# Points of Topological Manifolds#

The class ManifoldPoint implements points of a topological manifold.

A ManifoldPoint object can have coordinates in various charts defined on the manifold. Two points are declared equal if they have the same coordinates in the same chart.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

REFERENCES:

EXAMPLES:

Defining a point in $$\RR^3$$ by its spherical coordinates:

sage: M = Manifold(3, 'R^3', structure='topological')
sage: U = M.open_subset('U')  # the domain of spherical coordinates
sage: c_spher.<r,th,ph> = U.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):periodic:\phi')
>>> from sage.all import *
>>> M = Manifold(Integer(3), 'R^3', structure='topological')
>>> U = M.open_subset('U')  # the domain of spherical coordinates
>>> c_spher = U.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):periodic:\phi', names=('r', 'th', 'ph',)); (r, th, ph,) = c_spher._first_ngens(3)

We construct the point in the coordinates in the default chart of U (c_spher):

sage: p = U((1, pi/2, pi), name='P')
sage: p
Point P on the 3-dimensional topological manifold R^3
sage: latex(p)
P
sage: p in U
True
sage: p.parent()
Open subset U of the 3-dimensional topological manifold R^3
sage: c_spher(p)
(1, 1/2*pi, pi)
sage: p.coordinates(c_spher) # equivalent to above
(1, 1/2*pi, pi)
>>> from sage.all import *
>>> p = U((Integer(1), pi/Integer(2), pi), name='P')
>>> p
Point P on the 3-dimensional topological manifold R^3
>>> latex(p)
P
>>> p in U
True
>>> p.parent()
Open subset U of the 3-dimensional topological manifold R^3
>>> c_spher(p)
(1, 1/2*pi, pi)
>>> p.coordinates(c_spher) # equivalent to above
(1, 1/2*pi, pi)

Computing the coordinates of p in a new chart:

sage: c_cart.<x,y,z> = U.chart() # Cartesian coordinates on U
sage: spher_to_cart = c_spher.transition_map(c_cart,
....:                    [r*sin(th)*cos(ph), r*sin(th)*sin(ph), r*cos(th)])
sage: c_cart(p)  # evaluate P's Cartesian coordinates
(-1, 0, 0)
>>> from sage.all import *
>>> c_cart = U.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_cart._first_ngens(3)# Cartesian coordinates on U
>>> spher_to_cart = c_spher.transition_map(c_cart,
...                    [r*sin(th)*cos(ph), r*sin(th)*sin(ph), r*cos(th)])
>>> c_cart(p)  # evaluate P's Cartesian coordinates
(-1, 0, 0)

Points can be compared:

sage: p1 = U((1, pi/2, pi))
sage: p1 == p
True
sage: q = U((2, pi/2, pi))
sage: q == p
False
>>> from sage.all import *
>>> p1 = U((Integer(1), pi/Integer(2), pi))
>>> p1 == p
True
>>> q = U((Integer(2), pi/Integer(2), pi))
>>> q == p
False

even if they were initially not defined within the same coordinate chart:

sage: p2 = U((-1,0,0), chart=c_cart)
sage: p2 == p
True
>>> from sage.all import *
>>> p2 = U((-Integer(1),Integer(0),Integer(0)), chart=c_cart)
>>> p2 == p
True

The $$2\pi$$-periodicity of the $$\phi$$ coordinate is also taken into account for the comparison:

sage: p3 = U((1, pi/2, 5*pi))
sage: p3 == p
True
sage: p4 = U((1, pi/2, -pi))
sage: p4 == p
True
>>> from sage.all import *
>>> p3 = U((Integer(1), pi/Integer(2), Integer(5)*pi))
>>> p3 == p
True
>>> p4 = U((Integer(1), pi/Integer(2), -pi))
>>> p4 == p
True
class sage.manifolds.point.ManifoldPoint(parent, coords=None, chart=None, name=None, latex_name=None, check_coords=True)[source]#

Bases: Element

Point of a topological manifold.

This is a Sage element class, the corresponding parent class being TopologicalManifold or ManifoldSubset.

INPUT:

• parent – the manifold subset to which the point belongs

• coords – (default: None) the point coordinates (as a tuple or a list) in the chart chart

• chart – (default: None) chart in which the coordinates are given; if None, the coordinates are assumed to refer to the default chart of parent

• name – (default: None) name given to the point

• latex_name – (default: None) LaTeX symbol to denote the point; if None, the LaTeX symbol is set to name

• check_coords – (default: True) determines whether coords are valid coordinates for the chart chart; for symbolic coordinates, it is recommended to set check_coords to False

EXAMPLES:

A point on a 2-dimensional manifold:

sage: M = Manifold(2, 'M', structure='topological')
sage: c_xy.<x,y> = M.chart()
sage: (a, b) = var('a b') # generic coordinates for the point
sage: p = M.point((a, b), name='P'); p
Point P on the 2-dimensional topological manifold M
sage: p.coordinates()  # coordinates of P in the subset's default chart
(a, b)
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', structure='topological')
>>> c_xy = M.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2)
>>> (a, b) = var('a b') # generic coordinates for the point
>>> p = M.point((a, b), name='P'); p
Point P on the 2-dimensional topological manifold M
>>> p.coordinates()  # coordinates of P in the subset's default chart
(a, b)

Since points are Sage elements, the parent of which being the subset on which they are defined, it is equivalent to write:

sage: p = M((a, b), name='P'); p
Point P on the 2-dimensional topological manifold M
>>> from sage.all import *
>>> p = M((a, b), name='P'); p
Point P on the 2-dimensional topological manifold M

A point is an element of the manifold subset in which it has been defined:

sage: p in M
True
sage: p.parent()
2-dimensional topological manifold M
sage: U = M.open_subset('U', coord_def={c_xy: x>0})
sage: q = U.point((2,1), name='q')
sage: q.parent()
Open subset U of the 2-dimensional topological manifold M
sage: q in U
True
sage: q in M
True
>>> from sage.all import *
>>> p in M
True
>>> p.parent()
2-dimensional topological manifold M
>>> U = M.open_subset('U', coord_def={c_xy: x>Integer(0)})
>>> q = U.point((Integer(2),Integer(1)), name='q')
>>> q.parent()
Open subset U of the 2-dimensional topological manifold M
>>> q in U
True
>>> q in M
True

By default, the LaTeX symbol of the point is deduced from its name:

sage: latex(p)
P
>>> from sage.all import *
>>> latex(p)
P

But it can be set to any value:

sage: p = M.point((a, b), name='P', latex_name=r'\mathcal{P}')
sage: latex(p)
\mathcal{P}
>>> from sage.all import *
>>> p = M.point((a, b), name='P', latex_name=r'\mathcal{P}')
>>> latex(p)
\mathcal{P}

Points can be drawn in 2D or 3D graphics thanks to the method plot().

Adds some coordinates in the specified chart.

The previous coordinates with respect to other charts are kept. To clear them, use set_coord() instead.

INPUT:

• coords – the point coordinates (as a tuple or a list)

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates are assumed to refer to the subset’s default chart

Warning

If the point has already coordinates in other charts, it is the user’s responsibility to make sure that the coordinates to be added are consistent with them.

EXAMPLES:

Setting coordinates to a point on a 2-dimensional manifold:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: p = M.point()
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', structure='topological')
>>> X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> p = M.point()

We give the point some coordinates in the manifold’s default chart:

sage: p.coordinates()
(2, -3)
sage: X(p)
(2, -3)
>>> from sage.all import *
>>> p.coordinates()
(2, -3)
>>> X(p)
(2, -3)

sage: p.coord()
(2, -3)
>>> from sage.all import *
>>> p.coord()
(2, -3)

Let us introduce a second chart on the manifold:

sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
>>> from sage.all import *
>>> Y = M.chart(names=('u', 'v',)); (u, v,) = Y._first_ngens(2)
>>> X_to_Y = X.transition_map(Y, [x+y, x-y])

If we add coordinates for p in chart Y, those in chart X are kept:

sage: p._coordinates  # random (dictionary output)
{Chart (M, (u, v)): (-1, 5), Chart (M, (x, y)): (2, -3)}
>>> from sage.all import *
>>> p._coordinates  # random (dictionary output)
{Chart (M, (u, v)): (-1, 5), Chart (M, (x, y)): (2, -3)}

On the contrary, with the method set_coordinates(), the coordinates in charts different from Y would be lost:

sage: p.set_coordinates((-1,5), chart=Y)
sage: p._coordinates
{Chart (M, (u, v)): (-1, 5)}
>>> from sage.all import *
>>> p.set_coordinates((-Integer(1),Integer(5)), chart=Y)
>>> p._coordinates
{Chart (M, (u, v)): (-1, 5)}

Adds some coordinates in the specified chart.

The previous coordinates with respect to other charts are kept. To clear them, use set_coord() instead.

INPUT:

• coords – the point coordinates (as a tuple or a list)

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates are assumed to refer to the subset’s default chart

Warning

If the point has already coordinates in other charts, it is the user’s responsibility to make sure that the coordinates to be added are consistent with them.

EXAMPLES:

Setting coordinates to a point on a 2-dimensional manifold:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: p = M.point()
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', structure='topological')
>>> X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> p = M.point()

We give the point some coordinates in the manifold’s default chart:

sage: p.coordinates()
(2, -3)
sage: X(p)
(2, -3)
>>> from sage.all import *
>>> p.coordinates()
(2, -3)
>>> X(p)
(2, -3)

sage: p.coord()
(2, -3)
>>> from sage.all import *
>>> p.coord()
(2, -3)

Let us introduce a second chart on the manifold:

sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
>>> from sage.all import *
>>> Y = M.chart(names=('u', 'v',)); (u, v,) = Y._first_ngens(2)
>>> X_to_Y = X.transition_map(Y, [x+y, x-y])

If we add coordinates for p in chart Y, those in chart X are kept:

sage: p._coordinates  # random (dictionary output)
{Chart (M, (u, v)): (-1, 5), Chart (M, (x, y)): (2, -3)}
>>> from sage.all import *
>>> p._coordinates  # random (dictionary output)
{Chart (M, (u, v)): (-1, 5), Chart (M, (x, y)): (2, -3)}

On the contrary, with the method set_coordinates(), the coordinates in charts different from Y would be lost:

sage: p.set_coordinates((-1,5), chart=Y)
sage: p._coordinates
{Chart (M, (u, v)): (-1, 5)}
>>> from sage.all import *
>>> p.set_coordinates((-Integer(1),Integer(5)), chart=Y)
>>> p._coordinates
{Chart (M, (u, v)): (-1, 5)}
coord(chart=None, old_chart=None)[source]#

Return the point coordinates in the specified chart.

If these coordinates are not already known, they are computed from known ones by means of change-of-chart formulas.

An equivalent way to get the coordinates of a point is to let the chart acting on the point, i.e. if X is a chart and p a point, one has p.coordinates(chart=X) == X(p).

INPUT:

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates are assumed to refer to the subset’s default chart

• old_chart – (default: None) chart from which the coordinates in chart are to be computed; if None, a chart in which the point’s coordinates are already known will be picked, privileging the subset’s default chart

EXAMPLES:

Spherical coordinates of a point on $$\RR^3$$:

sage: M = Manifold(3, 'M', structure='topological')
sage: c_spher.<r,th,ph> = M.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi') # spherical coordinates
sage: p = M.point((1, pi/2, pi))
sage: p.coordinates()  # coordinates in the manifold's default chart
(1, 1/2*pi, pi)
>>> from sage.all import *
>>> M = Manifold(Integer(3), 'M', structure='topological')
>>> c_spher = M.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi', names=('r', 'th', 'ph',)); (r, th, ph,) = c_spher._first_ngens(3)# spherical coordinates
>>> p = M.point((Integer(1), pi/Integer(2), pi))
>>> p.coordinates()  # coordinates in the manifold's default chart
(1, 1/2*pi, pi)

Since the default chart of M is c_spher, it is equivalent to write:

sage: p.coordinates(c_spher)
(1, 1/2*pi, pi)
>>> from sage.all import *
>>> p.coordinates(c_spher)
(1, 1/2*pi, pi)

An alternative way to get the coordinates is to let the chart act on the point (from the very definition of a chart):

sage: c_spher(p)
(1, 1/2*pi, pi)
>>> from sage.all import *
>>> c_spher(p)
(1, 1/2*pi, pi)

A shortcut for coordinates is coord:

sage: p.coord()
(1, 1/2*pi, pi)
>>> from sage.all import *
>>> p.coord()
(1, 1/2*pi, pi)

Computing the Cartesian coordinates from the spherical ones:

sage: c_cart.<x,y,z> = M.chart()  # Cartesian coordinates
sage: c_spher.transition_map(c_cart, [r*sin(th)*cos(ph),
....:                                 r*sin(th)*sin(ph), r*cos(th)])
Change of coordinates from Chart (M, (r, th, ph)) to Chart (M, (x, y, z))
>>> from sage.all import *
>>> c_cart = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_cart._first_ngens(3)# Cartesian coordinates
>>> c_spher.transition_map(c_cart, [r*sin(th)*cos(ph),
...                                 r*sin(th)*sin(ph), r*cos(th)])
Change of coordinates from Chart (M, (r, th, ph)) to Chart (M, (x, y, z))

The computation is performed by means of the above change of coordinates:

sage: p.coord(c_cart)
(-1, 0, 0)
sage: p.coord(c_cart) == c_cart(p)
True
>>> from sage.all import *
>>> p.coord(c_cart)
(-1, 0, 0)
>>> p.coord(c_cart) == c_cart(p)
True

Coordinates of a point on a 2-dimensional manifold:

sage: M = Manifold(2, 'M', structure='topological')
sage: c_xy.<x,y> = M.chart()
sage: (a, b) = var('a b') # generic coordinates for the point
sage: P = M.point((a, b), name='P')
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', structure='topological')
>>> c_xy = M.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2)
>>> (a, b) = var('a b') # generic coordinates for the point
>>> P = M.point((a, b), name='P')

Coordinates of P in the manifold’s default chart:

sage: P.coord()
(a, b)
>>> from sage.all import *
>>> P.coord()
(a, b)

Coordinates of P in a new chart:

sage: c_uv.<u,v> = M.chart()
sage: ch_xy_uv = c_xy.transition_map(c_uv, [x-y, x+y])
sage: P.coord(c_uv)
(a - b, a + b)
>>> from sage.all import *
>>> c_uv = M.chart(names=('u', 'v',)); (u, v,) = c_uv._first_ngens(2)
>>> ch_xy_uv = c_xy.transition_map(c_uv, [x-y, x+y])
>>> P.coord(c_uv)
(a - b, a + b)

Coordinates of P in a third chart:

sage: c_wz.<w,z> = M.chart()
sage: ch_uv_wz = c_uv.transition_map(c_wz, [u^3, v^3])
sage: P.coord(c_wz, old_chart=c_uv)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)
>>> from sage.all import *
>>> c_wz = M.chart(names=('w', 'z',)); (w, z,) = c_wz._first_ngens(2)
>>> ch_uv_wz = c_uv.transition_map(c_wz, [u**Integer(3), v**Integer(3)])
>>> P.coord(c_wz, old_chart=c_uv)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)

Actually, in the present case, it is not necessary to specify old_chart='uv'. Note that the first command erases all the coordinates except those in the chart c_uv:

sage: P.set_coord((a-b, a+b), c_uv)
sage: P._coordinates
{Chart (M, (u, v)): (a - b, a + b)}
sage: P.coord(c_wz)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)
sage: P._coordinates  # random (dictionary output)
{Chart (M, (u, v)): (a - b, a + b),
Chart (M, (w, z)): (a^3 - 3*a^2*b + 3*a*b^2 - b^3,
a^3 + 3*a^2*b + 3*a*b^2 + b^3)}
>>> from sage.all import *
>>> P.set_coord((a-b, a+b), c_uv)
>>> P._coordinates
{Chart (M, (u, v)): (a - b, a + b)}
>>> P.coord(c_wz)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)
>>> P._coordinates  # random (dictionary output)
{Chart (M, (u, v)): (a - b, a + b),
Chart (M, (w, z)): (a^3 - 3*a^2*b + 3*a*b^2 - b^3,
a^3 + 3*a^2*b + 3*a*b^2 + b^3)}
coordinates(chart=None, old_chart=None)[source]#

Return the point coordinates in the specified chart.

If these coordinates are not already known, they are computed from known ones by means of change-of-chart formulas.

An equivalent way to get the coordinates of a point is to let the chart acting on the point, i.e. if X is a chart and p a point, one has p.coordinates(chart=X) == X(p).

INPUT:

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates are assumed to refer to the subset’s default chart

• old_chart – (default: None) chart from which the coordinates in chart are to be computed; if None, a chart in which the point’s coordinates are already known will be picked, privileging the subset’s default chart

EXAMPLES:

Spherical coordinates of a point on $$\RR^3$$:

sage: M = Manifold(3, 'M', structure='topological')
sage: c_spher.<r,th,ph> = M.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi') # spherical coordinates
sage: p = M.point((1, pi/2, pi))
sage: p.coordinates()  # coordinates in the manifold's default chart
(1, 1/2*pi, pi)
>>> from sage.all import *
>>> M = Manifold(Integer(3), 'M', structure='topological')
>>> c_spher = M.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi', names=('r', 'th', 'ph',)); (r, th, ph,) = c_spher._first_ngens(3)# spherical coordinates
>>> p = M.point((Integer(1), pi/Integer(2), pi))
>>> p.coordinates()  # coordinates in the manifold's default chart
(1, 1/2*pi, pi)

Since the default chart of M is c_spher, it is equivalent to write:

sage: p.coordinates(c_spher)
(1, 1/2*pi, pi)
>>> from sage.all import *
>>> p.coordinates(c_spher)
(1, 1/2*pi, pi)

An alternative way to get the coordinates is to let the chart act on the point (from the very definition of a chart):

sage: c_spher(p)
(1, 1/2*pi, pi)
>>> from sage.all import *
>>> c_spher(p)
(1, 1/2*pi, pi)

A shortcut for coordinates is coord:

sage: p.coord()
(1, 1/2*pi, pi)
>>> from sage.all import *
>>> p.coord()
(1, 1/2*pi, pi)

Computing the Cartesian coordinates from the spherical ones:

sage: c_cart.<x,y,z> = M.chart()  # Cartesian coordinates
sage: c_spher.transition_map(c_cart, [r*sin(th)*cos(ph),
....:                                 r*sin(th)*sin(ph), r*cos(th)])
Change of coordinates from Chart (M, (r, th, ph)) to Chart (M, (x, y, z))
>>> from sage.all import *
>>> c_cart = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_cart._first_ngens(3)# Cartesian coordinates
>>> c_spher.transition_map(c_cart, [r*sin(th)*cos(ph),
...                                 r*sin(th)*sin(ph), r*cos(th)])
Change of coordinates from Chart (M, (r, th, ph)) to Chart (M, (x, y, z))

The computation is performed by means of the above change of coordinates:

sage: p.coord(c_cart)
(-1, 0, 0)
sage: p.coord(c_cart) == c_cart(p)
True
>>> from sage.all import *
>>> p.coord(c_cart)
(-1, 0, 0)
>>> p.coord(c_cart) == c_cart(p)
True

Coordinates of a point on a 2-dimensional manifold:

sage: M = Manifold(2, 'M', structure='topological')
sage: c_xy.<x,y> = M.chart()
sage: (a, b) = var('a b') # generic coordinates for the point
sage: P = M.point((a, b), name='P')
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', structure='topological')
>>> c_xy = M.chart(names=('x', 'y',)); (x, y,) = c_xy._first_ngens(2)
>>> (a, b) = var('a b') # generic coordinates for the point
>>> P = M.point((a, b), name='P')

Coordinates of P in the manifold’s default chart:

sage: P.coord()
(a, b)
>>> from sage.all import *
>>> P.coord()
(a, b)

Coordinates of P in a new chart:

sage: c_uv.<u,v> = M.chart()
sage: ch_xy_uv = c_xy.transition_map(c_uv, [x-y, x+y])
sage: P.coord(c_uv)
(a - b, a + b)
>>> from sage.all import *
>>> c_uv = M.chart(names=('u', 'v',)); (u, v,) = c_uv._first_ngens(2)
>>> ch_xy_uv = c_xy.transition_map(c_uv, [x-y, x+y])
>>> P.coord(c_uv)
(a - b, a + b)

Coordinates of P in a third chart:

sage: c_wz.<w,z> = M.chart()
sage: ch_uv_wz = c_uv.transition_map(c_wz, [u^3, v^3])
sage: P.coord(c_wz, old_chart=c_uv)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)
>>> from sage.all import *
>>> c_wz = M.chart(names=('w', 'z',)); (w, z,) = c_wz._first_ngens(2)
>>> ch_uv_wz = c_uv.transition_map(c_wz, [u**Integer(3), v**Integer(3)])
>>> P.coord(c_wz, old_chart=c_uv)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)

Actually, in the present case, it is not necessary to specify old_chart='uv'. Note that the first command erases all the coordinates except those in the chart c_uv:

sage: P.set_coord((a-b, a+b), c_uv)
sage: P._coordinates
{Chart (M, (u, v)): (a - b, a + b)}
sage: P.coord(c_wz)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)
sage: P._coordinates  # random (dictionary output)
{Chart (M, (u, v)): (a - b, a + b),
Chart (M, (w, z)): (a^3 - 3*a^2*b + 3*a*b^2 - b^3,
a^3 + 3*a^2*b + 3*a*b^2 + b^3)}
>>> from sage.all import *
>>> P.set_coord((a-b, a+b), c_uv)
>>> P._coordinates
{Chart (M, (u, v)): (a - b, a + b)}
>>> P.coord(c_wz)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)
>>> P._coordinates  # random (dictionary output)
{Chart (M, (u, v)): (a - b, a + b),
Chart (M, (w, z)): (a^3 - 3*a^2*b + 3*a*b^2 - b^3,
a^3 + 3*a^2*b + 3*a*b^2 + b^3)}
plot(chart=None, ambient_coords=None, mapping=None, label=None, parameters=None, size=10, color='black', label_color=None, fontsize=10, label_offset=0.1, **kwds)[source]#

For real manifolds, plot self in a Cartesian graph based on the coordinates of some ambient chart.

The point is drawn in terms of two (2D graphics) or three (3D graphics) coordinates of a given chart, called hereafter the ambient chart. The domain of the ambient chart must contain the point, or its image by a continuous manifold map $$\Phi$$.

INPUT:

• chart – (default: None) the ambient chart (see above); if None, the ambient chart is set the default chart of self.parent()

• ambient_coords – (default: None) tuple containing the 2 or 3 coordinates of the ambient chart in terms of which the plot is performed; if None, all the coordinates of the ambient chart are considered

• mapping – (default: None) ContinuousMap; continuous manifold map $$\Phi$$ providing the link between the current point $$p$$ and the ambient chart chart: the domain of chart must contain $$\Phi(p)$$; if None, the identity map is assumed

• label – (default: None) label printed next to the point; if None, the point’s name is used

• parameters – (default: None) dictionary giving the numerical values of the parameters that may appear in the point coordinates

• size – (default: 10) size of the point once drawn as a small disk or sphere

• color – (default: 'black') color of the point

• label_color – (default: None) color to print the label; if None, the value of color is used

• fontsize – (default: 10) size of the font used to print the label

• label_offset – (default: 0.1) determines the separation between the point and its label

OUTPUT:

• a graphic object, either an instance of Graphics for a 2D plot (i.e. based on 2 coordinates of the ambient chart) or an instance of Graphics3d for a 3D plot (i.e. based on 3 coordinates of the ambient chart)

EXAMPLES:

Drawing a point on a 2-dimensional manifold:

sage: # needs sage.plot
sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: p = M.point((1,3), name='p')
sage: g = p.plot(X)
sage: print(g)
Graphics object consisting of 2 graphics primitives
sage: gX = X.plot(max_range=4) # plot of the coordinate grid
sage: g + gX # display of the point atop the coordinate grid
Graphics object consisting of 20 graphics primitives
>>> from sage.all import *
>>> # needs sage.plot
>>> M = Manifold(Integer(2), 'M', structure='topological')
>>> X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> p = M.point((Integer(1),Integer(3)), name='p')
>>> g = p.plot(X)
>>> print(g)
Graphics object consisting of 2 graphics primitives
>>> gX = X.plot(max_range=Integer(4)) # plot of the coordinate grid
>>> g + gX # display of the point atop the coordinate grid
Graphics object consisting of 20 graphics primitives

Actually, since X is the default chart of the open set in which p has been defined, it can be skipped in the arguments of plot:

sage: # needs sage.plot
sage: g = p.plot()
sage: g + gX
Graphics object consisting of 20 graphics primitives
>>> from sage.all import *
>>> # needs sage.plot
>>> g = p.plot()
>>> g + gX
Graphics object consisting of 20 graphics primitives

Call with some options:

sage: # needs sage.plot
sage: g = p.plot(chart=X, size=40, color='green', label='$P$',
....:            label_color='blue', fontsize=20, label_offset=0.3)
sage: g + gX
Graphics object consisting of 20 graphics primitives
>>> from sage.all import *
>>> # needs sage.plot
>>> g = p.plot(chart=X, size=Integer(40), color='green', label='$P$',
...            label_color='blue', fontsize=Integer(20), label_offset=RealNumber('0.3'))
>>> g + gX
Graphics object consisting of 20 graphics primitives

Use of the parameters option to set a numerical value of some symbolic variable:

sage: a = var('a')
sage: q = M.point((a,2*a), name='q')                                        # needs sage.plot
sage: gq = q.plot(parameters={a:-2}, label_offset=0.2)                      # needs sage.plot
sage: g + gX + gq                                                           # needs sage.plot
Graphics object consisting of 22 graphics primitives
>>> from sage.all import *
>>> a = var('a')
>>> q = M.point((a,Integer(2)*a), name='q')                                        # needs sage.plot
>>> gq = q.plot(parameters={a:-Integer(2)}, label_offset=RealNumber('0.2'))                      # needs sage.plot
>>> g + gX + gq                                                           # needs sage.plot
Graphics object consisting of 22 graphics primitives

The numerical value is used only for the plot:

sage: q.coord()                                                             # needs sage.plot
(a, 2*a)
>>> from sage.all import *
>>> q.coord()                                                             # needs sage.plot
(a, 2*a)

Drawing a point on a 3-dimensional manifold:

sage: # needs sage.plot
sage: M = Manifold(3, 'M', structure='topological')
sage: X.<x,y,z> = M.chart()
sage: p = M.point((2,1,3), name='p')
sage: g = p.plot()
sage: print(g)
Graphics3d Object
sage: gX = X.plot(number_values=5) # coordinate mesh cube
sage: g + gX # display of the point atop the coordinate mesh
Graphics3d Object
>>> from sage.all import *
>>> # needs sage.plot
>>> M = Manifold(Integer(3), 'M', structure='topological')
>>> X = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = X._first_ngens(3)
>>> p = M.point((Integer(2),Integer(1),Integer(3)), name='p')
>>> g = p.plot()
>>> print(g)
Graphics3d Object
>>> gX = X.plot(number_values=Integer(5)) # coordinate mesh cube
>>> g + gX # display of the point atop the coordinate mesh
Graphics3d Object

Call with some options:

sage: g = p.plot(chart=X, size=40, color='green', label='P_1',              # needs sage.plot
....:            label_color='blue', fontsize=20, label_offset=0.3)
sage: g + gX                                                                # needs sage.plot
Graphics3d Object
>>> from sage.all import *
>>> g = p.plot(chart=X, size=Integer(40), color='green', label='P_1',              # needs sage.plot
...            label_color='blue', fontsize=Integer(20), label_offset=RealNumber('0.3'))
>>> g + gX                                                                # needs sage.plot
Graphics3d Object

An example of plot via a mapping: plot of a point on a 2-sphere viewed in the 3-dimensional space M:

sage: # needs sage.plot
sage: S2 = Manifold(2, 'S^2', structure='topological')
sage: U = S2.open_subset('U')  # the open set covered by spherical coord.
sage: XS.<th,ph> = U.chart(r'th:(0,pi):\theta ph:(0,2*pi):\phi')
sage: p = U.point((pi/4, pi/8), name='p')
sage: F = S2.continuous_map(M, {(XS, X): [sin(th)*cos(ph),
....:                           sin(th)*sin(ph), cos(th)]}, name='F')
sage: F.display()
F: S^2 → M
on U: (th, ph) ↦ (x, y, z) = (cos(ph)*sin(th), sin(ph)*sin(th), cos(th))
sage: g = p.plot(chart=X, mapping=F)
sage: gS2 = XS.plot(chart=X, mapping=F, number_values=9)
sage: g + gS2
Graphics3d Object
>>> from sage.all import *
>>> # needs sage.plot
>>> S2 = Manifold(Integer(2), 'S^2', structure='topological')
>>> U = S2.open_subset('U')  # the open set covered by spherical coord.
>>> XS = U.chart(r'th:(0,pi):\theta ph:(0,2*pi):\phi', names=('th', 'ph',)); (th, ph,) = XS._first_ngens(2)
>>> p = U.point((pi/Integer(4), pi/Integer(8)), name='p')
>>> F = S2.continuous_map(M, {(XS, X): [sin(th)*cos(ph),
...                           sin(th)*sin(ph), cos(th)]}, name='F')
>>> F.display()
F: S^2 → M
on U: (th, ph) ↦ (x, y, z) = (cos(ph)*sin(th), sin(ph)*sin(th), cos(th))
>>> g = p.plot(chart=X, mapping=F)
>>> gS2 = XS.plot(chart=X, mapping=F, number_values=Integer(9))
>>> g + gS2
Graphics3d Object

Use of the option ambient_coords for plots on a 4-dimensional manifold:

sage: # needs sage.plot
sage: M = Manifold(4, 'M', structure='topological')
sage: X.<t,x,y,z> = M.chart()
sage: p = M.point((1,2,3,4), name='p')
sage: g = p.plot(X, ambient_coords=(t,x,y), label_offset=0.4)  # the coordinate z is skipped
sage: gX = X.plot(X, ambient_coords=(t,x,y), number_values=5)  # long time
sage: g + gX # 3D plot  # long time
Graphics3d Object
sage: g = p.plot(X, ambient_coords=(t,y,z), label_offset=0.4)  # the coordinate x is skipped
sage: gX = X.plot(X, ambient_coords=(t,y,z), number_values=5)  # long time
sage: g + gX # 3D plot  # long time
Graphics3d Object
sage: g = p.plot(X, ambient_coords=(y,z), label_offset=0.4)  # the coordinates t and x are skipped
sage: gX = X.plot(X, ambient_coords=(y,z))
sage: g + gX # 2D plot
Graphics object consisting of 20 graphics primitives
>>> from sage.all import *
>>> # needs sage.plot
>>> M = Manifold(Integer(4), 'M', structure='topological')
>>> X = M.chart(names=('t', 'x', 'y', 'z',)); (t, x, y, z,) = X._first_ngens(4)
>>> p = M.point((Integer(1),Integer(2),Integer(3),Integer(4)), name='p')
>>> g = p.plot(X, ambient_coords=(t,x,y), label_offset=RealNumber('0.4'))  # the coordinate z is skipped
>>> gX = X.plot(X, ambient_coords=(t,x,y), number_values=Integer(5))  # long time
>>> g + gX # 3D plot  # long time
Graphics3d Object
>>> g = p.plot(X, ambient_coords=(t,y,z), label_offset=RealNumber('0.4'))  # the coordinate x is skipped
>>> gX = X.plot(X, ambient_coords=(t,y,z), number_values=Integer(5))  # long time
>>> g + gX # 3D plot  # long time
Graphics3d Object
>>> g = p.plot(X, ambient_coords=(y,z), label_offset=RealNumber('0.4'))  # the coordinates t and x are skipped
>>> gX = X.plot(X, ambient_coords=(y,z))
>>> g + gX # 2D plot
Graphics object consisting of 20 graphics primitives
set_coord(coords, chart=None)[source]#

Sets the point coordinates in the specified chart.

Coordinates with respect to other charts are deleted, in order to avoid any inconsistency. To keep them, use the method add_coord() instead.

INPUT:

• coords – the point coordinates (as a tuple or a list)

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates are assumed to refer to the subset’s default chart

EXAMPLES:

Setting coordinates to a point on a 2-dimensional manifold:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: p = M.point()
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', structure='topological')
>>> X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> p = M.point()

We set the coordinates in the manifold’s default chart:

sage: p.set_coordinates((2,-3))
sage: p.coordinates()
(2, -3)
sage: X(p)
(2, -3)
>>> from sage.all import *
>>> p.set_coordinates((Integer(2),-Integer(3)))
>>> p.coordinates()
(2, -3)
>>> X(p)
(2, -3)

A shortcut for set_coordinates is set_coord:

sage: p.set_coord((2,-3))
sage: p.coord()
(2, -3)
>>> from sage.all import *
>>> p.set_coord((Integer(2),-Integer(3)))
>>> p.coord()
(2, -3)

Let us introduce a second chart on the manifold:

sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
>>> from sage.all import *
>>> Y = M.chart(names=('u', 'v',)); (u, v,) = Y._first_ngens(2)
>>> X_to_Y = X.transition_map(Y, [x+y, x-y])

If we set the coordinates of p in chart Y, those in chart X are lost:

sage: Y(p)
(-1, 5)
sage: p.set_coord(Y(p), chart=Y)
sage: p._coordinates
{Chart (M, (u, v)): (-1, 5)}
>>> from sage.all import *
>>> Y(p)
(-1, 5)
>>> p.set_coord(Y(p), chart=Y)
>>> p._coordinates
{Chart (M, (u, v)): (-1, 5)}
set_coordinates(coords, chart=None)[source]#

Sets the point coordinates in the specified chart.

Coordinates with respect to other charts are deleted, in order to avoid any inconsistency. To keep them, use the method add_coord() instead.

INPUT:

• coords – the point coordinates (as a tuple or a list)

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates are assumed to refer to the subset’s default chart

EXAMPLES:

Setting coordinates to a point on a 2-dimensional manifold:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: p = M.point()
>>> from sage.all import *
>>> M = Manifold(Integer(2), 'M', structure='topological')
>>> X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> p = M.point()

We set the coordinates in the manifold’s default chart:

sage: p.set_coordinates((2,-3))
sage: p.coordinates()
(2, -3)
sage: X(p)
(2, -3)
>>> from sage.all import *
>>> p.set_coordinates((Integer(2),-Integer(3)))
>>> p.coordinates()
(2, -3)
>>> X(p)
(2, -3)

A shortcut for set_coordinates is set_coord:

sage: p.set_coord((2,-3))
sage: p.coord()
(2, -3)
>>> from sage.all import *
>>> p.set_coord((Integer(2),-Integer(3)))
>>> p.coord()
(2, -3)

Let us introduce a second chart on the manifold:

sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
>>> from sage.all import *
>>> Y = M.chart(names=('u', 'v',)); (u, v,) = Y._first_ngens(2)
>>> X_to_Y = X.transition_map(Y, [x+y, x-y])

If we set the coordinates of p in chart Y, those in chart X are lost:

sage: Y(p)
(-1, 5)
sage: p.set_coord(Y(p), chart=Y)
sage: p._coordinates
{Chart (M, (u, v)): (-1, 5)}
>>> from sage.all import *
>>> Y(p)
(-1, 5)
>>> p.set_coord(Y(p), chart=Y)
>>> p._coordinates
{Chart (M, (u, v)): (-1, 5)}