Topological Vector Bundle#
Let \(K\) be a topological field. A vector bundle of rank \(n\) over the field \(K\) and over a topological manifold \(B\) (base space) is a topological manifold \(E\) (total space) together with a continuous and surjective map \(\pi: E \to B\) such that for every point \(p \in B\), we have:
the set \(E_p=\pi^{-1}(p)\) has the vector space structure of \(K^n\),
there is a neighborhood \(U \subset B\) of \(p\) and a homeomorphism (trivialization) \(\varphi: \pi^{-1}(p) \to U \times K^n\) such that \(\varphi\) is compatible with the fibers, namely \(\pi \circ \varphi^{-1} = \mathrm{pr}_1\), and \(v \mapsto \varphi^{-1}(q,v)\) is a linear isomorphism between \(K^n\) and \(E_q\) for any \(q \in U\).
AUTHORS:
Michael Jung (2019) : initial version
REFERENCES:
- class sage.manifolds.vector_bundle.TopologicalVectorBundle(rank, name, base_space, field='real', latex_name=None, category=None, unique_tag=None)[source]#
Bases:
CategoryObject
,UniqueRepresentation
An instance of this class is a topological vector bundle \(E \to B\) over a topological field \(K\).
INPUT:
rank
– positive integer; rank of the vector bundlename
– string representation given to the total spacebase_space
– the base space (topological manifold) over which the vector bundle is definedfield
– field \(K\) which gives the fibers the structure of a vector space over \(K\); allowed values are'real'
or an object of typeRealField
(e.g.,RR
) for a vector bundle over \(\RR\)'complex'
or an object of typeComplexField
(e.g.,CC
) for a vector bundle over \(\CC\)an object in the category of topological fields (see
Fields
andTopologicalSpaces
) for other types of topological fields
latex_name
– (default:None
) LaTeX representation given to the total spacecategory
– (default:None
) to specify the category; ifNone
,VectorBundles(base_space, c_field)
is assumed (see the categoryVectorBundles
)unique_tag
– (default:None
) tag used to force the construction of a new object when all the other arguments have been used previously (withoutunique_tag
, theUniqueRepresentation
behavior would return the previously constructed object corresponding to these arguments)
EXAMPLES:
A real line bundle over some 4-dimensional topological manifold:
sage: M = Manifold(4, 'M', structure='top') sage: E = M.vector_bundle(1, 'E'); E Topological real vector bundle E -> M of rank 1 over the base space 4-dimensional topological manifold M sage: E.base_space() 4-dimensional topological manifold M sage: E.base_ring() Real Field with 53 bits of precision sage: E.rank() 1
>>> from sage.all import * >>> M = Manifold(Integer(4), 'M', structure='top') >>> E = M.vector_bundle(Integer(1), 'E'); E Topological real vector bundle E -> M of rank 1 over the base space 4-dimensional topological manifold M >>> E.base_space() 4-dimensional topological manifold M >>> E.base_ring() Real Field with 53 bits of precision >>> E.rank() 1
For a more sophisticated example, let us define a non-trivial 2-manifold to work with:
sage: M = Manifold(2, 'M', structure='top') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y), ....: intersection_name='W', restrictions1= x>0, ....: restrictions2= u+v>0) sage: uv_to_xy = xy_to_uv.inverse() sage: W = U.intersection(V) sage: E = M.vector_bundle(2, 'E'); E Topological real vector bundle E -> M of rank 2 over the base space 2-dimensional topological manifold M
>>> from sage.all import * >>> M = Manifold(Integer(2), 'M', structure='top') >>> U = M.open_subset('U') ; V = M.open_subset('V') >>> M.declare_union(U,V) # M is the union of U and V >>> c_xy = U.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2); c_uv = V.chart(names=('u', 'v',)); (u, v,) = c_uv._first_ngens(2) >>> xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y), ... intersection_name='W', restrictions1= x>Integer(0), ... restrictions2= u+v>Integer(0)) >>> uv_to_xy = xy_to_uv.inverse() >>> W = U.intersection(V) >>> E = M.vector_bundle(Integer(2), 'E'); E Topological real vector bundle E -> M of rank 2 over the base space 2-dimensional topological manifold M
Now, there a two ways to go. Most effortlessly, we define trivializations similar to charts (see
Trivialization
):sage: phi_U = E.trivialization('phi_U', domain=U); phi_U Trivialization (phi_U, E|_U) sage: phi_V = E.trivialization('phi_V', domain=V); phi_V Trivialization (phi_V, E|_V) sage: transf = phi_U.transition_map(phi_V, [[0,x],[x,0]]) # transition map between trivializations sage: fU = phi_U.frame(); fU Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2))) sage: fV = phi_V.frame(); fV Trivialization frame (E|_V, ((phi_V^*e_1),(phi_V^*e_2))) sage: E.changes_of_frame() # random {(Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2))), Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2)))): Automorphism phi_U^(-1)*phi_V^(-1) of the Free module C^0(W;E) of sections on the Open subset W of the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2, (Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2))), Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2)))): Automorphism phi_U^(-1)*phi_V of the Free module C^0(W;E) of sections on the Open subset W of the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2}
>>> from sage.all import * >>> phi_U = E.trivialization('phi_U', domain=U); phi_U Trivialization (phi_U, E|_U) >>> phi_V = E.trivialization('phi_V', domain=V); phi_V Trivialization (phi_V, E|_V) >>> transf = phi_U.transition_map(phi_V, [[Integer(0),x],[x,Integer(0)]]) # transition map between trivializations >>> fU = phi_U.frame(); fU Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2))) >>> fV = phi_V.frame(); fV Trivialization frame (E|_V, ((phi_V^*e_1),(phi_V^*e_2))) >>> E.changes_of_frame() # random {(Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2))), Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2)))): Automorphism phi_U^(-1)*phi_V^(-1) of the Free module C^0(W;E) of sections on the Open subset W of the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2, (Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2))), Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2)))): Automorphism phi_U^(-1)*phi_V of the Free module C^0(W;E) of sections on the Open subset W of the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2}
Then, the atlas of \(E\) consists of all known trivializations defined on E:
sage: E.atlas() # a shallow copy of the atlas [Trivialization (phi_U, E|_U), Trivialization (phi_V, E|_V)]
>>> from sage.all import * >>> E.atlas() # a shallow copy of the atlas [Trivialization (phi_U, E|_U), Trivialization (phi_V, E|_V)]
Or we just define frames, an automorphism on the free section module over the intersection domain \(W\) and declare the change of frame manually (for more details consult
LocalFrame
):sage: eU = E.local_frame('eU', domain=U); eU Local frame (E|_U, (eU_0,eU_1)) sage: eUW = eU.restrict(W) # to trivialize E|_W sage: eV = E.local_frame('eV', domain=V); eV Local frame (E|_V, (eV_0,eV_1)) sage: eVW = eV.restrict(W) sage: a = E.section_module(domain=W).automorphism(); a Automorphism of the Free module C^0(W;E) of sections on the Open subset W of the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2 sage: a[eUW,:] = [[0,x],[x,0]] sage: E.set_change_of_frame(eUW, eVW, a) sage: E.change_of_frame(eUW, eVW) Automorphism of the Free module C^0(W;E) of sections on the Open subset W of the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2
>>> from sage.all import * >>> eU = E.local_frame('eU', domain=U); eU Local frame (E|_U, (eU_0,eU_1)) >>> eUW = eU.restrict(W) # to trivialize E|_W >>> eV = E.local_frame('eV', domain=V); eV Local frame (E|_V, (eV_0,eV_1)) >>> eVW = eV.restrict(W) >>> a = E.section_module(domain=W).automorphism(); a Automorphism of the Free module C^0(W;E) of sections on the Open subset W of the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2 >>> a[eUW,:] = [[Integer(0),x],[x,Integer(0)]] >>> E.set_change_of_frame(eUW, eVW, a) >>> E.change_of_frame(eUW, eVW) Automorphism of the Free module C^0(W;E) of sections on the Open subset W of the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2
Now, the list of all known frames defined on \(E\) can be displayed via
frames()
:sage: E.frames() # a shallow copy of all known frames on E [Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2))), Trivialization frame (E|_V, ((phi_V^*e_1),(phi_V^*e_2))), Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2))), Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2))), Local frame (E|_U, (eU_0,eU_1)), Local frame (E|_W, (eU_0,eU_1)), Local frame (E|_V, (eV_0,eV_1)), Local frame (E|_W, (eV_0,eV_1))]
>>> from sage.all import * >>> E.frames() # a shallow copy of all known frames on E [Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2))), Trivialization frame (E|_V, ((phi_V^*e_1),(phi_V^*e_2))), Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2))), Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2))), Local frame (E|_U, (eU_0,eU_1)), Local frame (E|_W, (eU_0,eU_1)), Local frame (E|_V, (eV_0,eV_1)), Local frame (E|_W, (eV_0,eV_1))]
By definition \(E\) is a manifold, in this case of dimension 4 (notice that the induced charts are not implemented, yet):
sage: E.total_space() 4-dimensional topological manifold E
>>> from sage.all import * >>> E.total_space() 4-dimensional topological manifold E
The method
section()
returns a section while the methodsection_module()
returns the section module on the corresponding domain:sage: s = E.section(name='s'); s Section s on the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2 sage: s in E.section_module() True
>>> from sage.all import * >>> s = E.section(name='s'); s Section s on the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2 >>> s in E.section_module() True
- atlas()[source]#
Return the list of trivializations that have been defined for
self
.EXAMPLES:
sage: M = Manifold(3, 'M') sage: U = M.open_subset('U') sage: V = M.open_subset('V') sage: E = M.vector_bundle(2, 'E') sage: phi_U = E.trivialization('phi_U', domain=U) sage: phi_V = E.trivialization('phi_V', domain=V) sage: phi_M = E.trivialization('phi_M') sage: E.atlas() [Trivialization (phi_U, E|_U), Trivialization (phi_V, E|_V), Trivialization (phi_M, E|_M)]
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M') >>> U = M.open_subset('U') >>> V = M.open_subset('V') >>> E = M.vector_bundle(Integer(2), 'E') >>> phi_U = E.trivialization('phi_U', domain=U) >>> phi_V = E.trivialization('phi_V', domain=V) >>> phi_M = E.trivialization('phi_M') >>> E.atlas() [Trivialization (phi_U, E|_U), Trivialization (phi_V, E|_V), Trivialization (phi_M, E|_M)]
- base_field()[source]#
Return the field on which the fibers are defined.
OUTPUT:
a topological field
EXAMPLES:
sage: M = Manifold(3, 'M', structure='topological') sage: E = M.vector_bundle(2, 'E', field=CC) sage: E.base_field() Complex Field with 53 bits of precision
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='topological') >>> E = M.vector_bundle(Integer(2), 'E', field=CC) >>> E.base_field() Complex Field with 53 bits of precision
- base_field_type()[source]#
Return the type of topological field on which the fibers are defined.
OUTPUT:
a string describing the field, with three possible values:
'real'
for the real field \(\RR\)'complex'
for the complex field \(\CC\)'neither_real_nor_complex'
for a field different from \(\RR\) and \(\CC\)
EXAMPLES:
sage: M = Manifold(2, 'M', structure='top') sage: E = M.vector_bundle(2, 'E', field=CC) sage: E.base_field_type() 'complex'
>>> from sage.all import * >>> M = Manifold(Integer(2), 'M', structure='top') >>> E = M.vector_bundle(Integer(2), 'E', field=CC) >>> E.base_field_type() 'complex'
- base_space()[source]#
Return the base space of the vector bundle.
EXAMPLES:
sage: M = Manifold(2, 'M', structure='top') sage: E = M.vector_bundle(2, 'E') sage: E.base_space() 2-dimensional topological manifold M
>>> from sage.all import * >>> M = Manifold(Integer(2), 'M', structure='top') >>> E = M.vector_bundle(Integer(2), 'E') >>> E.base_space() 2-dimensional topological manifold M
- change_of_frame(frame1, frame2)[source]#
Return a change of local frames defined on
self
.INPUT:
frame1
– local frame 1frame2
– local frame 2
OUTPUT:
a
FreeModuleAutomorphism
representing, at each point, the vector space automorphism \(P\) that relates frame 1, \((e_i)\) say, to frame 2, \((f_i)\) say, according to \(f_i = P(e_i)\)
EXAMPLES:
sage: M = Manifold(3, 'M', structure='top') sage: X.<x,y,z> = M.chart() sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e') sage: a = E.section_module().automorphism() # Now, the section module is free sage: a[:] = [[sqrt(3)/2, -1/2], [1/2, sqrt(3)/2]] sage: f = e.new_frame(a, 'f') sage: E.change_of_frame(e, f) Automorphism of the Free module C^0(M;E) of sections on the 3-dimensional topological manifold M with values in the real vector bundle E of rank 2 sage: a == E.change_of_frame(e, f) True sage: a.inverse() == E.change_of_frame(f, e) True
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> X = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = X._first_ngens(3) >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e') >>> a = E.section_module().automorphism() # Now, the section module is free >>> a[:] = [[sqrt(Integer(3))/Integer(2), -Integer(1)/Integer(2)], [Integer(1)/Integer(2), sqrt(Integer(3))/Integer(2)]] >>> f = e.new_frame(a, 'f') >>> E.change_of_frame(e, f) Automorphism of the Free module C^0(M;E) of sections on the 3-dimensional topological manifold M with values in the real vector bundle E of rank 2 >>> a == E.change_of_frame(e, f) True >>> a.inverse() == E.change_of_frame(f, e) True
- changes_of_frame()[source]#
Return all the changes of local frames defined on
self
.OUTPUT:
dictionary of vector bundle automorphisms representing the changes of frames, the keys being the pair of frames
EXAMPLES:
sage: M = Manifold(3, 'M', structure='top') sage: c_xyz.<x,y,z> = M.chart() sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e'); e Local frame (E|_M, (e_0,e_1)) sage: auto_group = E.section_module().general_linear_group() sage: e_to_f = auto_group([[0,1],[1,0]]); e_to_f Automorphism of the Free module C^0(M;E) of sections on the 3-dimensional topological manifold M with values in the real vector bundle E of rank 2 sage: f_in_e = auto_group([[0,1],[1,0]]) sage: f = e.new_frame(f_in_e, 'f'); f Local frame (E|_M, (f_0,f_1)) sage: E.changes_of_frame() # random {(Local frame (E|_M, (f_0,f_1)), Local frame (E|_M, (e_0,e_1))): Automorphism of the Free module C^0(M;E) of sections on the 3-dimensional topological manifold M with values in the real vector bundle E of rank 2, (Local frame (E|_M, (e_0,e_1)), Local frame (E|_M, (f_0,f_1))): Automorphism of the Free module C^0(M;E) of sections on the 3-dimensional topological manifold M with values in the real vector bundle E of rank 2}
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> c_xyz = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_xyz._first_ngens(3) >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e'); e Local frame (E|_M, (e_0,e_1)) >>> auto_group = E.section_module().general_linear_group() >>> e_to_f = auto_group([[Integer(0),Integer(1)],[Integer(1),Integer(0)]]); e_to_f Automorphism of the Free module C^0(M;E) of sections on the 3-dimensional topological manifold M with values in the real vector bundle E of rank 2 >>> f_in_e = auto_group([[Integer(0),Integer(1)],[Integer(1),Integer(0)]]) >>> f = e.new_frame(f_in_e, 'f'); f Local frame (E|_M, (f_0,f_1)) >>> E.changes_of_frame() # random {(Local frame (E|_M, (f_0,f_1)), Local frame (E|_M, (e_0,e_1))): Automorphism of the Free module C^0(M;E) of sections on the 3-dimensional topological manifold M with values in the real vector bundle E of rank 2, (Local frame (E|_M, (e_0,e_1)), Local frame (E|_M, (f_0,f_1))): Automorphism of the Free module C^0(M;E) of sections on the 3-dimensional topological manifold M with values in the real vector bundle E of rank 2}
- coframes()[source]#
Return the list of coframes defined on
self
.OUTPUT:
list of coframes defined on
self
EXAMPLES:
sage: M = Manifold(3, 'M', structure='top') sage: E = M.vector_bundle(2, 'E') sage: U = M.open_subset('U'); V = M.open_subset('V') sage: phi_U = E.trivialization('phi_U', domain=U) sage: e = E.local_frame('e', domain=V) sage: E.coframes() [Trivialization coframe (E|_U, ((phi_U^*e^1),(phi_U^*e^2))), Local coframe (E|_V, (e^0,e^1))]
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> E = M.vector_bundle(Integer(2), 'E') >>> U = M.open_subset('U'); V = M.open_subset('V') >>> phi_U = E.trivialization('phi_U', domain=U) >>> e = E.local_frame('e', domain=V) >>> E.coframes() [Trivialization coframe (E|_U, ((phi_U^*e^1),(phi_U^*e^2))), Local coframe (E|_V, (e^0,e^1))]
- default_frame()[source]#
Return the default frame of on
self
.OUTPUT:
a local frame as an instance of
LocalFrame
EXAMPLES:
sage: M = Manifold(3, 'M', structure='top') sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e') sage: E.default_frame() Local frame (E|_M, (e_0,e_1))
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e') >>> E.default_frame() Local frame (E|_M, (e_0,e_1))
- fiber(point)[source]#
Return the vector bundle fiber over a point.
INPUT:
point
–ManifoldPoint
; point \(p\) of the base space ofself
OUTPUT:
instance of
VectorBundleFiber
representing the fiber over \(p\)
EXAMPLES:
sage: M = Manifold(3, 'M', structure='top') sage: X.<x,y,z> = M.chart() sage: p = M((0,2,1), name='p'); p Point p on the 3-dimensional topological manifold M sage: E = M.vector_bundle(2, 'E'); E Topological real vector bundle E -> M of rank 2 over the base space 3-dimensional topological manifold M sage: E.fiber(p) Fiber of E at Point p on the 3-dimensional topological manifold M
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> X = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = X._first_ngens(3) >>> p = M((Integer(0),Integer(2),Integer(1)), name='p'); p Point p on the 3-dimensional topological manifold M >>> E = M.vector_bundle(Integer(2), 'E'); E Topological real vector bundle E -> M of rank 2 over the base space 3-dimensional topological manifold M >>> E.fiber(p) Fiber of E at Point p on the 3-dimensional topological manifold M
- frames()[source]#
Return the list of local frames defined on
self
.OUTPUT:
list of local frames defined on
self
EXAMPLES:
sage: M = Manifold(3, 'M', structure='top') sage: E = M.vector_bundle(2, 'E') sage: U = M.open_subset('U'); V = M.open_subset('V') sage: phi_U = E.trivialization('phi_U', domain=U) sage: e = E.local_frame('e', domain=V) sage: E.frames() [Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2))), Local frame (E|_V, (e_0,e_1))]
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> E = M.vector_bundle(Integer(2), 'E') >>> U = M.open_subset('U'); V = M.open_subset('V') >>> phi_U = E.trivialization('phi_U', domain=U) >>> e = E.local_frame('e', domain=V) >>> E.frames() [Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2))), Local frame (E|_V, (e_0,e_1))]
- has_orientation()[source]#
Check whether
self
admits an obvious or by user set orientation.See also
Consult
orientation()
for details about orientations.Note
Notice that if
has_orientation()
returnsFalse
this does not necessarily mean that the vector bundle admits no orientation. It just means that the user has to set an orientation manually in that case, seeset_orientation()
.EXAMPLES:
The trivial case:
sage: M = Manifold(3, 'M', structure='top') sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e') sage: E.has_orientation() # trivial case True
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e') >>> E.has_orientation() # trivial case True
Non-trivial case:
sage: M = Manifold(3, 'M', structure='top') sage: U = M.open_subset('U'); V = M.open_subset('V') sage: M.declare_union(U, V) sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e', domain=U) sage: f = E.local_frame('f', domain=V) sage: E.has_orientation() False sage: E.set_orientation([e, f]) sage: E.has_orientation() True
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> U = M.open_subset('U'); V = M.open_subset('V') >>> M.declare_union(U, V) >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e', domain=U) >>> f = E.local_frame('f', domain=V) >>> E.has_orientation() False >>> E.set_orientation([e, f]) >>> E.has_orientation() True
- irange(start=None)[source]#
Single index generator.
INPUT:
start
– (default:None
) initial value \(i_0\) of the index; if none are provided, the value returned bysage.manifolds.manifold.Manifold.start_index()
is assumed
OUTPUT:
an iterable index, starting from \(i_0\) and ending at \(i_0 + n - 1\), where \(n\) is the vector bundle’s dimension
EXAMPLES:
Index range on a 4-dimensional vector bundle over a 5-dimensional manifold:
sage: M = Manifold(5, 'M', structure='topological') sage: E = M.vector_bundle(4, 'E') sage: list(E.irange()) [0, 1, 2, 3] sage: list(E.irange(2)) [2, 3]
>>> from sage.all import * >>> M = Manifold(Integer(5), 'M', structure='topological') >>> E = M.vector_bundle(Integer(4), 'E') >>> list(E.irange()) [0, 1, 2, 3] >>> list(E.irange(Integer(2))) [2, 3]
Index range on a 4-dimensional vector bundle over a 5-dimensional manifold with starting index=1:
sage: M = Manifold(5, 'M', structure='topological', start_index=1) sage: E = M.vector_bundle(4, 'E') sage: list(E.irange()) [1, 2, 3, 4] sage: list(E.irange(2)) [2, 3, 4]
>>> from sage.all import * >>> M = Manifold(Integer(5), 'M', structure='topological', start_index=Integer(1)) >>> E = M.vector_bundle(Integer(4), 'E') >>> list(E.irange()) [1, 2, 3, 4] >>> list(E.irange(Integer(2))) [2, 3, 4]
In general, one has always:
sage: next(E.irange()) == M.start_index() True
>>> from sage.all import * >>> next(E.irange()) == M.start_index() True
- is_manifestly_trivial()[source]#
Return
True
ifself
is manifestly a trivial bundle, i.e. there exists a frame or a trivialization defined on the whole base space.EXAMPLES:
sage: M = Manifold(2, 'M', structure='top') sage: E = M.vector_bundle(1, 'E') sage: U = M.open_subset('U') sage: V = M.open_subset('V') sage: M.declare_union(U, V) sage: phi_U = E.trivialization('phi_U', domain=U); phi_U Trivialization (phi_U, E|_U) sage: phi_V = E.trivialization('phi_V', domain=V); phi_V Trivialization (phi_V, E|_V) sage: E.is_manifestly_trivial() False sage: E.trivialization('phi_M', M) Trivialization (phi_M, E|_M) sage: E.is_manifestly_trivial() True
>>> from sage.all import * >>> M = Manifold(Integer(2), 'M', structure='top') >>> E = M.vector_bundle(Integer(1), 'E') >>> U = M.open_subset('U') >>> V = M.open_subset('V') >>> M.declare_union(U, V) >>> phi_U = E.trivialization('phi_U', domain=U); phi_U Trivialization (phi_U, E|_U) >>> phi_V = E.trivialization('phi_V', domain=V); phi_V Trivialization (phi_V, E|_V) >>> E.is_manifestly_trivial() False >>> E.trivialization('phi_M', M) Trivialization (phi_M, E|_M) >>> E.is_manifestly_trivial() True
- local_frame(*args, **kwargs)[source]#
Define a local frame on
self
.A local frame is a section on a subset \(U \subset M\) in \(E\) that provides, at each point \(p\) of the base space, a vector basis of the fiber \(E_p\) at \(p\).
See also
LocalFrame
for complete documentation.INPUT:
symbol
– either a string, to be used as a common base for the symbols of the sections constituting the local frame, or a list/tuple of strings, representing the individual symbols of the sectionssections
– tuple or list of \(n\) linearly independent sections onself
(\(n\) being the rank ofself
) defining the local frame; can be omitted if the local frame is created from scratchlatex_symbol
– (default:None
) either a string, to be used as a common base for the LaTeX symbols of the sections constituting the local frame, or a list/tuple of strings, representing the individual LaTeX symbols of the sections; ifNone
,symbol
is used in place oflatex_symbol
indices
– (default:None
; used only ifsymbol
is a single string) tuple of strings representing the indices labelling the sections of the frame; ifNone
, the indices will be generated as integers within the range declared onself
latex_indices
– (default:None
) tuple of strings representing the indices for the LaTeX symbols of the sections; ifNone
,indices
is used insteadsymbol_dual
– (default:None
) same assymbol
but for the dual coframe; ifNone
,symbol
must be a string and is used for the common base of the symbols of the elements of the dual coframelatex_symbol_dual
– (default:None
) same aslatex_symbol
but for the dual coframedomain
– (default:None
) domain on which the local frame is defined; ifNone
, the whole base space is assumed
OUTPUT:
a
LocalFrame
representing the defined local frame
EXAMPLES:
Defining a local frame from two linearly independent sections on a real rank-2 vector bundle:
sage: M = Manifold(3, 'M', structure='top') sage: U = M.open_subset('U') sage: X.<x,y,z> = U.chart() sage: E = M.vector_bundle(2, 'E') sage: phi = E.trivialization('phi', domain=U) sage: s0 = E.section(name='s_0', domain=U) sage: s0[:] = 1+z^2, -2 sage: s1 = E.section(name='s_1', domain=U) sage: s1[:] = 1, 1+x^2 sage: e = E.local_frame('e', (s0, s1), domain=U); e Local frame (E|_U, (e_0,e_1)) sage: (e[0], e[1]) == (s0, s1) True
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> U = M.open_subset('U') >>> X = U.chart(names=('x', 'y', 'z',)); (x, y, z,) = X._first_ngens(3) >>> E = M.vector_bundle(Integer(2), 'E') >>> phi = E.trivialization('phi', domain=U) >>> s0 = E.section(name='s_0', domain=U) >>> s0[:] = Integer(1)+z**Integer(2), -Integer(2) >>> s1 = E.section(name='s_1', domain=U) >>> s1[:] = Integer(1), Integer(1)+x**Integer(2) >>> e = E.local_frame('e', (s0, s1), domain=U); e Local frame (E|_U, (e_0,e_1)) >>> (e[Integer(0)], e[Integer(1)]) == (s0, s1) True
If the sections are not linearly independent, an error is raised:
sage: e = E.local_frame('z', (s0, -s0), domain=U) Traceback (most recent call last): ... ValueError: the provided sections are not linearly independent
>>> from sage.all import * >>> e = E.local_frame('z', (s0, -s0), domain=U) Traceback (most recent call last): ... ValueError: the provided sections are not linearly independent
It is also possible to create a local frame from scratch, without connecting it to previously defined local frames or sections (this can still be performed later via the method
set_change_of_frame()
):sage: f = E.local_frame('f', domain=U); f Local frame (E|_U, (f_0,f_1))
>>> from sage.all import * >>> f = E.local_frame('f', domain=U); f Local frame (E|_U, (f_0,f_1))
For a global frame, the argument
domain
is omitted:sage: g = E.local_frame('g'); g Local frame (E|_M, (g_0,g_1))
>>> from sage.all import * >>> g = E.local_frame('g'); g Local frame (E|_M, (g_0,g_1))
See also
For more options, in particular for the choice of symbols and indices, see
LocalFrame
.
- orientation()[source]#
Get the orientation of
self
if available.An orientation on a vector bundle is a choice of local frames whose
union of domains cover the base space,
changes of frames are pairwise orientation preserving, i.e. have positive determinant.
A vector bundle endowed with an orientation is called orientable.
The trivial case corresponds to
self
being trivial, i.e.self
can be covered by one frame. In that case, if no preferred orientation has been set before, one of those frames (usually the default frame) is set automatically to the preferred orientation and returned here.EXAMPLES:
The trivial case is covered automatically:
sage: M = Manifold(3, 'M', structure='top') sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e'); e Local frame (E|_M, (e_0,e_1)) sage: E.orientation() # trivial case [Local frame (E|_M, (e_0,e_1))]
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e'); e Local frame (E|_M, (e_0,e_1)) >>> E.orientation() # trivial case [Local frame (E|_M, (e_0,e_1))]
The orientation can also be set by the user:
sage: f = E.local_frame('f'); f Local frame (E|_M, (f_0,f_1)) sage: E.set_orientation(f) sage: E.orientation() [Local frame (E|_M, (f_0,f_1))]
>>> from sage.all import * >>> f = E.local_frame('f'); f Local frame (E|_M, (f_0,f_1)) >>> E.set_orientation(f) >>> E.orientation() [Local frame (E|_M, (f_0,f_1))]
In case of the non-trivial case, the orientation must be set manually, otherwise no orientation is returned:
sage: M = Manifold(3, 'M', structure='top') sage: U = M.open_subset('U'); V = M.open_subset('V') sage: M.declare_union(U, V) sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e', domain=U); e Local frame (E|_U, (e_0,e_1)) sage: f = E.local_frame('f', domain=V); f Local frame (E|_V, (f_0,f_1)) sage: E.orientation() [] sage: E.set_orientation([e, f]) sage: E.orientation() [Local frame (E|_U, (e_0,e_1)), Local frame (E|_V, (f_0,f_1))]
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> U = M.open_subset('U'); V = M.open_subset('V') >>> M.declare_union(U, V) >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e', domain=U); e Local frame (E|_U, (e_0,e_1)) >>> f = E.local_frame('f', domain=V); f Local frame (E|_V, (f_0,f_1)) >>> E.orientation() [] >>> E.set_orientation([e, f]) >>> E.orientation() [Local frame (E|_U, (e_0,e_1)), Local frame (E|_V, (f_0,f_1))]
- rank()[source]#
Return the rank of the vector bundle.
EXAMPLES:
sage: M = Manifold(2, 'M', structure='top') sage: E = M.vector_bundle(3, 'E') sage: E.rank() 3
>>> from sage.all import * >>> M = Manifold(Integer(2), 'M', structure='top') >>> E = M.vector_bundle(Integer(3), 'E') >>> E.rank() 3
- section(*comp, **kwargs)[source]#
Return a continuous section of
self
.INPUT:
domain
– (default:None
) domain on which the section shall be defined; ifNone
, the base space is assumedname
– (default:None
) name of the local sectionlatex_name
– (default``None``) latex representation of the local section
OUTPUT:
an instance of
Section
representing a continuous section of \(M\) with values on \(E\)
EXAMPLES:
A section on a non-trivial rank 2 vector bundle over a non-trivial 2-manifold:
sage: M = Manifold(2, 'M', structure='top') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y), ....: intersection_name='W', restrictions1= x>0, ....: restrictions2= u+v>0) sage: uv_to_xy = xy_to_uv.inverse() sage: W = U.intersection(V) sage: E = M.vector_bundle(2, 'E') # define the vector bundle sage: phi_U = E.trivialization('phi_U', domain=U) # define trivializations sage: phi_V = E.trivialization('phi_V', domain=V) sage: transf = phi_U.transition_map(phi_V, [[0,x],[x,0]]) # transition map between trivializations sage: fU = phi_U.frame(); fV = phi_V.frame() # define induced frames sage: s = E.section(name='s'); s Section s on the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2
>>> from sage.all import * >>> M = Manifold(Integer(2), 'M', structure='top') >>> U = M.open_subset('U') ; V = M.open_subset('V') >>> M.declare_union(U,V) # M is the union of U and V >>> c_xy = U.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2); c_uv = V.chart(names=('u', 'v',)); (u, v,) = c_uv._first_ngens(2) >>> xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y), ... intersection_name='W', restrictions1= x>Integer(0), ... restrictions2= u+v>Integer(0)) >>> uv_to_xy = xy_to_uv.inverse() >>> W = U.intersection(V) >>> E = M.vector_bundle(Integer(2), 'E') # define the vector bundle >>> phi_U = E.trivialization('phi_U', domain=U) # define trivializations >>> phi_V = E.trivialization('phi_V', domain=V) >>> transf = phi_U.transition_map(phi_V, [[Integer(0),x],[x,Integer(0)]]) # transition map between trivializations >>> fU = phi_U.frame(); fV = phi_V.frame() # define induced frames >>> s = E.section(name='s'); s Section s on the 2-dimensional topological manifold M with values in the real vector bundle E of rank 2
- section_module(domain=None, force_free=False)[source]#
Return the section module of continuous sections on
self
.See
SectionModule
for a complete documentation.INPUT:
domain
– (default:None
) the domain on which the module is defined; ifNone
the base space is assumedforce_free
– (default:False
) if set toTrue
, force the construction of a free module (this implies that \(E\) is trivial)
OUTPUT:
a
SectionModule
(or if \(E\) is trivial, aSectionFreeModule
) representing the module of continuous sections on \(U\) taking values in \(E\)
EXAMPLES:
Module of sections on the Möbius bundle over the real-projective space \(M=\RR P^1\):
sage: M = Manifold(1, 'RP^1', structure='top', start_index=1) sage: U = M.open_subset('U') # the complement of one point sage: c_u.<u> = U.chart() # [1:u] in homogeneous coord. sage: V = M.open_subset('V') # the complement of the point u=0 sage: M.declare_union(U,V) # [v:1] in homogeneous coord. sage: c_v.<v> = V.chart() sage: u_to_v = c_u.transition_map(c_v, (1/u), ....: intersection_name='W', ....: restrictions1 = u!=0, ....: restrictions2 = v!=0) sage: v_to_u = u_to_v.inverse() sage: W = U.intersection(V) sage: E = M.vector_bundle(1, 'E') sage: phi_U = E.trivialization('phi_U', latex_name=r'\varphi_U', ....: domain=U) sage: phi_V = E.trivialization('phi_V', latex_name=r'\varphi_V', ....: domain=V) sage: transf = phi_U.transition_map(phi_V, [[u]]) sage: C0 = E.section_module(); C0 Module C^0(RP^1;E) of sections on the 1-dimensional topological manifold RP^1 with values in the real vector bundle E of rank 1
>>> from sage.all import * >>> M = Manifold(Integer(1), 'RP^1', structure='top', start_index=Integer(1)) >>> U = M.open_subset('U') # the complement of one point >>> c_u = U.chart(names=('u',)); (u,) = c_u._first_ngens(1)# [1:u] in homogeneous coord. >>> V = M.open_subset('V') # the complement of the point u=0 >>> M.declare_union(U,V) # [v:1] in homogeneous coord. >>> c_v = V.chart(names=('v',)); (v,) = c_v._first_ngens(1) >>> u_to_v = c_u.transition_map(c_v, (Integer(1)/u), ... intersection_name='W', ... restrictions1 = u!=Integer(0), ... restrictions2 = v!=Integer(0)) >>> v_to_u = u_to_v.inverse() >>> W = U.intersection(V) >>> E = M.vector_bundle(Integer(1), 'E') >>> phi_U = E.trivialization('phi_U', latex_name=r'\varphi_U', ... domain=U) >>> phi_V = E.trivialization('phi_V', latex_name=r'\varphi_V', ... domain=V) >>> transf = phi_U.transition_map(phi_V, [[u]]) >>> C0 = E.section_module(); C0 Module C^0(RP^1;E) of sections on the 1-dimensional topological manifold RP^1 with values in the real vector bundle E of rank 1
\(C^0(\RR P^1;E)\) is a module over the algebra \(C^0(\RR P^1)\):
sage: C0.category() Category of modules over Algebra of scalar fields on the 1-dimensional topological manifold RP^1 sage: C0.base_ring() is M.scalar_field_algebra() True
>>> from sage.all import * >>> C0.category() Category of modules over Algebra of scalar fields on the 1-dimensional topological manifold RP^1 >>> C0.base_ring() is M.scalar_field_algebra() True
However, \(C^0(\RR P^1;E)\) is not a free module:
sage: isinstance(C0, FiniteRankFreeModule) False
>>> from sage.all import * >>> isinstance(C0, FiniteRankFreeModule) False
since the Möbius bundle is not trivial:
sage: E.is_manifestly_trivial() False
>>> from sage.all import * >>> E.is_manifestly_trivial() False
The section module over \(U\), on the other hand, is a free module since \(E|_U\) admits a trivialization and therefore has a local frame:
sage: C0_U = E.section_module(domain=U) sage: isinstance(C0_U, FiniteRankFreeModule) True
>>> from sage.all import * >>> C0_U = E.section_module(domain=U) >>> isinstance(C0_U, FiniteRankFreeModule) True
The elements of \(C^0(U)\) are sections on \(U\):
sage: C0_U.an_element() Section on the Open subset U of the 1-dimensional topological manifold RP^1 with values in the real vector bundle E of rank 1 sage: C0_U.an_element().display(phi_U.frame()) 2 (phi_U^*e_1)
>>> from sage.all import * >>> C0_U.an_element() Section on the Open subset U of the 1-dimensional topological manifold RP^1 with values in the real vector bundle E of rank 1 >>> C0_U.an_element().display(phi_U.frame()) 2 (phi_U^*e_1)
- set_change_of_frame(frame1, frame2, change_of_frame, compute_inverse=True)[source]#
Relate two vector frames by an automorphism.
This updates the internal dictionary
self._frame_changes
.INPUT:
frame1
– frame 1, denoted \((e_i)\) belowframe2
– frame 2, denoted \((f_i)\) belowchange_of_frame
– instance of classFreeModuleAutomorphism
describing the automorphism \(P\) that relates the basis \((e_i)\) to the basis \((f_i)\) according to \(f_i = P(e_i)\)compute_inverse
(default:True
) – if set to True, the inverse automorphism is computed and the change from basis \((f_i)\) to \((e_i)\) is set to it in the internal dictionaryself._frame_changes
EXAMPLES:
sage: M = Manifold(3, 'M') sage: c_xyz.<x,y,z> = M.chart() sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e') sage: f = E.local_frame('f') sage: a = E.section_module().automorphism() sage: a[e,:] = [[1,2],[0,3]] sage: E.set_change_of_frame(e, f, a) sage: f[0].display(e) f_0 = e_0 sage: f[1].display(e) f_1 = 2 e_0 + 3 e_1 sage: e[0].display(f) e_0 = f_0 sage: e[1].display(f) e_1 = -2/3 f_0 + 1/3 f_1 sage: E.change_of_frame(e,f)[e,:] [1 2] [0 3]
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M') >>> c_xyz = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_xyz._first_ngens(3) >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e') >>> f = E.local_frame('f') >>> a = E.section_module().automorphism() >>> a[e,:] = [[Integer(1),Integer(2)],[Integer(0),Integer(3)]] >>> E.set_change_of_frame(e, f, a) >>> f[Integer(0)].display(e) f_0 = e_0 >>> f[Integer(1)].display(e) f_1 = 2 e_0 + 3 e_1 >>> e[Integer(0)].display(f) e_0 = f_0 >>> e[Integer(1)].display(f) e_1 = -2/3 f_0 + 1/3 f_1 >>> E.change_of_frame(e,f)[e,:] [1 2] [0 3]
- set_default_frame(frame)[source]#
Set the default frame of
self
.INPUT:
frame
– a local frame defined onself
as an instance ofLocalFrame
EXAMPLES:
sage: M = Manifold(3, 'M', structure='top') sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e') sage: E.default_frame() Local frame (E|_M, (e_0,e_1)) sage: f = E.local_frame('f') sage: E.set_default_frame(f) sage: E.default_frame() Local frame (E|_M, (f_0,f_1))
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e') >>> E.default_frame() Local frame (E|_M, (e_0,e_1)) >>> f = E.local_frame('f') >>> E.set_default_frame(f) >>> E.default_frame() Local frame (E|_M, (f_0,f_1))
- set_orientation(orientation)[source]#
Set the preferred orientation of
self
.INPUT:
orientation
– a local frame or a list of local frames whose domains cover the base space
Warning
It is the user’s responsibility that the orientation set here is indeed an orientation. There is no check going on in the background. See
orientation()
for the definition of an orientation.EXAMPLES:
Set an orientation on a vector bundle:
sage: M = Manifold(3, 'M', structure='top') sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e'); e Local frame (E|_M, (e_0,e_1)) sage: f = E.local_frame('f'); f Local frame (E|_M, (f_0,f_1)) sage: E.set_orientation(f) sage: E.orientation() [Local frame (E|_M, (f_0,f_1))]
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e'); e Local frame (E|_M, (e_0,e_1)) >>> f = E.local_frame('f'); f Local frame (E|_M, (f_0,f_1)) >>> E.set_orientation(f) >>> E.orientation() [Local frame (E|_M, (f_0,f_1))]
Set an orientation in the non-trivial case:
sage: M = Manifold(3, 'M', structure='top') sage: U = M.open_subset('U'); V = M.open_subset('V') sage: M.declare_union(U, V) sage: E = M.vector_bundle(2, 'E') sage: e = E.local_frame('e', domain=U); e Local frame (E|_U, (e_0,e_1)) sage: f = E.local_frame('f', domain=V); f Local frame (E|_V, (f_0,f_1)) sage: E.orientation() [] sage: E.set_orientation([e, f]) sage: E.orientation() [Local frame (E|_U, (e_0,e_1)), Local frame (E|_V, (f_0,f_1))]
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> U = M.open_subset('U'); V = M.open_subset('V') >>> M.declare_union(U, V) >>> E = M.vector_bundle(Integer(2), 'E') >>> e = E.local_frame('e', domain=U); e Local frame (E|_U, (e_0,e_1)) >>> f = E.local_frame('f', domain=V); f Local frame (E|_V, (f_0,f_1)) >>> E.orientation() [] >>> E.set_orientation([e, f]) >>> E.orientation() [Local frame (E|_U, (e_0,e_1)), Local frame (E|_V, (f_0,f_1))]
- total_space()[source]#
Return the total space of
self
.Note
At this stage, the total space does not come with induced charts.
OUTPUT:
the total space of
self
as an instance ofTopologicalManifold
EXAMPLES:
sage: M = Manifold(3, 'M', structure='top') sage: E = M.vector_bundle(2, 'E') sage: E.total_space() 6-dimensional topological manifold E
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='top') >>> E = M.vector_bundle(Integer(2), 'E') >>> E.total_space() 6-dimensional topological manifold E
- transition(triv1, triv2)[source]#
Return the transition map between two trivializations defined over the manifold.
The transition map must have been defined previously, for instance by the method
transition_map()
.INPUT:
triv1
– trivialization 1triv2
– trivialization 2
OUTPUT:
instance of
TransitionMap
representing the transition map from trivialization 1 to trivialization 2
EXAMPLES:
sage: M = Manifold(3, 'M') sage: X.<x,y,z> = M.chart() sage: U = M.open_subset('U') sage: V = M.open_subset('V') sage: X_UV = X.restrict(U.intersection(V)) sage: E = M.vector_bundle(2, 'E') sage: phi_U = E.trivialization('phi_U', domain=U) sage: phi_V = E.trivialization('phi_V', domain=V) sage: phi_U_to_phi_V = phi_U.transition_map(phi_V, 1) sage: E.transition(phi_V, phi_U) Transition map from Trivialization (phi_V, E|_V) to Trivialization (phi_U, E|_U)
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M') >>> X = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = X._first_ngens(3) >>> U = M.open_subset('U') >>> V = M.open_subset('V') >>> X_UV = X.restrict(U.intersection(V)) >>> E = M.vector_bundle(Integer(2), 'E') >>> phi_U = E.trivialization('phi_U', domain=U) >>> phi_V = E.trivialization('phi_V', domain=V) >>> phi_U_to_phi_V = phi_U.transition_map(phi_V, Integer(1)) >>> E.transition(phi_V, phi_U) Transition map from Trivialization (phi_V, E|_V) to Trivialization (phi_U, E|_U)
- transitions()[source]#
Return the transition maps defined over subsets of the base space.
OUTPUT:
dictionary of transition maps, with pairs of trivializations as keys
EXAMPLES:
sage: M = Manifold(3, 'M') sage: X.<x,y,z> = M.chart() sage: U = M.open_subset('U') sage: V = M.open_subset('V') sage: X_UV = X.restrict(U.intersection(V)) sage: E = M.vector_bundle(2, 'E') sage: phi_U = E.trivialization('phi_U', domain=U) sage: phi_V = E.trivialization('phi_U', domain=V) sage: phi_U_to_phi_V = phi_U.transition_map(phi_V, 1) sage: E.transitions() # random {(Trivialization (phi_U, E|_U), Trivialization (phi_U, E|_V)): Transition map from Trivialization (phi_U, E|_U) to Trivialization (phi_U, E|_V), (Trivialization (phi_U, E|_V), Trivialization (phi_U, E|_U)): Transition map from Trivialization (phi_U, E|_V) to Trivialization (phi_U, E|_U)}
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M') >>> X = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = X._first_ngens(3) >>> U = M.open_subset('U') >>> V = M.open_subset('V') >>> X_UV = X.restrict(U.intersection(V)) >>> E = M.vector_bundle(Integer(2), 'E') >>> phi_U = E.trivialization('phi_U', domain=U) >>> phi_V = E.trivialization('phi_U', domain=V) >>> phi_U_to_phi_V = phi_U.transition_map(phi_V, Integer(1)) >>> E.transitions() # random {(Trivialization (phi_U, E|_U), Trivialization (phi_U, E|_V)): Transition map from Trivialization (phi_U, E|_U) to Trivialization (phi_U, E|_V), (Trivialization (phi_U, E|_V), Trivialization (phi_U, E|_U)): Transition map from Trivialization (phi_U, E|_V) to Trivialization (phi_U, E|_U)}
- trivialization(name, domain=None, latex_name=None)[source]#
Return a trivialization of
self
over the domaindomain
.INPUT:
domain
– (default:None
) domain on which the trivialization is defined; ifNone
the base space is assumedname
– (default:None
) name given to the trivializationlatex_name
– (default:None
) LaTeX name given to the trivialization
OUTPUT:
a
Trivialization
representing a trivialization of \(E\)
EXAMPLES:
sage: M = Manifold(3, 'M') sage: U = M.open_subset('U') sage: E = M.vector_bundle(2, 'E') sage: phi = E.trivialization('phi', domain=U); phi Trivialization (phi, E|_U)
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M') >>> U = M.open_subset('U') >>> E = M.vector_bundle(Integer(2), 'E') >>> phi = E.trivialization('phi', domain=U); phi Trivialization (phi, E|_U)