Symplectic structures#
The class SymplecticForm
implements symplectic structures
on differentiable manifolds over \(\RR\). The derived class
SymplecticFormParal
is devoted to symplectic forms on a
parallelizable manifold.
AUTHORS:
Tobias Diez (2021) : initial version
REFERENCES:
- class sage.manifolds.differentiable.symplectic_form.SymplecticForm(manifold, name=None, latex_name=None)#
Bases:
sage.manifolds.differentiable.diff_form.DiffForm
A symplectic form on a differentiable manifold.
An instance of this class is a closed nondegenerate differential \(2\)-form \(\omega\) on a differentiable manifold \(M\) over \(\RR\).
In particular, at each point \(m \in M\), \(\omega_m\) is a bilinear map of the type:
\[\omega_m:\ T_m M \times T_m M \to \RR,\]where \(T_m M\) stands for the tangent space to the manifold \(M\) at the point \(m\), such that \(\omega_m\) is skew-symmetric: \(\forall u,v \in T_m M, \ \omega_m(v,u) = - \omega_m(u,v)\) and nondegenerate: \((\forall v \in T_m M,\ \ \omega_m(u,v) = 0) \Longrightarrow u=0\).
Note
If \(M\) is parallelizable, the class
SymplecticFormParal
should be used instead.INPUT:
manifold
– module \(\mathfrak{X}(M)\) of vector fields on the manifold \(M\), or the manifold \(M\) itselfname
– (default:omega
) name given to the symplectic formlatex_name
– (default:None
) LaTeX symbol to denote the symplectic form; ifNone
, it is formed fromname
EXAMPLES:
A symplectic form on the 2-sphere:
sage: M.<x,y> = manifolds.Sphere(2, coordinates='stereographic') sage: stereoN = M.stereographic_coordinates(pole='north') sage: stereoS = M.stereographic_coordinates(pole='south') sage: omega = M.symplectic_form(name='omega', latex_name=r'\omega') sage: omega Symplectic form omega on the 2-sphere S^2 of radius 1 smoothly embedded in the Euclidean space E^3
omega
is initialized by providing its single nonvanishing component w.r.t. the vector frame associated tostereoN
, which is the default frame onM
:sage: omega[1, 2] = 1/(1 + x^2 + y^2)^2
The components w.r.t. the vector frame associated to
stereoS
are obtained thanks to the methodadd_comp_by_continuation()
:sage: omega.add_comp_by_continuation(stereoS.frame(), ....: stereoS.domain().intersection(stereoN.domain())) sage: omega.display() omega = (x^2 + y^2 + 1)^(-2) dx∧dy sage: omega.display(stereoS) omega = -1/(xp^4 + yp^4 + 2*(xp^2 + 1)*yp^2 + 2*xp^2 + 1) dxp∧dyp
omega
is an exact 2-form (this is trivial here, sinceM
is 2-dimensional):sage: diff(omega).display() domega = 0
- flat(vector_field)#
Return the image of the given differential form under the map \(\omega^\flat: T M \to T^*M\) defined by
\[<\omega^\flat(X), Y> = \omega_m (X, Y)\]for all \(X, Y \in T_m M\).
In indices, \(X_i = \omega_{ji} X^j\).
INPUT:
vector_field
– the vector field to calculate its flat of
EXAMPLES:
sage: M = manifolds.StandardSymplecticSpace(2) sage: omega = M.symplectic_form() sage: X = M.vector_field_module().an_element() sage: X.set_name('X') sage: X.display() X = 2 e_q + 2 e_p sage: omega.flat(X).display() X_flat = 2 dq - 2 dp
- hamiltonian_vector_field(function)#
The Hamiltonian vector field \(X_f\) generated by a function \(f: M \to \RR\).
The Hamiltonian vector field is defined by
\[X_f \lrcorner \omega + df = 0.\]INPUT:
function
– the function generating the Hamiltonian vector field
EXAMPLES:
sage: M = manifolds.StandardSymplecticSpace(2) sage: omega = M.symplectic_form() sage: f = M.scalar_field({ chart: function('f')(*chart[:]) for chart in M.atlas() }, name='f') sage: f.display() f: R2 → ℝ (q, p) ↦ f(q, p) sage: Xf = omega.hamiltonian_vector_field(f) sage: Xf.display() Xf = d(f)/dp e_q - d(f)/dq e_p
- hodge_star(pform)#
Compute the Hodge dual of a differential form with respect to the symplectic form.
See
hodge_dual()
for the definition and more details.INPUT:
pform
: a \(p\)-form \(A\); must be an instance ofDiffScalarField
for \(p=0\) and ofDiffForm
orDiffFormParal
for \(p\geq 1\).
OUTPUT:
the \((n-p)\)-form \(*A\)
EXAMPLES:
Hodge dual of any form on the symplectic vector space \(R^2\):
sage: M = manifolds.StandardSymplecticSpace(2) sage: omega = M.symplectic_form() sage: a = M.one_form(1, 0, name='a') sage: omega.hodge_star(a).display() *a = -dq sage: b = M.one_form(0, 1, name='b') sage: omega.hodge_star(b).display() *b = -dp sage: f = M.scalar_field(1, name='f') sage: omega.hodge_star(f).display() *f = -dq∧dp sage: omega.hodge_star(omega).display() *omega: R2 → ℝ (q, p) ↦ 1
- poisson(expansion_symbol=None, order=1)#
Return the Poisson tensor associated with the symplectic form.
INPUT:
expansion_symbol
– (default:None
) symbolic variable; if specified, the inverse will be expanded in power series with respect to this variable (around its zero value)order
– integer (default: 1); the order of the expansion ifexpansion_symbol
is notNone
; the order is defined as the degree of the polynomial representing the truncated power series inexpansion_symbol
; currently only first order inverse is supported
If
expansion_symbol
is set, then the zeroth order symplectic form must be invertible. Moreover, subsequent calls to this method will return a cached value, even when called with the default value (to enable computation of derived quantities). To reset, use_del_derived()
.OUTPUT:
the Poisson tensor, as an instance of
PoissonTensorField()
EXAMPLES:
Poisson tensor of \(2\)-dimensional symplectic vector space:
sage: M = manifolds.StandardSymplecticSpace(2) sage: omega = M.symplectic_form() sage: poisson = omega.poisson(); poisson 2-vector field poisson_omega on the Standard symplectic space R2 sage: poisson.display() poisson_omega = -e_q∧e_p
- poisson_bracket(f, g)#
Return the Poisson bracket
\[\{f, g\} = \omega(X_f, X_g)\]of the given functions.
INPUT:
f
– function inserted in the first slotg
– function inserted in the second slot
EXAMPLES:
sage: M.<q, p> = EuclideanSpace(2) sage: poisson = M.poisson_tensor('varpi') sage: poisson.set_comp()[1,2] = -1 sage: f = M.scalar_field({ chart: function('f')(*chart[:]) for chart in M.atlas() }, name='f') sage: g = M.scalar_field({ chart: function('g')(*chart[:]) for chart in M.atlas() }, name='g') sage: poisson.poisson_bracket(f, g).display() poisson(f, g): E^2 → ℝ (q, p) ↦ d(f)/dp*d(g)/dq - d(f)/dq*d(g)/dp
- restrict(subdomain, dest_map=None)#
Return the restriction of the symplectic form to some subdomain.
If the restriction has not been defined yet, it is constructed here.
INPUT:
subdomain
– open subset \(U\) of the symplectic form’s domaindest_map
– (default:None
) smooth destination map \(\Phi:\ U \to V\), where \(V\) is a subdomain of the symplectic form’s domain If None, the restriction of the initial vector field module is used.
OUTPUT:
the restricted symplectic form.
EXAMPLES:
sage: M = Manifold(6, 'M') sage: omega = M.symplectic_form() sage: U = M.open_subset('U') sage: omega.restrict(U) 2-form omega on the Open subset U of the 6-dimensional differentiable manifold M
- sharp(form)#
Return the image of the given differential form under the map \(\omega^\sharp: T^* M \to TM\) defined by
\[\omega (\omega^\sharp(\alpha), X) = \alpha(X)\]for all \(X \in T_m M\) and \(\alpha \in T^*_m M\). The sharp map is inverse to the flat map.
In indices, \(\alpha^i = \varpi^{ij} \alpha_j\), where \(\varpi\) is the Poisson tensor associated with the symplectic form.
INPUT:
form
– the differential form to calculate its sharp of
EXAMPLES:
sage: M = manifolds.StandardSymplecticSpace(2) sage: omega = M.symplectic_form() sage: X = M.vector_field_module().an_element() sage: alpha = omega.flat(X) sage: alpha.set_name('alpha') sage: alpha.display() alpha = 2 dq - 2 dp sage: omega.sharp(alpha).display() alpha_sharp = 2 e_q + 2 e_p
- volume_form(contra=0)#
Liouville volume form \(\frac{1}{n!}\omega^n\) associated with the symplectic form \(\omega\), where \(2n\) is the dimension of the manifold.
INPUT:
contra
– (default: 0) number of contravariant indices of the returned tensor
OUTPUT:
if
contra = 0
: volume form associated with the symplectic formif
contra = k
, with \(1\leq k \leq n\), the tensor field of type (k,n-k) formed from \(\epsilon\) by raising the first k indices with the symplectic form (see methodup()
)
EXAMPLES:
Volume form on \(\RR^4\):
sage: M = manifolds.StandardSymplecticSpace(4) sage: omega = M.symplectic_form() sage: vol = omega.volume_form() ; vol 4-form mu_omega on the Standard symplectic space R4 sage: vol.display() mu_omega = dq1∧dp1∧dq2∧dp2
- static wrap(form, name=None, latex_name=None)#
Define the symplectic form from a differential form.
INPUT:
form
– differential \(2\)-form
EXAMPLES:
Volume form on the sphere as a symplectic form:
sage: from sage.manifolds.differentiable.symplectic_form import SymplecticForm sage: M = manifolds.Sphere(2, coordinates='stereographic') sage: vol_form = M.induced_metric().volume_form() sage: omega = SymplecticForm.wrap(vol_form, 'omega', r'\omega') sage: omega.display() omega = -4/(y1^4 + y2^4 + 2*(y1^2 + 1)*y2^2 + 2*y1^2 + 1) dy1∧dy2
- class sage.manifolds.differentiable.symplectic_form.SymplecticFormParal(manifold, name, latex_name=None)#
Bases:
sage.manifolds.differentiable.symplectic_form.SymplecticForm
,sage.manifolds.differentiable.diff_form.DiffFormParal
A symplectic form on a parallelizable manifold.
Note
If \(M\) is not parallelizable, the class
SymplecticForm
should be used instead.INPUT:
manifold
– module \(\mathfrak{X}(M)\) of vector fields on the manifold \(M\), or the manifold \(M\) itselfname
– (default:omega
) name given to the symplectic formlatex_name
– (default:None
) LaTeX symbol to denote the symplectic form; ifNone
, it is formed fromname
EXAMPLES:
Standard symplectic form on \(\RR^2\):
sage: M.<q, p> = EuclideanSpace(name="R2", latex_name=r"\mathbb{R}^2") sage: omega = M.symplectic_form(name='omega', latex_name=r'\omega') sage: omega Symplectic form omega on the Euclidean plane R2 sage: omega.set_comp()[1,2] = -1 sage: omega.display() omega = -dq∧dp
- poisson(expansion_symbol=None, order=1)#
Return the Poisson tensor associated with the symplectic form.
INPUT:
expansion_symbol
– (default:None
) symbolic variable; if specified, the inverse will be expanded in power series with respect to this variable (around its zero value)order
– integer (default: 1); the order of the expansion ifexpansion_symbol
is notNone
; the order is defined as the degree of the polynomial representing the truncated power series inexpansion_symbol
; currently only first order inverse is supported
If
expansion_symbol
is set, then the zeroth order symplectic form must be invertible. Moreover, subsequent calls to this method will return a cached value, even when called with the default value (to enable computation of derived quantities). To reset, use_del_derived()
.OUTPUT:
the Poisson tensor, , as an instance of
PoissonTensorFieldParal()
EXAMPLES:
Poisson tensor of \(2\)-dimensional symplectic vector space:
sage: from sage.manifolds.differentiable.symplectic_form import SymplecticFormParal sage: M.<q, p> = EuclideanSpace(2, "R2", r"\mathbb{R}^2", symbols=r"q:q p:p") sage: omega = SymplecticFormParal(M, 'omega', r'\omega') sage: omega[1,2] = -1 sage: poisson = omega.poisson(); poisson 2-vector field poisson_omega on the Euclidean plane R2 sage: poisson.display() poisson_omega = -e_q∧e_p
- restrict(subdomain, dest_map=None)#
Return the restriction of the symplectic form to some subdomain.
If the restriction has not been defined yet, it is constructed here.
INPUT:
subdomain
– open subset \(U\) of the symplectic form’s domaindest_map
– (default:None
) smooth destination map \(\Phi:\ U \rightarrow V\), where \(V\) is a subdomain of the symplectic form’s domain If None, the restriction of the initial vector field module is used.
OUTPUT:
the restricted symplectic form.
EXAMPLES:
Restriction of the standard symplectic form on \(\RR^2\) to the upper half plane:
sage: from sage.manifolds.differentiable.symplectic_form import SymplecticFormParal sage: M = EuclideanSpace(2, "R2", r"\mathbb{R}^2", symbols=r"q:q p:p") sage: X.<q, p> = M.chart() sage: omega = SymplecticFormParal(M, 'omega', r'\omega') sage: omega[1,2] = -1 sage: U = M.open_subset('U', coord_def={X: q>0}) sage: omegaU = omega.restrict(U); omegaU Symplectic form omega on the Open subset U of the Euclidean plane R2 sage: omegaU.display() omega = -dq∧dp