# Pseudo-Riemannian submanifolds¶

An embedded (resp. immersed) submanifold of a pseudo-Riemannian manifold $$(M,g)$$ is an embedded (resp. immersed) submanifold $$N$$ of $$M$$ as a differentiable manifold (see differentiable_submanifold) such that pull back of the metric tensor $$g$$ via the embedding (resp. immersion) endows $$N$$ with the structure of a pseudo-Riemannian manifold.

The following example shows how to compute the various quantities related to the intrinsic and extrinsic geometries of a hyperbolic slicing of the 3-dimensional Minkowski space.

We start by declaring the ambient manifold $$M$$ and the submanifold $$N$$:

sage: M = Manifold(3, 'M', structure="Lorentzian")
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian", start_index=1)


The considered slices being spacelike hypersurfaces, they are Riemannian manifolds.

Let us introduce the Minkowskian coordinates $$(w,x,y)$$ on $$M$$ and the polar coordinates $$(\rho, \theta)$$ on the submanifold $$N$$:

sage: E.<w,x,y> = M.chart()
sage: C.<rh,th> = N.chart(r'rh:(0,+oo):\rho th:(0,2*pi):\theta')


Let $$b$$ be the hyperbola semi-major axis and $$t$$ the parameter of the foliation:

sage: b = var('b', domain='real')
sage: assume(b>0)
sage: t = var('t', domain='real')


One can then define the embedding $$\phi_t$$:

sage: phi = N.diff_map(M, {(C,E): [b*cosh(rh)+t,
....:                              b*sinh(rh)*cos(th),
....:                              b*sinh(rh)*sin(th)]})
sage: phi.display()
N --> M
(rh, th) |--> (w, x, y) = (b*cosh(rh) + t, b*cos(th)*sinh(rh),
b*sin(th)*sinh(rh))


as well as its inverse (when considered as a diffeomorphism onto its image):

sage: phi_inv = M.diff_map(N, {(E,C): [log(sqrt(x^2+y^2+b^2)/b+
....:                                  sqrt((x^2+y^2+b^2)/b^2-1)),
....:                                  atan2(y,x)]})
sage: phi_inv.display()
M --> N
(w, x, y) |--> (rh, th) = (log(sqrt((b^2 + x^2 + y^2)/b^2 - 1)
+ sqrt(b^2 + x^2 + y^2)/b), arctan2(y, x))


and the partial inverse expressing the foliation parameter $$t$$ as a scalar field on $$M$$:

sage: phi_inv_t = M.scalar_field({E: w-sqrt(x^2+y^2+b^2)})
sage: phi_inv_t.display()
M --> R
(w, x, y) |--> w - sqrt(b^2 + x^2 + y^2)


One can check that the inverse is correct with:

sage: (phi*phi_inv).display()
M --> M
(w, x, y) |--> ((b^2 + x^2 + y^2 + sqrt(b^2 + x^2 + y^2)*(t + sqrt(x^2 +
y^2)) + sqrt(x^2 + y^2)*t)/(sqrt(b^2 + x^2 + y^2) + sqrt(x^2 + y^2)), x, y)


The first item of the 3-uple in the right-hand does not appear as $$w$$ because $$t$$ has not been replaced by its value provided by phi_inv_t. Once this is done, we do get $$w$$:

sage: (phi*phi_inv).expr().subs({t: phi_inv_t.expr()}).simplify_full()
w


The embedding can then be declared:

sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....:                 t_inverse = {t: phi_inv_t})


This line does not perform any calculation yet. It just check the coherence of the arguments, but not the inverse, the user is trusted on this point.

Finally, we initialize the metric of $$M$$ to be that of Minkowski space:

sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2] = -1, 1, 1
sage: g.display()
g = -dw*dw + dx*dx + dy*dy


With this, the declaration the ambient manifold and its foliation parametrized by $$t$$ is finished, and calculations can be performed.

The first step is always to find a chart adapted to the foliation. This is done by the method “adapted_chart”:

sage: T = N.adapted_chart(); T
[Chart (M, (rh_M, th_M, t_M))]


T contains a new chart defined on $$M$$. By default, the coordinate names are constructed from the names of the submanifold coordinates and the foliation parameter indexed by the name of the ambient manifold. By this can be customized, see adapted_chart().

One can check that the adapted chart has been added to $$M$$’s atlas, along with some coordinates changes:

sage: M.atlas()
[Chart (M, (w, x, y)), Chart (M, (rh_M, th_M, t_M))]
sage: len(M.coord_changes())
2


Let us compute the induced metric (or first fundamental form):

sage: gamma = N.induced_metric()  # long time
sage: gamma.display()  # long time
gamma = b^2 drh*drh + b^2*sinh(rh)^2 dth*dth
sage: gamma[:]  # long time
[           b^2              0]
[             0 b^2*sinh(rh)^2]
sage: gamma[1,1]  # long time
b^2


the normal vector:

sage: N.normal().display()  # long time
n = sqrt(b^2 + x^2 + y^2)/b d/dw + x/b d/dx + y/b d/dy


Check that the hypersurface is indeed spacelike, i.e. that its normal is timelike:

sage: N.ambient_metric()(N.normal(), N.normal()).display()  # long time
g(n,n): M --> R
(w, x, y) |--> -1
(rh_M, th_M, t_M) |--> -1


The lapse function is:

sage: N.lapse().display()  # long time
N: M --> R
(w, x, y) |--> sqrt(b^2 + x^2 + y^2)/b
(rh_M, th_M, t_M) |--> cosh(rh_M)


while the shift vector is:

sage: N.shift().display()  # long time
beta = -(x^2 + y^2)/b^2 d/dw - sqrt(b^2 + x^2 + y^2)*x/b^2 d/dx
- sqrt(b^2 + x^2 + y^2)*y/b^2 d/dy


The extrinsic curvature (or second fundamental form) as a tensor field on the ambient manifold:

sage: N.ambient_extrinsic_curvature()[:] # long time
[                                 -(x^2 + y^2)/b^3 (b^2*x + x^3 + x*y^2)/(sqrt(b^2 + x^2 + y^2)*b^3) (y^3 + (b^2 + x^2)*y)/(sqrt(b^2 + x^2 + y^2)*b^3)]
[                      sqrt(b^2 + x^2 + y^2)*x/b^3                                  -(b^2 + x^2)/b^3                                          -x*y/b^3]
[                      sqrt(b^2 + x^2 + y^2)*y/b^3                                          -x*y/b^3                                  -(b^2 + y^2)/b^3]


The extrinsic curvature as a tensor field on the submanifold:

sage: N.extrinsic_curvature()[:] # long time
[           -b             0]
[            0 -b*sinh(rh)^2]


AUTHORS:

• Florentin Jaffredo (2018): initial version

REFERENCES:

• B. O’Neill : Semi-Riemannian Geometry [ONe1983]
• J. M. Lee : Riemannian Manifolds [Lee1997]
class sage.manifolds.differentiable.pseudo_riemannian_submanifold.PseudoRiemannianSubmanifold(n, name, ambient=None, metric_name='g', signature=None, base_manifold=None, diff_degree=+Infinity, latex_name=None, metric_latex_name=None, start_index=0, category=None, unique_tag=None)

Pseudo-Riemannian submanifold.

An embedded (resp. immersed) submanifold of a pseudo-Riemannian manifold $$(M,g)$$ is an embedded (resp. immersed) submanifold $$N$$ of $$M$$ as a differentiable manifold such that pull back of the metric tensor $$g$$ via the embedding (resp. immersion) endows $$N$$ with the structure of a pseudo-Riemannian manifold.

INPUT:

• n – positive integer; dimension of the submanifold
• name – string; name (symbol) given to the submanifold
• ambient – (default: None) pseudo-Riemannian manifold $$M$$ in which the submanifold is embedded (or immersed). If None, it is set to self
• metric_name – (default: 'g') string; name (symbol) given to the submanifold’s metric
• signature – (default: None) signature $$S$$ of the metric as a single integer: $$S = n_+ - n_-$$, where $$n_+$$ (resp. $$n_-$$) is the number of positive terms (resp. number of negative terms) in any diagonal writing of the metric components; if signature is not provided, $$S$$ is set to the submanifold’s dimension (Riemannian signature)
• base_manifold – (default: None) if not None, must be a differentiable manifold; the created object is then an open subset of base_manifold
• diff_degree – (default: infinity) degree of differentiability
• latex_name – (default: None) string; LaTeX symbol to denote the submanifold; if none is provided, it is set to name
• metric_latex_name – (default: None) string; LaTeX symbol to denote the metric; if none is provided, it is set to metric_name
• start_index – (default: 0) integer; lower value of the range of indices used for “indexed objects” on the submanifold, e.g. coordinates in a chart
• category – (default: None) to specify the category; if None, Manifolds(RR).Differentiable() (or Manifolds(RR).Smooth() if diff_degree = infinity) is assumed (see the category Manifolds)
• unique_tag – (default: None) tag used to force the construction of a new object when all the other arguments have been used previously (without unique_tag, the UniqueRepresentation behavior inherited from ManifoldSubset, via DifferentiableManifold and TopologicalManifold, would return the previously constructed object corresponding to these arguments).

EXAMPLES:

Let $$N$$ be a 2-dimensional submanifold of a 3-dimensional Riemannian manifold $$M$$:

sage: M = Manifold(3, 'M', structure ="Riemannian")
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: N
2-dimensional Riemannian submanifold N immersed in the 3-dimensional
Riemannian manifold M
sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()


Let us define a 1-dimension foliation indexed by $$t$$. The inverse map is needed in order to compute the adapted chart in the ambient manifold:

sage: t = var('t')
sage: phi = N.diff_map(M, {(CN,CM):[u, v, t+u^2+v^2]}); phi
Differentiable map from the 2-dimensional Riemannian submanifold N
immersed in the 3-dimensional Riemannian manifold M to the
3-dimensional Riemannian manifold M
sage: phi_inv = M.diff_map(N,{(CM, CN): [x,y]})
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})


$$\phi$$ can then be declared as an embedding $$N\to M$$:

sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....:                 t_inverse={t: phi_inv_t})


The foliation can also be used to find new charts on the ambient manifold that are adapted to the foliation, ie in which the expression of the immersion is trivial. At the same time, the appropriate coordinate changes are computed:

sage: N.adapted_chart()
[Chart (M, (u_M, v_M, t_M))]
sage: len(M.coord_changes())
2

ambient_extrinsic_curvature()

Return the second fundamental form of the submanifold as a tensor field on the ambient manifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• (0,2) tensor field on the ambient manifold equal to the second fundamental form once orthogonally projected onto the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.ambient_second_fundamental_form()  # long time
Field of symmetric bilinear forms K along the 1-dimensional
Riemannian submanifold N embedded in the Euclidean plane E^2 with
values on the Euclidean plane E^2
sage: N.ambient_second_fundamental_form()[:] # long time
[-x^2/(x^2 + 4)  2*x/(x^2 + 4)]
[ 2*x/(x^2 + 4)   -4/(x^2 + 4)]


An alias is ambient_extrinsic_curvature:

sage: N.ambient_extrinsic_curvature()[:]  # long time
[-x^2/(x^2 + 4)  2*x/(x^2 + 4)]
[ 2*x/(x^2 + 4)   -4/(x^2 + 4)]

ambient_first_fundamental_form()

Return the first fundamental form of the submanifold as a tensor of the ambient manifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• (0,2) tensor field on the ambient manifold describing the induced metric before projection on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.ambient_first_fundamental_form()
Tensor field gamma of type (0,2) along the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2 with values on
the Euclidean plane E^2
sage: N.ambient_first_fundamental_form()[:]
[ x^2/(x^2 + 4) -2*x/(x^2 + 4)]
[-2*x/(x^2 + 4)    4/(x^2 + 4)]


An alias is ambient_induced_metric:

sage: N.ambient_induced_metric()[:]
[ x^2/(x^2 + 4) -2*x/(x^2 + 4)]
[-2*x/(x^2 + 4)    4/(x^2 + 4)]

ambient_induced_metric()

Return the first fundamental form of the submanifold as a tensor of the ambient manifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• (0,2) tensor field on the ambient manifold describing the induced metric before projection on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.ambient_first_fundamental_form()
Tensor field gamma of type (0,2) along the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2 with values on
the Euclidean plane E^2
sage: N.ambient_first_fundamental_form()[:]
[ x^2/(x^2 + 4) -2*x/(x^2 + 4)]
[-2*x/(x^2 + 4)    4/(x^2 + 4)]


An alias is ambient_induced_metric:

sage: N.ambient_induced_metric()[:]
[ x^2/(x^2 + 4) -2*x/(x^2 + 4)]
[-2*x/(x^2 + 4)    4/(x^2 + 4)]

ambient_metric()

Return the metric of the ambient manifold.

OUTPUT:

• the metric of the ambient manifold

EXAMPLES:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: N.ambient_metric()
Riemannian metric g on the Euclidean space E^3
sage: N.ambient_metric().display()
g = dx*dx + dy*dy + dz*dz
sage: N.ambient_metric() is M.metric()
True

ambient_second_fundamental_form()

Return the second fundamental form of the submanifold as a tensor field on the ambient manifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• (0,2) tensor field on the ambient manifold equal to the second fundamental form once orthogonally projected onto the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.ambient_second_fundamental_form()  # long time
Field of symmetric bilinear forms K along the 1-dimensional
Riemannian submanifold N embedded in the Euclidean plane E^2 with
values on the Euclidean plane E^2
sage: N.ambient_second_fundamental_form()[:] # long time
[-x^2/(x^2 + 4)  2*x/(x^2 + 4)]
[ 2*x/(x^2 + 4)   -4/(x^2 + 4)]


An alias is ambient_extrinsic_curvature:

sage: N.ambient_extrinsic_curvature()[:]  # long time
[-x^2/(x^2 + 4)  2*x/(x^2 + 4)]
[ 2*x/(x^2 + 4)   -4/(x^2 + 4)]

clear_cache()

Reset all the cached functions and the derived quantities.

Use this function if you modified the immersion (or embedding) of the submanifold. Note that when calling a calculus function after clearing, new Python objects will be created.

EXAMPLES:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real') # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....:                 t_inverse={r: phi_inv_r})
sage: n = N.normal()
sage: n is N.normal()
True
sage: N.clear_cache()
sage: n is N.normal()
False
sage: n == N.normal()
True

difft()

Return the differential of the scalar field on the ambient manifold representing the first parameter of the foliation associated to self.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• 1-form field on the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real')
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....:                 t_inverse={r: phi_inv_r})
sage: N.difft()
1-form dr on the Euclidean space E^3
sage: N.difft().display()
dr = x/sqrt(x^2 + y^2 + z^2) dx + y/sqrt(x^2 + y^2 + z^2) dy +
z/sqrt(x^2 + y^2 + z^2) dz

extrinsic_curvature()

Return the second fundamental form of the submanifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the second fundamental form, as a symmetric tensor field of type (0,2) on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.second_fundamental_form()  # long time
Field of symmetric bilinear forms K on the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2
sage: N.second_fundamental_form().display()  # long time
K = -4/(x^4 + 8*x^2 + 16) dx*dx


An alias is extrinsic_curvature:

sage: N.extrinsic_curvature().display()  # long time
K = -4/(x^4 + 8*x^2 + 16) dx*dx


An example with a non-Euclidean ambient metric:

sage: M = Manifold(2, 'M', structure='Riemannian')
sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian',
....:              start_index=1)
sage: CM.<x,y> = M.chart()
sage: CN.<u> = N.chart()
sage: g = M.metric()
sage: g[0, 0], g[1, 1] = 1, 1/(1 + y^2)^2
sage: phi = N.diff_map(M, (u, u))
sage: N.set_embedding(phi)
sage: N.second_fundamental_form()
Field of symmetric bilinear forms K on the 1-dimensional Riemannian
submanifold N embedded in the 2-dimensional Riemannian manifold M
sage: N.second_fundamental_form().display()
K = 2*sqrt(u^4 + 2*u^2 + 2)*u/(u^6 + 3*u^4 + 4*u^2 + 2) du*du

first_fundamental_form()

Return the first fundamental form of the submanifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

EXAMPLES:

A sphere embedded in Euclidean space:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real')
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: N.set_embedding(phi)
sage: N.first_fundamental_form()  # long time
Riemannian metric gamma on the 2-dimensional Riemannian
submanifold N embedded in the Euclidean space E^3
sage: N.first_fundamental_form()[:]  # long time
[          r^2             0]
[            0 r^2*sin(th)^2]


An alias is induced_metric:

sage: N.induced_metric()[:]  # long time
[          r^2             0]
[            0 r^2*sin(th)^2]

gauss_curvature()

Return the Gauss curvature of the submanifold.

The Gauss curvature is the product or the principal curvatures, or equivalently the determinant of the projection operator.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the Gauss curvature as a scalar field on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.gauss_curvature()  # long time
Scalar field on the 1-dimensional Riemannian submanifold N embedded
in the Euclidean plane E^2
sage: N.gauss_curvature().display()  # long time
N --> R
on U: x |--> -1
on V: y |--> -1

gradt()

Return the gradient of the scalar field on the ambient manifold representing the first parameter of the foliation associated to self.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• vector field on the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real')
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....:                 t_inverse={r: phi_inv_r})
Vector field grad(r) on the Euclidean space E^3
grad(r) = x/sqrt(x^2 + y^2 + z^2) e_x + y/sqrt(x^2 + y^2 + z^2) e_y
+ z/sqrt(x^2 + y^2 + z^2) e_z

induced_metric()

Return the first fundamental form of the submanifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

EXAMPLES:

A sphere embedded in Euclidean space:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real')
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: N.set_embedding(phi)
sage: N.first_fundamental_form()  # long time
Riemannian metric gamma on the 2-dimensional Riemannian
submanifold N embedded in the Euclidean space E^3
sage: N.first_fundamental_form()[:]  # long time
[          r^2             0]
[            0 r^2*sin(th)^2]


An alias is induced_metric:

sage: N.induced_metric()[:]  # long time
[          r^2             0]
[            0 r^2*sin(th)^2]

lapse()

Return the lapse function of the foliation.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the lapse function, as a scalar field on the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real') # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....:                 t_inverse={r: phi_inv_r})
sage: N.lapse()
Scalar field N on the Euclidean space E^3
sage: N.lapse().display()
N: E^3 --> R
(x, y, z) |--> 1
(th_E3, ph_E3, r_E3) |--> 1

mean_curvature()

Return the mean curvature of the submanifold.

The mean curvature is the arithmetic mean of the principal curvatures, or equivalently the trace of the projection operator.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the mean curvature, as a scalar field on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.mean_curvature()  # long time
Scalar field on the 1-dimensional Riemannian submanifold N
embedded in the Euclidean plane E^2
sage: N.mean_curvature().display()  # long time
N --> R
on U: x |--> -1
on V: y |--> -1

mixed_projection(tensor, indices=0)

Return de n+1 decomposition of a tensor on the submanifold and the normal vector.

The n+1 decomposition of a tensor of rank $$k$$ can be obtained by contracting each index either with the normal vector or the projection operator of the submanifold (see projector()).

INPUT:

• tensor – any tensor field, eventually along the submanifold if no foliation is provided.
• indices – (default: 0) list of integers containing the indices on which the projection is made on the normal vector. By default, all projections are made on the submanifold. If an integer $$n$$ is provided, the $$n$$ first contractions are made with the normal vector, all the other ones with the orthogonal projection operator.

OUTPUT:

• tensor field of rank $$k$$-len(indices)

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real') # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....:                 t_inverse={r: phi_inv_r})


If indices is not specified, the mixed projection of the ambient metric coincides with the first fundamental form:

sage: g = M.metric()
sage: gpp = N.mixed_projection(g); gpp  # long time
Tensor field of type (0,2) on the Euclidean space E^3
sage: gpp == N.ambient_first_fundamental_form()  # long time
True


The other non-redundant projections are:

sage: gnp = N.mixed_projection(g, ); gnp  # long time
1-form on the Euclidean space E^3


and:

sage: gnn = N.mixed_projection(g, [0,1]); gnn
Scalar field on the Euclidean space E^3


which is constant and equal to 1 (the norm of the unit normal vector):

sage: gnn.display()
E^3 --> R
(x, y, z) |--> 1
(th_E3, ph_E3, r_E3) |--> 1

normal()

Return a normal unit vector to the submanifold.

If a foliation is defined, it is used to compute the gradient of the foliation parameter and then the normal vector. If not, the normal vector is computed using the following formula:

$n = \vec{*}(\mathrm{d}x_0\wedge\mathrm{d}x_1\wedge\cdots \wedge\mathrm{d}x_{n-1})$

where the star stands for the Hodge dual operator and the wedge for the exterior product.

This formula does not always define a proper vector field when multiple charts overlap, because of the arbitrariness of the direction of the normal vector. To avoid this problem, the method normal() considers the graph defined by the atlas of the submanifold and the changes of coordinates, and only calculate the normal vector once by connected component. The expression is then propagate by restriction, continuation, or change of coordinates using a breadth-first exploration of the graph.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• vector field on the ambient manifold (case of a foliation) or along the submanifold with values in the ambient manifold (case of a single submanifold)

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real') # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....:                 t_inverse={r: phi_inv_r})
sage: N.normal()  # long time
Vector field n on the Euclidean space E^3
sage: N.normal().display()  # long time
n = x/sqrt(x^2 + y^2 + z^2) e_x + y/sqrt(x^2 + y^2 + z^2) e_y
+ z/sqrt(x^2 + y^2 + z^2) e_z


Or in spherical coordinates:

sage: N.normal().display(T.frame(),T)  # long time
n = d/dr_E3


Let us now consider a sphere of constant radius, i.e. not assumed to be part of a foliation, in stereographic coordinates:

sage: M.<X,Y,Z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U, V)
sage: stereoN.<x,y> = U.chart()
sage: stereoS.<xp,yp> = V.chart("xp:x' yp:y'")
sage: stereoN_to_S = stereoN.transition_map(stereoS,
....:                                 (x/(x^2+y^2), y/(x^2+y^2)),
....:                                 intersection_name='W',
....:                                 restrictions1= x^2+y^2!=0,
....:                                 restrictions2= xp^2+yp^2!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: W = U.intersection(V)
sage: stereoN_W = stereoN.restrict(W)
sage: stereoS_W = stereoS.restrict(W)
sage: A = W.open_subset('A', coord_def={stereoN_W: (y!=0, x<0),
....:                                   stereoS_W: (yp!=0, xp<0)})
sage: spher.<the,phi> = A.chart(r'the:(0,pi):\theta phi:(0,2*pi):\phi')
sage: stereoN_A = stereoN_W.restrict(A)
sage: spher_to_stereoN = spher.transition_map(stereoN_A,
....:                              (sin(the)*cos(phi)/(1-cos(the)),
....:                               sin(the)*sin(phi)/(1-cos(the))))
sage: spher_to_stereoN.set_inverse(2*atan(1/sqrt(x^2+y^2)),
....:                              atan2(-y,-x)+pi)
Check of the inverse coordinate transformation:
the == 2*arctan(sqrt(-cos(the) + 1)/sqrt(cos(the) + 1))  **failed**
phi == pi + arctan2(sin(phi)*sin(the)/(cos(the) - 1),
cos(phi)*sin(the)/(cos(the) - 1))  **failed**
x == x  *passed*
y == y  *passed*
NB: a failed report can reflect a mere lack of simplification.
sage: stereoN_to_S_A = stereoN_to_S.restrict(A)
sage: spher_to_stereoS = stereoN_to_S_A * spher_to_stereoN
sage: stereoS_to_N_A = stereoN_to_S.inverse().restrict(A)
sage: stereoS_to_spher = spher_to_stereoN.inverse() * stereoS_to_N_A
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(stereoN, E): [2*x/(1+x^2+y^2),
....:                                    2*y/(1+x^2+y^2),
....:                                    (x^2+y^2-1)/(1+x^2+y^2)],
....:                   (stereoS, E): [2*xp/(1+xp^2+yp^2),
....:                                  2*yp/(1+xp^2+yp^2),
....:                                 (1-xp^2-yp^2)/(1+xp^2+yp^2)]},
....:                  name='Phi', latex_name=r'\Phi')
sage: N.set_embedding(phi)


The method normal() now returns a tensor field along N:

sage: n = N.normal()  # long time
sage: n  # long time
Vector field n along the 2-dimensional Riemannian submanifold N
embedded in the Euclidean space E^3 with values on the Euclidean
space E^3


Let us check that the choice of orientation is coherent on the two top frames:

sage: n.restrict(V).display(format_spec=spher)  # long time
n = -cos(phi)*sin(the) e_X - sin(phi)*sin(the) e_Y - cos(the) e_Z
sage: n.restrict(U).display(format_spec=spher)  # long time
n = -cos(phi)*sin(the) e_X - sin(phi)*sin(the) e_Y - cos(the) e_Z

principal_curvatures(chart)

Return the principal curvatures of the submanifold.

The principal curvatures are the eigenvalues of the projection operator. The resulting scalar fields are named k_i with the index i ranging from 0 to the submanifold dimension minus one.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

INPUT:

• chart – chart in which the principal curvatures are to be computed

OUTPUT:

• the principal curvatures, as a list of scalar fields on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.principal_curvatures(stereoN)  # long time
[Scalar field k_0 on the 1-dimensional Riemannian submanifold N
embedded in the Euclidean plane E^2]
sage: N.principal_curvatures(stereoN).display()  # long time
k_0: N --> R
on U: x |--> -1
on W: y |--> -1

principal_directions(chart)

Return the principal directions of the submanifold.

The principal directions are the eigenvectors of the projection operator. The result is formatted as a list of pairs (eigenvector, eigenvalue).

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

INPUT:

• chart – chart in which the principal directions are to be computed

OUTPUT:

• list of pairs (vector field, scalar field) representing the principal directions and the associated principal curvatures

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.principal_directions(stereoN)  # long time
[(Vector field e_0 on the 1-dimensional Riemannian submanifold N
embedded in the Euclidean plane E^2, -1)]
sage: N.principal_directions(stereoN).display()  # long time
e_0 = d/dx

project(tensor)

Return the orthogonal projection of a tensor field onto the submanifold.

INPUT:

• tensor – any tensor field to be projected onto the submanifold. If no foliation is provided, must be a tensor field along the submanifold.

OUTPUT:

• orthogonal projection of tensor onto the submanifold, as a tensor field of the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real') # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....:                 t_inverse={r: phi_inv_r})


Let us perform the projection of the ambient metric and check that it is equal to the first fundamental form:

sage: pg = N.project(M.metric()); pg  # long time
Tensor field of type (0,2) on the Euclidean space E^3
sage: pg == N.ambient_first_fundamental_form()  # long time
True


Note that the output of project() is not cached.

projector()

Return the orthogonal projector onto the submanifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the orthogonal projector onto the submanifold, as tensor field of type (1,1) on the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real') # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....:                 t_inverse={r: phi_inv_r})


The orthogonal projector onto N is a type-(1,1) tensor field on M:

sage: N.projector()  # long time
Tensor field gamma of type (1,1) on the Euclidean space E^3


Check that the orthogonal projector applied to the normal vector is zero:

sage: N.projector().contract(N.normal()).display()  # long time
0

second_fundamental_form()

Return the second fundamental form of the submanifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the second fundamental form, as a symmetric tensor field of type (0,2) on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.second_fundamental_form()  # long time
Field of symmetric bilinear forms K on the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2
sage: N.second_fundamental_form().display()  # long time
K = -4/(x^4 + 8*x^2 + 16) dx*dx


An alias is extrinsic_curvature:

sage: N.extrinsic_curvature().display()  # long time
K = -4/(x^4 + 8*x^2 + 16) dx*dx


An example with a non-Euclidean ambient metric:

sage: M = Manifold(2, 'M', structure='Riemannian')
sage: N = Manifold(1, 'N', ambient=M, structure='Riemannian',
....:              start_index=1)
sage: CM.<x,y> = M.chart()
sage: CN.<u> = N.chart()
sage: g = M.metric()
sage: g[0, 0], g[1, 1] = 1, 1/(1 + y^2)^2
sage: phi = N.diff_map(M, (u, u))
sage: N.set_embedding(phi)
sage: N.second_fundamental_form()
Field of symmetric bilinear forms K on the 1-dimensional Riemannian
submanifold N embedded in the 2-dimensional Riemannian manifold M
sage: N.second_fundamental_form().display()
K = 2*sqrt(u^4 + 2*u^2 + 2)*u/(u^6 + 3*u^4 + 4*u^2 + 2) du*du

shape_operator()

Return the shape operator of the submanifold.

The shape operator is equal to the second fundamental form with one of the indices upped.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the shape operator, as a tensor field of type (1,1) on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, 'N', ambient=M, structure="Riemannian")
sage: U = N.open_subset('U')
sage: V = N.open_subset('V')
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....:                   intersection_name='W',
....:                   restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....:         {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....:          (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.shape_operator()  # long time
Tensor field of type (1,1) on the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2
sage: N.shape_operator().display()  # long time
-d/dx*dx

shift()

Return the shift vector associated with the first adapted chart of the foliation.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• shift vector field on the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, 'N', ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r'th:(0,pi):\theta ph:(-pi,pi):\phi')
sage: r = var('r', domain='real') # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....:                              r*sin(th)*sin(ph),
....:                              r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....:                 t_inverse={r: phi_inv_r})