage: d[0,1], d[0,2], d[0,3] = t-x, 2*z, y-1 sage: d[1,2], d[1,3], d[2,3] = z, y+t, 4 sage: s = d.interior_product(c); s 1-form i_d c on the 4-dimensional differentiable manifold M sage: s.display() i_d c = (2*x*y*z - 6*t^2 - 6*t*y - 2*z^2 + 8*t + 8*x) dt + (-4*x*y*z + 2*(3*t + 4)*y + 4*z^2 - 6*t) dx + (2*((t - 1)*x - x^2 - 2*t)*y - 2*y^2 - 2*(t - x)*z + 2*t + 2*x) dy + (-6*t^2 + 6*t*x + 2*(2*t + 2*x + y)*z) dz sage: s == d.contract(0, 1, c, 0, 1) True
>>> from sage.all import * >>> d = M.multivector_field(Integer(2), name='d') >>> d[Integer(0),Integer(1)], d[Integer(0),Integer(2)], d[Integer(0),Integer(3)] = t-x, Integer(2)*z, y-Integer(1) >>> d[Integer(1),Integer(2)], d[Integer(1),Integer(3)], d[Integer(2),Integer(3)] = z, y+t, Integer(4) >>> s = d.interior_product(c); s 1-form i_d c on the 4-dimensional differentiable manifold M >>> s.display() i_d c = (2*x*y*z - 6*t^2 - 6*t*y - 2*z^2 + 8*t + 8*x) dt + (-4*x*y*z + 2*(3*t + 4)*y + 4*z^2 - 6*t) dx + (2*((t - 1)*x - x^2 - 2*t)*y - 2*y^2 - 2*(t - x)*z + 2*t + 2*x) dy + (-6*t^2 + 6*t*x + 2*(2*t + 2*x + y)*z) dz >>> s == d.contract(Integer(0), Integer(1), c, Integer(0), Integer(1)) True
- wedge(other)[source]¶
Exterior product of
self
with another multivector field.INPUT:
other
– another multivector field
OUTPUT:
instance of
MultivectorFieldParal
representing the exterior productself ∧ other
EXAMPLES:
Exterior product of a vector field and a 2-vector field on a 3-dimensional manifold:
sage: M = Manifold(3, 'M', start_index=1) sage: X.<x,y,z> = M.chart() sage: a = M.vector_field([2, 1+x, y*z], name='a') sage: b = M.multivector_field(2, name='b') sage: b[1,2], b[1,3], b[2,3] = y^2, z+x, z^2 sage: a.display() a = 2 ∂/∂x + (x + 1) ∂/∂y + y*z ∂/∂z sage: b.display() b = y^2 ∂/∂x∧∂/∂y + (x + z) ∂/∂x∧∂/∂z + z^2 ∂/∂y∧∂/∂z sage: s = a.wedge(b); s 3-vector field a∧b on the 3-dimensional differentiable manifold M sage: s.display() a∧b = (-x^2 + (y^3 - x - 1)*z + 2*z^2 - x) ∂/∂x∧∂/∂y∧∂/∂z
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', start_index=Integer(1)) >>> X = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = X._first_ngens(3) >>> a = M.vector_field([Integer(2), Integer(1)+x, y*z], name='a') >>> b = M.multivector_field(Integer(2), name='b') >>> b[Integer(1),Integer(2)], b[Integer(1),Integer(3)], b[Integer(2),Integer(3)] = y**Integer(2), z+x, z**Integer(2) >>> a.display() a = 2 ∂/∂x + (x + 1) ∂/∂y + y*z ∂/∂z >>> b.display() b = y^2 ∂/∂x∧∂/∂y + (x + z) ∂/∂x∧∂/∂z + z^2 ∂/∂y∧∂/∂z >>> s = a.wedge(b); s 3-vector field a∧b on the 3-dimensional differentiable manifold M >>> s.display() a∧b = (-x^2 + (y^3 - x - 1)*z + 2*z^2 - x) ∂/∂x∧∂/∂y∧∂/∂z
Check:
sage: s[1,2,3] == a[1]*b[2,3] + a[2]*b[3,1] + a[3]*b[1,2] True
>>> from sage.all import * >>> s[Integer(1),Integer(2),Integer(3)] == a[Integer(1)]*b[Integer(2),Integer(3)] + a[Integer(2)]*b[Integer(3),Integer(1)] + a[Integer(3)]*b[Integer(1),Integer(2)] True
Exterior product with a scalar field:
sage: f = M.scalar_field(x, name='f') sage: s = b.wedge(f); s 2-vector field f*b on the 3-dimensional differentiable manifold M sage: s.display() f*b = x*y^2 ∂/∂x∧∂/∂y + (x^2 + x*z) ∂/∂x∧∂/∂z + x*z^2 ∂/∂y∧∂/∂z sage: s == f*b True sage: s == f.wedge(b) True
>>> from sage.all import * >>> f = M.scalar_field(x, name='f') >>> s = b.wedge(f); s 2-vector field f*b on the 3-dimensional differentiable manifold M >>> s.display() f*b = x*y^2 ∂/∂x∧∂/∂y + (x^2 + x*z) ∂/∂x∧∂/∂z + x*z^2 ∂/∂y∧∂/∂z >>> s == f*b True >>> s == f.wedge(b) True