Pseudo-Riemannian submanifolds¶
An embedded (resp. immersed) submanifold of a pseudo-Riemannian manifold
\((M,g)\) is an embedded (resp. immersed) submanifold \(N\) of \(M\) as a
differentiable manifold (see
differentiable_submanifold
) such that
pull back of the metric tensor \(g\) via the embedding (resp. immersion) endows
\(N\) with the structure of a pseudo-Riemannian manifold.
The following example shows how to compute the various quantities related to the intrinsic and extrinsic geometries of a hyperbolic slicing of the 3-dimensional Minkowski space.
We start by declaring the ambient manifold \(M\) and the submanifold \(N\):
sage: M = Manifold(3, 'M', structure='Lorentzian')
sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian', start_index=1)
>>> from sage.all import *
>>> M = Manifold(Integer(3), 'M', structure='Lorentzian')
>>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian', start_index=Integer(1))
The considered slices being spacelike hypersurfaces, they are Riemannian manifolds.
Let us introduce the Minkowskian coordinates \((w,x,y)\) on \(M\) and the polar coordinates \((\rho, \theta)\) on the submanifold \(N\):
sage: E.<w,x,y> = M.chart()
sage: C.<rh,th> = N.chart(r'rh:(0,+oo):\rho th:(0,2*pi):\theta')
>>> from sage.all import *
>>> E = M.chart(names=('w', 'x', 'y',)); (w, x, y,) = E._first_ngens(3)
>>> C = N.chart(r'rh:(0,+oo):\rho th:(0,2*pi):\theta', names=('rh', 'th',)); (rh, th,) = C._first_ngens(2)
Let \(b\) be the hyperbola semi-major axis and \(t\) the parameter of the foliation:
sage: b = var('b', domain='real')
sage: assume(b>0)
sage: t = var('t', domain='real')
>>> from sage.all import *
>>> b = var('b', domain='real')
>>> assume(b>Integer(0))
>>> t = var('t', domain='real')
One can then define the embedding \(\phi_t\):
sage: phi = N.diff_map(M, {(C,E): [b*cosh(rh)+t,
....: b*sinh(rh)*cos(th),
....: b*sinh(rh)*sin(th)]})
sage: phi.display()
N → M
(rh, th) ↦ (w, x, y) = (b*cosh(rh) + t, b*cos(th)*sinh(rh),
b*sin(th)*sinh(rh))
>>> from sage.all import *
>>> phi = N.diff_map(M, {(C,E): [b*cosh(rh)+t,
... b*sinh(rh)*cos(th),
... b*sinh(rh)*sin(th)]})
>>> phi.display()
N → M
(rh, th) ↦ (w, x, y) = (b*cosh(rh) + t, b*cos(th)*sinh(rh),
b*sin(th)*sinh(rh))
as well as its inverse (when considered as a diffeomorphism onto its image):
sage: phi_inv = M.diff_map(N, {(E,C): [log(sqrt(x^2+y^2+b^2)/b+
....: sqrt((x^2+y^2+b^2)/b^2-1)),
....: atan2(y,x)]})
sage: phi_inv.display()
M → N
(w, x, y) ↦ (rh, th) = (log(sqrt((b^2 + x^2 + y^2)/b^2 - 1)
+ sqrt(b^2 + x^2 + y^2)/b), arctan2(y, x))
>>> from sage.all import *
>>> phi_inv = M.diff_map(N, {(E,C): [log(sqrt(x**Integer(2)+y**Integer(2)+b**Integer(2))/b+
... sqrt((x**Integer(2)+y**Integer(2)+b**Integer(2))/b**Integer(2)-Integer(1))),
... atan2(y,x)]})
>>> phi_inv.display()
M → N
(w, x, y) ↦ (rh, th) = (log(sqrt((b^2 + x^2 + y^2)/b^2 - 1)
+ sqrt(b^2 + x^2 + y^2)/b), arctan2(y, x))
and the partial inverse expressing the foliation parameter \(t\) as a scalar field on \(M\):
sage: phi_inv_t = M.scalar_field({E: w-sqrt(x^2+y^2+b^2)})
sage: phi_inv_t.display()
M → ℝ
(w, x, y) ↦ w - sqrt(b^2 + x^2 + y^2)
>>> from sage.all import *
>>> phi_inv_t = M.scalar_field({E: w-sqrt(x**Integer(2)+y**Integer(2)+b**Integer(2))})
>>> phi_inv_t.display()
M → ℝ
(w, x, y) ↦ w - sqrt(b^2 + x^2 + y^2)
One can check that the inverse is correct with:
sage: (phi*phi_inv).display()
M → M
(w, x, y) ↦ ((b^2 + x^2 + y^2 + sqrt(b^2 + x^2 + y^2)*(t + sqrt(x^2 +
y^2)) + sqrt(x^2 + y^2)*t)/(sqrt(b^2 + x^2 + y^2) + sqrt(x^2 + y^2)), x, y)
>>> from sage.all import *
>>> (phi*phi_inv).display()
M → M
(w, x, y) ↦ ((b^2 + x^2 + y^2 + sqrt(b^2 + x^2 + y^2)*(t + sqrt(x^2 +
y^2)) + sqrt(x^2 + y^2)*t)/(sqrt(b^2 + x^2 + y^2) + sqrt(x^2 + y^2)), x, y)
The first item of the 3-uple in the right-hand does not appear as \(w\) because
\(t\) has not been replaced by its value provided by phi_inv_t
. Once this is
done, we do get \(w\):
sage: (phi*phi_inv).expr()[0].subs({t: phi_inv_t.expr()}).simplify_full()
w
>>> from sage.all import *
>>> (phi*phi_inv).expr()[Integer(0)].subs({t: phi_inv_t.expr()}).simplify_full()
w
The embedding can then be declared:
sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....: t_inverse = {t: phi_inv_t})
>>> from sage.all import *
>>> N.set_embedding(phi, inverse=phi_inv, var=t,
... t_inverse = {t: phi_inv_t})
This line does not perform any calculation yet. It just check the coherence of the arguments, but not the inverse, the user is trusted on this point.
Finally, we initialize the metric of \(M\) to be that of Minkowski space:
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2] = -1, 1, 1
sage: g.display()
g = -dw⊗dw + dx⊗dx + dy⊗dy
>>> from sage.all import *
>>> g = M.metric()
>>> g[Integer(0),Integer(0)], g[Integer(1),Integer(1)], g[Integer(2),Integer(2)] = -Integer(1), Integer(1), Integer(1)
>>> g.display()
g = -dw⊗dw + dx⊗dx + dy⊗dy
With this, the declaration the ambient manifold and its foliation parametrized by \(t\) is finished, and calculations can be performed.
The first step is always to find a chart adapted to the foliation. This is done by the method “adapted_chart”:
sage: T = N.adapted_chart(); T
[Chart (M, (rh_M, th_M, t_M))]
>>> from sage.all import *
>>> T = N.adapted_chart(); T
[Chart (M, (rh_M, th_M, t_M))]
T
contains a new chart defined on \(M\). By default, the coordinate names
are constructed from the names of the submanifold coordinates and the foliation
parameter indexed by the name of the ambient manifold. By this can be
customized, see
adapted_chart()
.
One can check that the adapted chart has been added to \(M\)’s atlas, along with some coordinates changes:
sage: M.atlas()
[Chart (M, (w, x, y)), Chart (M, (rh_M, th_M, t_M))]
sage: len(M.coord_changes())
2
>>> from sage.all import *
>>> M.atlas()
[Chart (M, (w, x, y)), Chart (M, (rh_M, th_M, t_M))]
>>> len(M.coord_changes())
2
Let us compute the induced metric (or first fundamental form):
sage: # long time
sage: gamma = N.induced_metric()
sage: gamma.display()
gamma = b^2 drh⊗drh + b^2*sinh(rh)^2 dth⊗dth
sage: gamma[:]
[ b^2 0]
[ 0 b^2*sinh(rh)^2]
sage: gamma[1,1]
b^2
>>> from sage.all import *
>>> # long time
>>> gamma = N.induced_metric()
>>> gamma.display()
gamma = b^2 drh⊗drh + b^2*sinh(rh)^2 dth⊗dth
>>> gamma[:]
[ b^2 0]
[ 0 b^2*sinh(rh)^2]
>>> gamma[Integer(1),Integer(1)]
b^2
the normal vector:
sage: N.normal().display() # long time
n = sqrt(b^2 + x^2 + y^2)/b ∂/∂w + x/b ∂/∂x + y/b ∂/∂y
>>> from sage.all import *
>>> N.normal().display() # long time
n = sqrt(b^2 + x^2 + y^2)/b ∂/∂w + x/b ∂/∂x + y/b ∂/∂y
Check that the hypersurface is indeed spacelike, i.e. that its normal is timelike:
sage: N.ambient_metric()(N.normal(), N.normal()).display() # long time
g(n,n): M → ℝ
(w, x, y) ↦ -1
(rh_M, th_M, t_M) ↦ -1
>>> from sage.all import *
>>> N.ambient_metric()(N.normal(), N.normal()).display() # long time
g(n,n): M → ℝ
(w, x, y) ↦ -1
(rh_M, th_M, t_M) ↦ -1
The lapse function is:
sage: N.lapse().display() # long time
N: M → ℝ
(w, x, y) ↦ sqrt(b^2 + x^2 + y^2)/b
(rh_M, th_M, t_M) ↦ cosh(rh_M)
>>> from sage.all import *
>>> N.lapse().display() # long time
N: M → ℝ
(w, x, y) ↦ sqrt(b^2 + x^2 + y^2)/b
(rh_M, th_M, t_M) ↦ cosh(rh_M)
while the shift vector is:
sage: N.shift().display() # long time
beta = -(x^2 + y^2)/b^2 ∂/∂w - sqrt(b^2 + x^2 + y^2)*x/b^2 ∂/∂x
- sqrt(b^2 + x^2 + y^2)*y/b^2 ∂/∂y
>>> from sage.all import *
>>> N.shift().display() # long time
beta = -(x^2 + y^2)/b^2 ∂/∂w - sqrt(b^2 + x^2 + y^2)*x/b^2 ∂/∂x
- sqrt(b^2 + x^2 + y^2)*y/b^2 ∂/∂y
The extrinsic curvature (or second fundamental form) as a tensor field on the ambient manifold:
sage: N.ambient_extrinsic_curvature()[:] # long time
[ -(x^2 + y^2)/b^3 (b^2*x + x^3 + x*y^2)/(sqrt(b^2 + x^2 + y^2)*b^3) (y^3 + (b^2 + x^2)*y)/(sqrt(b^2 + x^2 + y^2)*b^3)]
[ sqrt(b^2 + x^2 + y^2)*x/b^3 -(b^2 + x^2)/b^3 -x*y/b^3]
[ sqrt(b^2 + x^2 + y^2)*y/b^3 -x*y/b^3 -(b^2 + y^2)/b^3]
>>> from sage.all import *
>>> N.ambient_extrinsic_curvature()[:] # long time
[ -(x^2 + y^2)/b^3 (b^2*x + x^3 + x*y^2)/(sqrt(b^2 + x^2 + y^2)*b^3) (y^3 + (b^2 + x^2)*y)/(sqrt(b^2 + x^2 + y^2)*b^3)]
[ sqrt(b^2 + x^2 + y^2)*x/b^3 -(b^2 + x^2)/b^3 -x*y/b^3]
[ sqrt(b^2 + x^2 + y^2)*y/b^3 -x*y/b^3 -(b^2 + y^2)/b^3]
The extrinsic curvature as a tensor field on the submanifold:
sage: N.extrinsic_curvature()[:] # long time
[ -b 0]
[ 0 -b*sinh(rh)^2]
>>> from sage.all import *
>>> N.extrinsic_curvature()[:] # long time
[ -b 0]
[ 0 -b*sinh(rh)^2]
AUTHORS:
Florentin Jaffredo (2018): initial version
Eric Gourgoulhon (2018-2019): add documentation
Matthias Koeppe (2021): open subsets of submanifolds
REFERENCES:
- class sage.manifolds.differentiable.pseudo_riemannian_submanifold.PseudoRiemannianSubmanifold(n, name, ambient=None, metric_name=None, signature=None, base_manifold=None, diff_degree=+Infinity, latex_name=None, metric_latex_name=None, start_index=0, category=None, unique_tag=None)[source]¶
Bases:
PseudoRiemannianManifold
,DifferentiableSubmanifold
Pseudo-Riemannian submanifold.
An embedded (resp. immersed) submanifold of a pseudo-Riemannian manifold \((M,g)\) is an embedded (resp. immersed) submanifold \(N\) of \(M\) as a differentiable manifold such that pull back of the metric tensor \(g\) via the embedding (resp. immersion) endows \(N\) with the structure of a pseudo-Riemannian manifold.
INPUT:
n
– positive integer; dimension of the submanifoldname
– string; name (symbol) given to the submanifoldambient
– (default:None
) pseudo-Riemannian manifold \(M\) in which the submanifold is embedded (or immersed). IfNone
, it is set toself
metric_name
– (default:None
) string; name (symbol) given to the metric; ifNone
,'gamma'
is usedsignature
– (default:None
) signature \(S\) of the metric as a single integer: \(S = n_+ - n_-\), where \(n_+\) (resp. \(n_-\)) is the number of positive terms (resp. number of negative terms) in any diagonal writing of the metric components; ifsignature
is not provided, \(S\) is set to the submanifold’s dimension (Riemannian signature)base_manifold
– (default:None
) if notNone
, must be a differentiable manifold; the created object is then an open subset ofbase_manifold
diff_degree
– (default:infinity
) degree of differentiabilitylatex_name
– (default:None
) string; LaTeX symbol to denote the submanifold; if none is provided, it is set toname
metric_latex_name
– (default:None
) string; LaTeX symbol to denote the metric; if none is provided, it is set tometric_name
if the latter is notNone
and tor'\gamma'
otherwisestart_index
– (default: 0) integer; lower value of the range of indices used for “indexed objects” on the submanifold, e.g. coordinates in a chartcategory
– (default:None
) to specify the category; ifNone
,Manifolds(RR).Differentiable()
(orManifolds(RR).Smooth()
ifdiff_degree
=infinity
) is assumed (see the categoryManifolds
)unique_tag
– (default:None
) tag used to force the construction of a new object when all the other arguments have been used previously (withoutunique_tag
, theUniqueRepresentation
behavior inherited fromManifoldSubset
, viaDifferentiableManifold
andTopologicalManifold
, would return the previously constructed object corresponding to these arguments).
EXAMPLES:
Let \(N\) be a 2-dimensional submanifold of a 3-dimensional Riemannian manifold \(M\):
sage: M = Manifold(3, 'M', structure ='Riemannian') sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: N 2-dimensional Riemannian submanifold N immersed in the 3-dimensional Riemannian manifold M sage: CM.<x,y,z> = M.chart() sage: CN.<u,v> = N.chart()
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure ='Riemannian') >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> N 2-dimensional Riemannian submanifold N immersed in the 3-dimensional Riemannian manifold M >>> CM = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = CM._first_ngens(3) >>> CN = N.chart(names=('u', 'v',)); (u, v,) = CN._first_ngens(2)
Let us define a 1-dimension foliation indexed by \(t\). The inverse map is needed in order to compute the adapted chart in the ambient manifold:
sage: t = var('t') sage: phi = N.diff_map(M, {(CN,CM):[u, v, t+u^2+v^2]}); phi Differentiable map from the 2-dimensional Riemannian submanifold N immersed in the 3-dimensional Riemannian manifold M to the 3-dimensional Riemannian manifold M sage: phi_inv = M.diff_map(N,{(CM, CN): [x,y]}) sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
>>> from sage.all import * >>> t = var('t') >>> phi = N.diff_map(M, {(CN,CM):[u, v, t+u**Integer(2)+v**Integer(2)]}); phi Differentiable map from the 2-dimensional Riemannian submanifold N immersed in the 3-dimensional Riemannian manifold M to the 3-dimensional Riemannian manifold M >>> phi_inv = M.diff_map(N,{(CM, CN): [x,y]}) >>> phi_inv_t = M.scalar_field({CM: z-x**Integer(2)-y**Integer(2)})
\(\phi\) can then be declared as an embedding \(N\to M\):
sage: N.set_embedding(phi, inverse=phi_inv, var=t, ....: t_inverse={t: phi_inv_t})
>>> from sage.all import * >>> N.set_embedding(phi, inverse=phi_inv, var=t, ... t_inverse={t: phi_inv_t})
The foliation can also be used to find new charts on the ambient manifold that are adapted to the foliation, ie in which the expression of the immersion is trivial. At the same time, the appropriate coordinate changes are computed:
sage: N.adapted_chart() [Chart (M, (u_M, v_M, t_M))] sage: len(M.coord_changes()) 2
>>> from sage.all import * >>> N.adapted_chart() [Chart (M, (u_M, v_M, t_M))] >>> len(M.coord_changes()) 2
See also
- ambient_extrinsic_curvature()[source]¶
Return the second fundamental form of the submanifold as a tensor field on the ambient manifold.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
(0,2) tensor field on the ambient manifold equal to the second fundamental form once orthogonally projected onto the submanifold
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.ambient_second_fundamental_form() # long time Field of symmetric bilinear forms K along the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 with values on the Euclidean plane E^2 sage: N.ambient_second_fundamental_form()[:] # long time [-x^2/(x^2 + 4) 2*x/(x^2 + 4)] [ 2*x/(x^2 + 4) -4/(x^2 + 4)]
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.ambient_second_fundamental_form() # long time Field of symmetric bilinear forms K along the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 with values on the Euclidean plane E^2 >>> N.ambient_second_fundamental_form()[:] # long time [-x^2/(x^2 + 4) 2*x/(x^2 + 4)] [ 2*x/(x^2 + 4) -4/(x^2 + 4)]
An alias is
ambient_extrinsic_curvature
:sage: N.ambient_extrinsic_curvature()[:] # long time [-x^2/(x^2 + 4) 2*x/(x^2 + 4)] [ 2*x/(x^2 + 4) -4/(x^2 + 4)]
>>> from sage.all import * >>> N.ambient_extrinsic_curvature()[:] # long time [-x^2/(x^2 + 4) 2*x/(x^2 + 4)] [ 2*x/(x^2 + 4) -4/(x^2 + 4)]
- ambient_first_fundamental_form()[source]¶
Return the first fundamental form of the submanifold as a tensor of the ambient manifold.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
(0,2) tensor field on the ambient manifold describing the induced metric before projection on the submanifold
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.ambient_first_fundamental_form() Tensor field gamma of type (0,2) along the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 with values on the Euclidean plane E^2 sage: N.ambient_first_fundamental_form()[:] [ x^2/(x^2 + 4) -2*x/(x^2 + 4)] [-2*x/(x^2 + 4) 4/(x^2 + 4)]
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.ambient_first_fundamental_form() Tensor field gamma of type (0,2) along the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 with values on the Euclidean plane E^2 >>> N.ambient_first_fundamental_form()[:] [ x^2/(x^2 + 4) -2*x/(x^2 + 4)] [-2*x/(x^2 + 4) 4/(x^2 + 4)]
An alias is
ambient_induced_metric
:sage: N.ambient_induced_metric()[:] [ x^2/(x^2 + 4) -2*x/(x^2 + 4)] [-2*x/(x^2 + 4) 4/(x^2 + 4)]
>>> from sage.all import * >>> N.ambient_induced_metric()[:] [ x^2/(x^2 + 4) -2*x/(x^2 + 4)] [-2*x/(x^2 + 4) 4/(x^2 + 4)]
- ambient_induced_metric()[source]¶
Return the first fundamental form of the submanifold as a tensor of the ambient manifold.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
(0,2) tensor field on the ambient manifold describing the induced metric before projection on the submanifold
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.ambient_first_fundamental_form() Tensor field gamma of type (0,2) along the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 with values on the Euclidean plane E^2 sage: N.ambient_first_fundamental_form()[:] [ x^2/(x^2 + 4) -2*x/(x^2 + 4)] [-2*x/(x^2 + 4) 4/(x^2 + 4)]
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.ambient_first_fundamental_form() Tensor field gamma of type (0,2) along the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 with values on the Euclidean plane E^2 >>> N.ambient_first_fundamental_form()[:] [ x^2/(x^2 + 4) -2*x/(x^2 + 4)] [-2*x/(x^2 + 4) 4/(x^2 + 4)]
An alias is
ambient_induced_metric
:sage: N.ambient_induced_metric()[:] [ x^2/(x^2 + 4) -2*x/(x^2 + 4)] [-2*x/(x^2 + 4) 4/(x^2 + 4)]
>>> from sage.all import * >>> N.ambient_induced_metric()[:] [ x^2/(x^2 + 4) -2*x/(x^2 + 4)] [-2*x/(x^2 + 4) 4/(x^2 + 4)]
- ambient_metric()[source]¶
Return the metric of the ambient manifold.
OUTPUT: the metric of the ambient manifold
EXAMPLES:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: N.ambient_metric() Riemannian metric g on the Euclidean space E^3 sage: N.ambient_metric().display() g = dx⊗dx + dy⊗dy + dz⊗dz sage: N.ambient_metric() is M.metric() True
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> N.ambient_metric() Riemannian metric g on the Euclidean space E^3 >>> N.ambient_metric().display() g = dx⊗dx + dy⊗dy + dz⊗dz >>> N.ambient_metric() is M.metric() True
- ambient_second_fundamental_form()[source]¶
Return the second fundamental form of the submanifold as a tensor field on the ambient manifold.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
(0,2) tensor field on the ambient manifold equal to the second fundamental form once orthogonally projected onto the submanifold
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.ambient_second_fundamental_form() # long time Field of symmetric bilinear forms K along the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 with values on the Euclidean plane E^2 sage: N.ambient_second_fundamental_form()[:] # long time [-x^2/(x^2 + 4) 2*x/(x^2 + 4)] [ 2*x/(x^2 + 4) -4/(x^2 + 4)]
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.ambient_second_fundamental_form() # long time Field of symmetric bilinear forms K along the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 with values on the Euclidean plane E^2 >>> N.ambient_second_fundamental_form()[:] # long time [-x^2/(x^2 + 4) 2*x/(x^2 + 4)] [ 2*x/(x^2 + 4) -4/(x^2 + 4)]
An alias is
ambient_extrinsic_curvature
:sage: N.ambient_extrinsic_curvature()[:] # long time [-x^2/(x^2 + 4) 2*x/(x^2 + 4)] [ 2*x/(x^2 + 4) -4/(x^2 + 4)]
>>> from sage.all import * >>> N.ambient_extrinsic_curvature()[:] # long time [-x^2/(x^2 + 4) 2*x/(x^2 + 4)] [ 2*x/(x^2 + 4) -4/(x^2 + 4)]
- clear_cache()[source]¶
Reset all the cached functions and the derived quantities.
Use this function if you modified the immersion (or embedding) of the submanifold. Note that when calling a calculus function after clearing, new Python objects will be created.
EXAMPLES:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') # foliation parameter sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)}) sage: N.set_embedding(phi, inverse=phi_inv, var=r, ....: t_inverse={r: phi_inv_r}) sage: T = N.adapted_chart() sage: n = N.normal() sage: n is N.normal() True sage: N.clear_cache() sage: n is N.normal() False sage: n == N.normal() True
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') # foliation parameter >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) >>> phi_inv_r = M.scalar_field({E: sqrt(x**Integer(2)+y**Integer(2)+z**Integer(2))}) >>> N.set_embedding(phi, inverse=phi_inv, var=r, ... t_inverse={r: phi_inv_r}) >>> T = N.adapted_chart() >>> n = N.normal() >>> n is N.normal() True >>> N.clear_cache() >>> n is N.normal() False >>> n == N.normal() True
- difft()[source]¶
Return the differential of the scalar field on the ambient manifold representing the first parameter of the foliation associated to
self
.The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT: 1-form field on the ambient manifold
EXAMPLES:
Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)}) sage: N.set_embedding(phi, inverse=phi_inv, var=r, ....: t_inverse={r: phi_inv_r}) sage: N.difft() 1-form dr on the Euclidean space E^3 sage: N.difft().display() dr = x/sqrt(x^2 + y^2 + z^2) dx + y/sqrt(x^2 + y^2 + z^2) dy + z/sqrt(x^2 + y^2 + z^2) dz
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) >>> phi_inv_r = M.scalar_field({E: sqrt(x**Integer(2)+y**Integer(2)+z**Integer(2))}) >>> N.set_embedding(phi, inverse=phi_inv, var=r, ... t_inverse={r: phi_inv_r}) >>> N.difft() 1-form dr on the Euclidean space E^3 >>> N.difft().display() dr = x/sqrt(x^2 + y^2 + z^2) dx + y/sqrt(x^2 + y^2 + z^2) dy + z/sqrt(x^2 + y^2 + z^2) dz
- extrinsic_curvature()[source]¶
Return the second fundamental form of the submanifold.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
the second fundamental form, as a symmetric tensor field of type (0,2) on the submanifold
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.second_fundamental_form() # long time Field of symmetric bilinear forms K on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 sage: N.second_fundamental_form().display() # long time K = -4/(x^4 + 8*x^2 + 16) dx⊗dx
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.second_fundamental_form() # long time Field of symmetric bilinear forms K on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 >>> N.second_fundamental_form().display() # long time K = -4/(x^4 + 8*x^2 + 16) dx⊗dx
An alias is
extrinsic_curvature
:sage: N.extrinsic_curvature().display() # long time K = -4/(x^4 + 8*x^2 + 16) dx⊗dx
>>> from sage.all import * >>> N.extrinsic_curvature().display() # long time K = -4/(x^4 + 8*x^2 + 16) dx⊗dx
An example with a non-Euclidean ambient metric:
sage: M = Manifold(2, 'M', structure='Riemannian') sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian', ....: start_index=1) sage: CM.<x,y> = M.chart() sage: CN.<u> = N.chart() sage: g = M.metric() sage: g[0, 0], g[1, 1] = 1, 1/(1 + y^2)^2 sage: phi = N.diff_map(M, (u, u)) sage: N.set_embedding(phi) sage: N.second_fundamental_form() Field of symmetric bilinear forms K on the 1-dimensional Riemannian submanifold N embedded in the 2-dimensional Riemannian manifold M sage: N.second_fundamental_form().display() K = 2*sqrt(u^4 + 2*u^2 + 2)*u/(u^6 + 3*u^4 + 4*u^2 + 2) du⊗du
>>> from sage.all import * >>> M = Manifold(Integer(2), 'M', structure='Riemannian') >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian', ... start_index=Integer(1)) >>> CM = M.chart(names=('x', 'y',)); (x, y,) = CM._first_ngens(2) >>> CN = N.chart(names=('u',)); (u,) = CN._first_ngens(1) >>> g = M.metric() >>> g[Integer(0), Integer(0)], g[Integer(1), Integer(1)] = Integer(1), Integer(1)/(Integer(1) + y**Integer(2))**Integer(2) >>> phi = N.diff_map(M, (u, u)) >>> N.set_embedding(phi) >>> N.second_fundamental_form() Field of symmetric bilinear forms K on the 1-dimensional Riemannian submanifold N embedded in the 2-dimensional Riemannian manifold M >>> N.second_fundamental_form().display() K = 2*sqrt(u^4 + 2*u^2 + 2)*u/(u^6 + 3*u^4 + 4*u^2 + 2) du⊗du
- first_fundamental_form()[source]¶
Return the first fundamental form of the submanifold.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
the first fundamental form, as an instance of
PseudoRiemannianMetric
EXAMPLES:
A sphere embedded in Euclidean space:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: N.set_embedding(phi) sage: N.first_fundamental_form() # long time Riemannian metric gamma on the 2-dimensional Riemannian submanifold N embedded in the Euclidean space E^3 sage: N.first_fundamental_form()[:] # long time [ r^2 0] [ 0 r^2*sin(th)^2]
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> N.set_embedding(phi) >>> N.first_fundamental_form() # long time Riemannian metric gamma on the 2-dimensional Riemannian submanifold N embedded in the Euclidean space E^3 >>> N.first_fundamental_form()[:] # long time [ r^2 0] [ 0 r^2*sin(th)^2]
An alias is
induced_metric
:sage: N.induced_metric()[:] # long time [ r^2 0] [ 0 r^2*sin(th)^2]
>>> from sage.all import * >>> N.induced_metric()[:] # long time [ r^2 0] [ 0 r^2*sin(th)^2]
By default, the first fundamental form is named
gamma
, but this can be customized by means of the argumentmetric_name
when declaring the submanifold:sage: P = Manifold(1, 'P', ambient=M, structure='Riemannian', ....: metric_name='g') sage: CP.<t> = P.chart() sage: F = P.diff_map(M, [t, 2*t, 3*t]) sage: P.set_embedding(F) sage: P.induced_metric() Riemannian metric g on the 1-dimensional Riemannian submanifold P embedded in the Euclidean space E^3 sage: P.induced_metric().display() g = 14 dt⊗dt
>>> from sage.all import * >>> P = Manifold(Integer(1), 'P', ambient=M, structure='Riemannian', ... metric_name='g') >>> CP = P.chart(names=('t',)); (t,) = CP._first_ngens(1) >>> F = P.diff_map(M, [t, Integer(2)*t, Integer(3)*t]) >>> P.set_embedding(F) >>> P.induced_metric() Riemannian metric g on the 1-dimensional Riemannian submanifold P embedded in the Euclidean space E^3 >>> P.induced_metric().display() g = 14 dt⊗dt
- gauss_curvature()[source]¶
Return the Gauss curvature of the submanifold.
The Gauss curvature is the product or the principal curvatures, or equivalently the determinant of the projection operator.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT: the Gauss curvature as a scalar field on the submanifold
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.gauss_curvature() # long time Scalar field on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 sage: N.gauss_curvature().display() # long time N → ℝ on U: x ↦ -1 on V: y ↦ -1
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.gauss_curvature() # long time Scalar field on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 >>> N.gauss_curvature().display() # long time N → ℝ on U: x ↦ -1 on V: y ↦ -1
- gradt()[source]¶
Return the gradient of the scalar field on the ambient manifold representing the first parameter of the foliation associated to
self
.The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT: vector field on the ambient manifold
EXAMPLES:
Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)}) sage: N.set_embedding(phi, inverse=phi_inv, var=r, ....: t_inverse={r: phi_inv_r}) sage: N.gradt() Vector field grad(r) on the Euclidean space E^3 sage: N.gradt().display() grad(r) = x/sqrt(x^2 + y^2 + z^2) e_x + y/sqrt(x^2 + y^2 + z^2) e_y + z/sqrt(x^2 + y^2 + z^2) e_z
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) >>> phi_inv_r = M.scalar_field({E: sqrt(x**Integer(2)+y**Integer(2)+z**Integer(2))}) >>> N.set_embedding(phi, inverse=phi_inv, var=r, ... t_inverse={r: phi_inv_r}) >>> N.gradt() Vector field grad(r) on the Euclidean space E^3 >>> N.gradt().display() grad(r) = x/sqrt(x^2 + y^2 + z^2) e_x + y/sqrt(x^2 + y^2 + z^2) e_y + z/sqrt(x^2 + y^2 + z^2) e_z
- induced_metric()[source]¶
Return the first fundamental form of the submanifold.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
the first fundamental form, as an instance of
PseudoRiemannianMetric
EXAMPLES:
A sphere embedded in Euclidean space:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: N.set_embedding(phi) sage: N.first_fundamental_form() # long time Riemannian metric gamma on the 2-dimensional Riemannian submanifold N embedded in the Euclidean space E^3 sage: N.first_fundamental_form()[:] # long time [ r^2 0] [ 0 r^2*sin(th)^2]
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> N.set_embedding(phi) >>> N.first_fundamental_form() # long time Riemannian metric gamma on the 2-dimensional Riemannian submanifold N embedded in the Euclidean space E^3 >>> N.first_fundamental_form()[:] # long time [ r^2 0] [ 0 r^2*sin(th)^2]
An alias is
induced_metric
:sage: N.induced_metric()[:] # long time [ r^2 0] [ 0 r^2*sin(th)^2]
>>> from sage.all import * >>> N.induced_metric()[:] # long time [ r^2 0] [ 0 r^2*sin(th)^2]
By default, the first fundamental form is named
gamma
, but this can be customized by means of the argumentmetric_name
when declaring the submanifold:sage: P = Manifold(1, 'P', ambient=M, structure='Riemannian', ....: metric_name='g') sage: CP.<t> = P.chart() sage: F = P.diff_map(M, [t, 2*t, 3*t]) sage: P.set_embedding(F) sage: P.induced_metric() Riemannian metric g on the 1-dimensional Riemannian submanifold P embedded in the Euclidean space E^3 sage: P.induced_metric().display() g = 14 dt⊗dt
>>> from sage.all import * >>> P = Manifold(Integer(1), 'P', ambient=M, structure='Riemannian', ... metric_name='g') >>> CP = P.chart(names=('t',)); (t,) = CP._first_ngens(1) >>> F = P.diff_map(M, [t, Integer(2)*t, Integer(3)*t]) >>> P.set_embedding(F) >>> P.induced_metric() Riemannian metric g on the 1-dimensional Riemannian submanifold P embedded in the Euclidean space E^3 >>> P.induced_metric().display() g = 14 dt⊗dt
- lapse()[source]¶
Return the lapse function of the foliation.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT: the lapse function, as a scalar field on the ambient manifold
EXAMPLES:
Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') # foliation parameter sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)}) sage: N.set_embedding(phi, inverse=phi_inv, var=r, ....: t_inverse={r: phi_inv_r}) sage: T = N.adapted_chart() sage: N.lapse() Scalar field N on the Euclidean space E^3 sage: N.lapse().display() N: E^3 → ℝ (x, y, z) ↦ 1 (th_E3, ph_E3, r_E3) ↦ 1
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') # foliation parameter >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) >>> phi_inv_r = M.scalar_field({E: sqrt(x**Integer(2)+y**Integer(2)+z**Integer(2))}) >>> N.set_embedding(phi, inverse=phi_inv, var=r, ... t_inverse={r: phi_inv_r}) >>> T = N.adapted_chart() >>> N.lapse() Scalar field N on the Euclidean space E^3 >>> N.lapse().display() N: E^3 → ℝ (x, y, z) ↦ 1 (th_E3, ph_E3, r_E3) ↦ 1
- mean_curvature()[source]¶
Return the mean curvature of the submanifold.
The mean curvature is the arithmetic mean of the principal curvatures, or equivalently the trace of the projection operator.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT: the mean curvature, as a scalar field on the submanifold
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.mean_curvature() # long time Scalar field on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 sage: N.mean_curvature().display() # long time N → ℝ on U: x ↦ -1 on V: y ↦ -1
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.mean_curvature() # long time Scalar field on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 >>> N.mean_curvature().display() # long time N → ℝ on U: x ↦ -1 on V: y ↦ -1
- metric(name=None, signature=None, latex_name=None, dest_map=None)[source]¶
Return the induced metric (first fundamental form) or define a new metric tensor on the submanifold.
A new (uninitialized) metric is returned only if the argument
name
is provided and differs from the metric name declared at the construction of the submanifold; otherwise, the first fundamental form is returned.INPUT:
name
– (default:None
) name given to the metric; ifname
isNone
or equals the metric name declared when constructing the submanifold, the first fundamental form is returned (seefirst_fundamental_form()
)signature
– (default:None
; ignored ifname
isNone
) signature \(S\) of the metric as a single integer: \(S = n_+ - n_-\), where \(n_+\) (resp. \(n_-\)) is the number of positive terms (resp. number of negative terms) in any diagonal writing of the metric components; ifsignature
is not provided, \(S\) is set to the submanifold’s dimension (Riemannian signature)latex_name
– (default:None
; ignored ifname
isNone
) LaTeX symbol to denote the metric; ifNone
, it is formed fromname
dest_map
– (default:None
; ignored ifname
isNone
) instance of classDiffMap
representing the destination map \(\Phi:\ U \rightarrow M\), where \(U\) is the current submanifold; ifNone
, the identity map is assumed (case of a metric tensor field on \(U\))
OUTPUT:
instance of
PseudoRiemannianMetric
EXAMPLES:
Induced metric on a straight line of the Euclidean plane:
sage: M.<x,y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: CN.<t> = N.chart() sage: F = N.diff_map(M, [t, 2*t]) sage: N.set_embedding(F) sage: N.metric() Riemannian metric gamma on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 sage: N.metric().display() gamma = 5 dt⊗dt
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y',)); (x, y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> CN = N.chart(names=('t',)); (t,) = CN._first_ngens(1) >>> F = N.diff_map(M, [t, Integer(2)*t]) >>> N.set_embedding(F) >>> N.metric() Riemannian metric gamma on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 >>> N.metric().display() gamma = 5 dt⊗dt
Setting the argument
name
to that declared while constructing the submanifold (default:'gamma'
) yields the same result:sage: N.metric(name='gamma') is N.metric() True
>>> from sage.all import * >>> N.metric(name='gamma') is N.metric() True
while using a different name allows one to define a new metric on the submanifold:
sage: h = N.metric(name='h'); h Riemannian metric h on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 sage: h[0, 0] = 1 # initialization sage: h.display() h = dt⊗dt
>>> from sage.all import * >>> h = N.metric(name='h'); h Riemannian metric h on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 >>> h[Integer(0), Integer(0)] = Integer(1) # initialization >>> h.display() h = dt⊗dt
- mixed_projection(tensor, indices=0)[source]¶
Return de n+1 decomposition of a tensor on the submanifold and the normal vector.
The n+1 decomposition of a tensor of rank \(k\) can be obtained by contracting each index either with the normal vector or the projection operator of the submanifold (see
projector()
).INPUT:
tensor
– any tensor field, eventually along the submanifold if no foliation is providedindices
– (default:0
) list of integers containing the indices on which the projection is made on the normal vector. By default, all projections are made on the submanifold. If an integer \(n\) is provided, the \(n\) first contractions are made with the normal vector, all the other ones with the orthogonal projection operator.
OUTPUT: tensor field of rank \(k\)-
len(indices)
EXAMPLES:
Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') # foliation parameter sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)}) sage: N.set_embedding(phi, inverse=phi_inv, var=r, ....: t_inverse={r: phi_inv_r}) sage: T = N.adapted_chart()
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') # foliation parameter >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) >>> phi_inv_r = M.scalar_field({E: sqrt(x**Integer(2)+y**Integer(2)+z**Integer(2))}) >>> N.set_embedding(phi, inverse=phi_inv, var=r, ... t_inverse={r: phi_inv_r}) >>> T = N.adapted_chart()
If
indices
is not specified, the mixed projection of the ambient metric coincides with the first fundamental form:sage: g = M.metric() sage: gpp = N.mixed_projection(g); gpp # long time Tensor field of type (0,2) on the Euclidean space E^3 sage: gpp == N.ambient_first_fundamental_form() # long time True
>>> from sage.all import * >>> g = M.metric() >>> gpp = N.mixed_projection(g); gpp # long time Tensor field of type (0,2) on the Euclidean space E^3 >>> gpp == N.ambient_first_fundamental_form() # long time True
The other non-redundant projections are:
sage: gnp = N.mixed_projection(g, [0]); gnp # long time 1-form on the Euclidean space E^3
>>> from sage.all import * >>> gnp = N.mixed_projection(g, [Integer(0)]); gnp # long time 1-form on the Euclidean space E^3
and:
sage: gnn = N.mixed_projection(g, [0,1]); gnn Scalar field on the Euclidean space E^3
>>> from sage.all import * >>> gnn = N.mixed_projection(g, [Integer(0),Integer(1)]); gnn Scalar field on the Euclidean space E^3
which is constant and equal to 1 (the norm of the unit normal vector):
sage: gnn.display() E^3 → ℝ (x, y, z) ↦ 1 (th_E3, ph_E3, r_E3) ↦ 1
>>> from sage.all import * >>> gnn.display() E^3 → ℝ (x, y, z) ↦ 1 (th_E3, ph_E3, r_E3) ↦ 1
- normal()[source]¶
Return a normal unit vector to the submanifold.
If a foliation is defined, it is used to compute the gradient of the foliation parameter and then the normal vector. If not, the normal vector is computed using the following formula:
\[n = \vec{*}(\mathrm{d}x_0\wedge\mathrm{d}x_1\wedge\cdots \wedge\mathrm{d}x_{n-1})\]where the star stands for the Hodge dual operator and the wedge for the exterior product.
This formula does not always define a proper vector field when multiple charts overlap, because of the arbitrariness of the direction of the normal vector. To avoid this problem, the method
normal()
considers the graph defined by the atlas of the submanifold and the changes of coordinates, and only calculate the normal vector once by connected component. The expression is then propagate by restriction, continuation, or change of coordinates using a breadth-first exploration of the graph.The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
vector field on the ambient manifold (case of a foliation) or along the submanifold with values in the ambient manifold (case of a single submanifold)
EXAMPLES:
Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') # foliation parameter sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)}) sage: N.set_embedding(phi, inverse=phi_inv, var=r, ....: t_inverse={r: phi_inv_r}) sage: T = N.adapted_chart() sage: N.normal() # long time Vector field n on the Euclidean space E^3 sage: N.normal().display() # long time n = x/sqrt(x^2 + y^2 + z^2) e_x + y/sqrt(x^2 + y^2 + z^2) e_y + z/sqrt(x^2 + y^2 + z^2) e_z
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') # foliation parameter >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) >>> phi_inv_r = M.scalar_field({E: sqrt(x**Integer(2)+y**Integer(2)+z**Integer(2))}) >>> N.set_embedding(phi, inverse=phi_inv, var=r, ... t_inverse={r: phi_inv_r}) >>> T = N.adapted_chart() >>> N.normal() # long time Vector field n on the Euclidean space E^3 >>> N.normal().display() # long time n = x/sqrt(x^2 + y^2 + z^2) e_x + y/sqrt(x^2 + y^2 + z^2) e_y + z/sqrt(x^2 + y^2 + z^2) e_z
Or in spherical coordinates:
sage: N.normal().display(T[0].frame(),T[0]) # long time n = ∂/∂r_E3
>>> from sage.all import * >>> N.normal().display(T[Integer(0)].frame(),T[Integer(0)]) # long time n = ∂/∂r_E3
Let us now consider a sphere of constant radius, i.e. not assumed to be part of a foliation, in stereographic coordinates:
sage: M.<X,Y,Z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U, V) sage: stereoN.<x,y> = U.chart() sage: stereoS.<xp,yp> = V.chart("xp:x' yp:y'") sage: stereoN_to_S = stereoN.transition_map(stereoS, ....: (x/(x^2+y^2), y/(x^2+y^2)), ....: intersection_name='W', ....: restrictions1= x^2+y^2!=0, ....: restrictions2= xp^2+yp^2!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: W = U.intersection(V) sage: stereoN_W = stereoN.restrict(W) sage: stereoS_W = stereoS.restrict(W) sage: A = W.open_subset('A', coord_def={stereoN_W: (y!=0, x<0), ....: stereoS_W: (yp!=0, xp<0)}) sage: spher.<the,phi> = A.chart(r'the:(0,pi):\theta phi:(0,2*pi):\phi') sage: stereoN_A = stereoN_W.restrict(A) sage: spher_to_stereoN = spher.transition_map(stereoN_A, ....: (sin(the)*cos(phi)/(1-cos(the)), ....: sin(the)*sin(phi)/(1-cos(the)))) sage: spher_to_stereoN.set_inverse(2*atan(1/sqrt(x^2+y^2)), ....: atan2(-y,-x)+pi) Check of the inverse coordinate transformation: the == 2*arctan(sqrt(-cos(the) + 1)/sqrt(cos(the) + 1)) **failed** phi == pi + arctan2(sin(phi)*sin(the)/(cos(the) - 1), cos(phi)*sin(the)/(cos(the) - 1)) **failed** x == x *passed* y == y *passed* NB: a failed report can reflect a mere lack of simplification. sage: stereoN_to_S_A = stereoN_to_S.restrict(A) sage: spher_to_stereoS = stereoN_to_S_A * spher_to_stereoN sage: stereoS_to_N_A = stereoN_to_S.inverse().restrict(A) sage: stereoS_to_spher = spher_to_stereoN.inverse() * stereoS_to_N_A sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(stereoN, E): [2*x/(1+x^2+y^2), ....: 2*y/(1+x^2+y^2), ....: (x^2+y^2-1)/(1+x^2+y^2)], ....: (stereoS, E): [2*xp/(1+xp^2+yp^2), ....: 2*yp/(1+xp^2+yp^2), ....: (1-xp^2-yp^2)/(1+xp^2+yp^2)]}, ....: name='Phi', latex_name=r'\Phi') sage: N.set_embedding(phi)
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y', 'Z',)); (X, Y, Z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U, V) >>> stereoN = U.chart(names=('x', 'y',)); (x, y,) = stereoN._first_ngens(2) >>> stereoS = V.chart("xp:x' yp:y'", names=('xp', 'yp',)); (xp, yp,) = stereoS._first_ngens(2) >>> stereoN_to_S = stereoN.transition_map(stereoS, ... (x/(x**Integer(2)+y**Integer(2)), y/(x**Integer(2)+y**Integer(2))), ... intersection_name='W', ... restrictions1= x**Integer(2)+y**Integer(2)!=Integer(0), ... restrictions2= xp**Integer(2)+yp**Integer(2)!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> W = U.intersection(V) >>> stereoN_W = stereoN.restrict(W) >>> stereoS_W = stereoS.restrict(W) >>> A = W.open_subset('A', coord_def={stereoN_W: (y!=Integer(0), x<Integer(0)), ... stereoS_W: (yp!=Integer(0), xp<Integer(0))}) >>> spher = A.chart(r'the:(0,pi):\theta phi:(0,2*pi):\phi', names=('the', 'phi',)); (the, phi,) = spher._first_ngens(2) >>> stereoN_A = stereoN_W.restrict(A) >>> spher_to_stereoN = spher.transition_map(stereoN_A, ... (sin(the)*cos(phi)/(Integer(1)-cos(the)), ... sin(the)*sin(phi)/(Integer(1)-cos(the)))) >>> spher_to_stereoN.set_inverse(Integer(2)*atan(Integer(1)/sqrt(x**Integer(2)+y**Integer(2))), ... atan2(-y,-x)+pi) Check of the inverse coordinate transformation: the == 2*arctan(sqrt(-cos(the) + 1)/sqrt(cos(the) + 1)) **failed** phi == pi + arctan2(sin(phi)*sin(the)/(cos(the) - 1), cos(phi)*sin(the)/(cos(the) - 1)) **failed** x == x *passed* y == y *passed* NB: a failed report can reflect a mere lack of simplification. >>> stereoN_to_S_A = stereoN_to_S.restrict(A) >>> spher_to_stereoS = stereoN_to_S_A * spher_to_stereoN >>> stereoS_to_N_A = stereoN_to_S.inverse().restrict(A) >>> stereoS_to_spher = spher_to_stereoN.inverse() * stereoS_to_N_A >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(stereoN, E): [Integer(2)*x/(Integer(1)+x**Integer(2)+y**Integer(2)), ... Integer(2)*y/(Integer(1)+x**Integer(2)+y**Integer(2)), ... (x**Integer(2)+y**Integer(2)-Integer(1))/(Integer(1)+x**Integer(2)+y**Integer(2))], ... (stereoS, E): [Integer(2)*xp/(Integer(1)+xp**Integer(2)+yp**Integer(2)), ... Integer(2)*yp/(Integer(1)+xp**Integer(2)+yp**Integer(2)), ... (Integer(1)-xp**Integer(2)-yp**Integer(2))/(Integer(1)+xp**Integer(2)+yp**Integer(2))]}, ... name='Phi', latex_name=r'\Phi') >>> N.set_embedding(phi)
The method
normal()
now returns a tensor field alongN
:sage: n = N.normal() # long time sage: n # long time Vector field n along the 2-dimensional Riemannian submanifold N embedded in the Euclidean space E^3 with values on the Euclidean space E^3
>>> from sage.all import * >>> n = N.normal() # long time >>> n # long time Vector field n along the 2-dimensional Riemannian submanifold N embedded in the Euclidean space E^3 with values on the Euclidean space E^3
Let us check that the choice of orientation is coherent on the two top frames:
sage: n.restrict(V).display(format_spec=spher) # long time n = -cos(phi)*sin(the) e_X - sin(phi)*sin(the) e_Y - cos(the) e_Z sage: n.restrict(U).display(format_spec=spher) # long time n = -cos(phi)*sin(the) e_X - sin(phi)*sin(the) e_Y - cos(the) e_Z
>>> from sage.all import * >>> n.restrict(V).display(format_spec=spher) # long time n = -cos(phi)*sin(the) e_X - sin(phi)*sin(the) e_Y - cos(the) e_Z >>> n.restrict(U).display(format_spec=spher) # long time n = -cos(phi)*sin(the) e_X - sin(phi)*sin(the) e_Y - cos(the) e_Z
- open_subset(name, latex_name=None, coord_def={}, supersets=None)[source]¶
Create an open subset of
self
.An open subset is a set that is (i) included in the manifold and (ii) open with respect to the manifold’s topology. It is a differentiable manifold by itself. Moreover, equipped with the restriction of the manifold metric to itself, it is a pseudo-Riemannian manifold.
As
self
is a submanifold of its ambient manifold, the new open subset is also considered a submanifold of that. Hence the returned object is an instance ofPseudoRiemannianSubmanifold
.INPUT:
name
– name given to the open subsetlatex_name
– (default:None
) LaTeX symbol to denote the subset; if none is provided, it is set toname
coord_def
– (default: {}) definition of the subset in terms of coordinates;coord_def
must a be dictionary with keys charts in the manifold’s atlas and values the symbolic expressions formed by the coordinates to define the subset.supersets
– (default: onlyself
) list of sets that the new open subset is a subset of
OUTPUT:
instance of
PseudoRiemannianSubmanifold
representing the created open subset
EXAMPLES:
sage: M = Manifold(3, 'M', structure='Riemannian') sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian'); N 2-dimensional Riemannian submanifold N immersed in the 3-dimensional Riemannian manifold M sage: S = N.subset('S'); S Subset S of the 2-dimensional Riemannian submanifold N immersed in the 3-dimensional Riemannian manifold M sage: O = N.subset('O', is_open=True); O # indirect doctest Open subset O of the 2-dimensional Riemannian submanifold N immersed in the 3-dimensional Riemannian manifold M sage: phi = N.diff_map(M) sage: N.set_embedding(phi) sage: N 2-dimensional Riemannian submanifold N embedded in the 3-dimensional Riemannian manifold M sage: S = N.subset('S'); S Subset S of the 2-dimensional Riemannian submanifold N embedded in the 3-dimensional Riemannian manifold M sage: O = N.subset('O', is_open=True); O # indirect doctest Open subset O of the 2-dimensional Riemannian submanifold N embedded in the 3-dimensional Riemannian manifold M
>>> from sage.all import * >>> M = Manifold(Integer(3), 'M', structure='Riemannian') >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian'); N 2-dimensional Riemannian submanifold N immersed in the 3-dimensional Riemannian manifold M >>> S = N.subset('S'); S Subset S of the 2-dimensional Riemannian submanifold N immersed in the 3-dimensional Riemannian manifold M >>> O = N.subset('O', is_open=True); O # indirect doctest Open subset O of the 2-dimensional Riemannian submanifold N immersed in the 3-dimensional Riemannian manifold M >>> phi = N.diff_map(M) >>> N.set_embedding(phi) >>> N 2-dimensional Riemannian submanifold N embedded in the 3-dimensional Riemannian manifold M >>> S = N.subset('S'); S Subset S of the 2-dimensional Riemannian submanifold N embedded in the 3-dimensional Riemannian manifold M >>> O = N.subset('O', is_open=True); O # indirect doctest Open subset O of the 2-dimensional Riemannian submanifold N embedded in the 3-dimensional Riemannian manifold M
- principal_curvatures(chart)[source]¶
Return the principal curvatures of the submanifold.
The principal curvatures are the eigenvalues of the projection operator. The resulting scalar fields are named
k_i
with the indexi
ranging from 0 to the submanifold dimension minus one.The result is cached, so calling this method multiple times always returns the same result at no additional cost.
INPUT:
chart
– chart in which the principal curvatures are to be computed
OUTPUT:
the principal curvatures, as a list of scalar fields on the submanifold
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.principal_curvatures(stereoN) # long time [Scalar field k_0 on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2] sage: N.principal_curvatures(stereoN)[0].display() # long time k_0: N → ℝ on U: x ↦ -1 on W: y ↦ -1
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.principal_curvatures(stereoN) # long time [Scalar field k_0 on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2] >>> N.principal_curvatures(stereoN)[Integer(0)].display() # long time k_0: N → ℝ on U: x ↦ -1 on W: y ↦ -1
- principal_directions(chart)[source]¶
Return the principal directions of the submanifold.
The principal directions are the eigenvectors of the projection operator. The result is formatted as a list of pairs (eigenvector, eigenvalue).
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
INPUT:
chart
– chart in which the principal directions are to be computed
OUTPUT:
list of pairs (vector field, scalar field) representing the principal directions and the associated principal curvatures
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.principal_directions(stereoN) # long time [(Vector field e_0 on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2, -1)] sage: N.principal_directions(stereoN)[0][0].display() # long time e_0 = ∂/∂x
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.principal_directions(stereoN) # long time [(Vector field e_0 on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2, -1)] >>> N.principal_directions(stereoN)[Integer(0)][Integer(0)].display() # long time e_0 = ∂/∂x
- project(tensor)[source]¶
Return the orthogonal projection of a tensor field onto the submanifold.
INPUT:
tensor
– any tensor field to be projected onto the submanifold. If no foliation is provided, must be a tensor field along the submanifold.
OUTPUT:
orthogonal projection of
tensor
onto the submanifold, as a tensor field of the ambient manifold
EXAMPLES:
Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') # foliation parameter sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)}) sage: N.set_embedding(phi, inverse=phi_inv, var=r, ....: t_inverse={r: phi_inv_r}) sage: T = N.adapted_chart()
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') # foliation parameter >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) >>> phi_inv_r = M.scalar_field({E: sqrt(x**Integer(2)+y**Integer(2)+z**Integer(2))}) >>> N.set_embedding(phi, inverse=phi_inv, var=r, ... t_inverse={r: phi_inv_r}) >>> T = N.adapted_chart()
Let us perform the projection of the ambient metric and check that it is equal to the first fundamental form:
sage: pg = N.project(M.metric()); pg # long time Tensor field of type (0,2) on the Euclidean space E^3 sage: pg == N.ambient_first_fundamental_form() # long time True
>>> from sage.all import * >>> pg = N.project(M.metric()); pg # long time Tensor field of type (0,2) on the Euclidean space E^3 >>> pg == N.ambient_first_fundamental_form() # long time True
Note that the output of
project()
is not cached.
- projector()[source]¶
Return the orthogonal projector onto the submanifold.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
the orthogonal projector onto the submanifold, as tensor field of type (1,1) on the ambient manifold
EXAMPLES:
Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') # foliation parameter sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)}) sage: N.set_embedding(phi, inverse=phi_inv, var=r, ....: t_inverse={r: phi_inv_r}) sage: T = N.adapted_chart()
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') # foliation parameter >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) >>> phi_inv_r = M.scalar_field({E: sqrt(x**Integer(2)+y**Integer(2)+z**Integer(2))}) >>> N.set_embedding(phi, inverse=phi_inv, var=r, ... t_inverse={r: phi_inv_r}) >>> T = N.adapted_chart()
The orthogonal projector onto
N
is a type-(1,1) tensor field onM
:sage: N.projector() # long time Tensor field gamma of type (1,1) on the Euclidean space E^3
>>> from sage.all import * >>> N.projector() # long time Tensor field gamma of type (1,1) on the Euclidean space E^3
Check that the orthogonal projector applied to the normal vector is zero:
sage: N.projector().contract(N.normal()).display() # long time 0
>>> from sage.all import * >>> N.projector().contract(N.normal()).display() # long time 0
- second_fundamental_form()[source]¶
Return the second fundamental form of the submanifold.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
the second fundamental form, as a symmetric tensor field of type (0,2) on the submanifold
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.second_fundamental_form() # long time Field of symmetric bilinear forms K on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 sage: N.second_fundamental_form().display() # long time K = -4/(x^4 + 8*x^2 + 16) dx⊗dx
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.second_fundamental_form() # long time Field of symmetric bilinear forms K on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 >>> N.second_fundamental_form().display() # long time K = -4/(x^4 + 8*x^2 + 16) dx⊗dx
An alias is
extrinsic_curvature
:sage: N.extrinsic_curvature().display() # long time K = -4/(x^4 + 8*x^2 + 16) dx⊗dx
>>> from sage.all import * >>> N.extrinsic_curvature().display() # long time K = -4/(x^4 + 8*x^2 + 16) dx⊗dx
An example with a non-Euclidean ambient metric:
sage: M = Manifold(2, 'M', structure='Riemannian') sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian', ....: start_index=1) sage: CM.<x,y> = M.chart() sage: CN.<u> = N.chart() sage: g = M.metric() sage: g[0, 0], g[1, 1] = 1, 1/(1 + y^2)^2 sage: phi = N.diff_map(M, (u, u)) sage: N.set_embedding(phi) sage: N.second_fundamental_form() Field of symmetric bilinear forms K on the 1-dimensional Riemannian submanifold N embedded in the 2-dimensional Riemannian manifold M sage: N.second_fundamental_form().display() K = 2*sqrt(u^4 + 2*u^2 + 2)*u/(u^6 + 3*u^4 + 4*u^2 + 2) du⊗du
>>> from sage.all import * >>> M = Manifold(Integer(2), 'M', structure='Riemannian') >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian', ... start_index=Integer(1)) >>> CM = M.chart(names=('x', 'y',)); (x, y,) = CM._first_ngens(2) >>> CN = N.chart(names=('u',)); (u,) = CN._first_ngens(1) >>> g = M.metric() >>> g[Integer(0), Integer(0)], g[Integer(1), Integer(1)] = Integer(1), Integer(1)/(Integer(1) + y**Integer(2))**Integer(2) >>> phi = N.diff_map(M, (u, u)) >>> N.set_embedding(phi) >>> N.second_fundamental_form() Field of symmetric bilinear forms K on the 1-dimensional Riemannian submanifold N embedded in the 2-dimensional Riemannian manifold M >>> N.second_fundamental_form().display() K = 2*sqrt(u^4 + 2*u^2 + 2)*u/(u^6 + 3*u^4 + 4*u^2 + 2) du⊗du
- shape_operator()[source]¶
Return the shape operator of the submanifold.
The shape operator is equal to the second fundamental form with one of the indices upped.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT:
the shape operator, as a tensor field of type (1,1) on the submanifold
EXAMPLES:
A unit circle embedded in the Euclidean plane:
sage: M.<X,Y> = EuclideanSpace() sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian') sage: U = N.open_subset('U') sage: V = N.open_subset('V') sage: N.declare_union(U,V) sage: stereoN.<x> = U.chart() sage: stereoS.<y> = V.chart() sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x), ....: intersection_name='W', ....: restrictions1=x!=0, restrictions2=y!=0) sage: stereoS_to_N = stereoN_to_S.inverse() sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, ....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)], ....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]}) sage: N.set_embedding(phi) sage: N.shape_operator() # long time Tensor field of type (1,1) on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 sage: N.shape_operator().display() # long time -∂/∂x⊗dx
>>> from sage.all import * >>> M = EuclideanSpace(names=('X', 'Y',)); (X, Y,) = M._first_ngens(2) >>> N = Manifold(Integer(1), 'N', ambient=M, structure='Riemannian') >>> U = N.open_subset('U') >>> V = N.open_subset('V') >>> N.declare_union(U,V) >>> stereoN = U.chart(names=('x',)); (x,) = stereoN._first_ngens(1) >>> stereoS = V.chart(names=('y',)); (y,) = stereoS._first_ngens(1) >>> stereoN_to_S = stereoN.transition_map(stereoS, (Integer(4)/x), ... intersection_name='W', ... restrictions1=x!=Integer(0), restrictions2=y!=Integer(0)) >>> stereoS_to_N = stereoN_to_S.inverse() >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, ... {(stereoN, E): [Integer(1)/sqrt(Integer(1)+x**Integer(2)/Integer(4)), x/Integer(2)/sqrt(Integer(1)+x**Integer(2)/Integer(4))], ... (stereoS, E): [Integer(1)/sqrt(Integer(1)+Integer(4)/y**Integer(2)), Integer(2)/y/sqrt(Integer(1)+Integer(4)/y**Integer(2))]}) >>> N.set_embedding(phi) >>> N.shape_operator() # long time Tensor field of type (1,1) on the 1-dimensional Riemannian submanifold N embedded in the Euclidean plane E^2 >>> N.shape_operator().display() # long time -∂/∂x⊗dx
- shift()[source]¶
Return the shift vector associated with the first adapted chart of the foliation.
The result is cached, so calling this method multiple times always returns the same result at no additional cost.
OUTPUT: shift vector field on the ambient manifold
EXAMPLES:
Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:
sage: M.<x,y,z> = EuclideanSpace() sage: N = Manifold(2, 'N', ambient=M, structure='Riemannian') sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi') sage: r = var('r', domain='real') # foliation parameter sage: assume(r>0) sage: E = M.cartesian_coordinates() sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ....: r*sin(th)*sin(ph), ....: r*cos(th)]}) sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)}) sage: N.set_embedding(phi, inverse=phi_inv, var=r, ....: t_inverse={r: phi_inv_r}) sage: T = N.adapted_chart() sage: N.shift() # long time Vector field beta on the Euclidean space E^3 sage: N.shift().display() # long time beta = 0
>>> from sage.all import * >>> M = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = M._first_ngens(3) >>> N = Manifold(Integer(2), 'N', ambient=M, structure='Riemannian') >>> C = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi', names=('th', 'ph',)); (th, ph,) = C._first_ngens(2) >>> r = var('r', domain='real') # foliation parameter >>> assume(r>Integer(0)) >>> E = M.cartesian_coordinates() >>> phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph), ... r*sin(th)*sin(ph), ... r*cos(th)]}) >>> phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]}) >>> phi_inv_r = M.scalar_field({E: sqrt(x**Integer(2)+y**Integer(2)+z**Integer(2))}) >>> N.set_embedding(phi, inverse=phi_inv, var=r, ... t_inverse={r: phi_inv_r}) >>> T = N.adapted_chart() >>> N.shift() # long time Vector field beta on the Euclidean space E^3 >>> N.shift().display() # long time beta = 0