Topological Spaces#

class sage.categories.topological_spaces.TopologicalSpaces(category, *args)[source]#

Bases: TopologicalSpacesCategory

The category of topological spaces.

EXAMPLES:

sage: Sets().Topological()
Category of topological spaces
sage: Sets().Topological().super_categories()
[Category of sets]
>>> from sage.all import *
>>> Sets().Topological()
Category of topological spaces
>>> Sets().Topological().super_categories()
[Category of sets]

The category of topological spaces defines the topological structure, which shall be preserved by morphisms:

sage: Sets().Topological().additional_structure()
Category of topological spaces
>>> from sage.all import *
>>> Sets().Topological().additional_structure()
Category of topological spaces
class CartesianProducts(category, *args)[source]#

Bases: CartesianProductsCategory

extra_super_categories()[source]#

Implement the fact that a (finite) Cartesian product of topological spaces is a topological space.

EXAMPLES:

sage: from sage.categories.topological_spaces import TopologicalSpaces
sage: C = TopologicalSpaces().CartesianProducts()
sage: C.extra_super_categories()
[Category of topological spaces]
sage: C.super_categories()
[Category of Cartesian products of sets, Category of topological spaces]
sage: C.axioms()
frozenset()
>>> from sage.all import *
>>> from sage.categories.topological_spaces import TopologicalSpaces
>>> C = TopologicalSpaces().CartesianProducts()
>>> C.extra_super_categories()
[Category of topological spaces]
>>> C.super_categories()
[Category of Cartesian products of sets, Category of topological spaces]
>>> C.axioms()
frozenset()
class Compact(base_category)[source]#

Bases: CategoryWithAxiom

The category of compact topological spaces.

class CartesianProducts(category, *args)[source]#

Bases: CartesianProductsCategory

extra_super_categories()[source]#

Implement the fact that a (finite) Cartesian product of compact topological spaces is compact.

EXAMPLES:

sage: from sage.categories.topological_spaces import TopologicalSpaces
sage: C = TopologicalSpaces().Compact().CartesianProducts()
sage: C.extra_super_categories()
[Category of compact topological spaces]
sage: C.super_categories()
[Category of Cartesian products of topological spaces,
 Category of compact topological spaces]
sage: C.axioms()
frozenset({'Compact'})
>>> from sage.all import *
>>> from sage.categories.topological_spaces import TopologicalSpaces
>>> C = TopologicalSpaces().Compact().CartesianProducts()
>>> C.extra_super_categories()
[Category of compact topological spaces]
>>> C.super_categories()
[Category of Cartesian products of topological spaces,
 Category of compact topological spaces]
>>> C.axioms()
frozenset({'Compact'})
class Connected(base_category)[source]#

Bases: CategoryWithAxiom

The category of connected topological spaces.

class CartesianProducts(category, *args)[source]#

Bases: CartesianProductsCategory

extra_super_categories()[source]#

Implement the fact that a (finite) Cartesian product of connected topological spaces is connected.

EXAMPLES:

sage: from sage.categories.topological_spaces import TopologicalSpaces
sage: C = TopologicalSpaces().Connected().CartesianProducts()
sage: C.extra_super_categories()
[Category of connected topological spaces]
sage: C.super_categories()
[Category of Cartesian products of topological spaces,
 Category of connected topological spaces]
sage: C.axioms()
frozenset({'Connected'})
>>> from sage.all import *
>>> from sage.categories.topological_spaces import TopologicalSpaces
>>> C = TopologicalSpaces().Connected().CartesianProducts()
>>> C.extra_super_categories()
[Category of connected topological spaces]
>>> C.super_categories()
[Category of Cartesian products of topological spaces,
 Category of connected topological spaces]
>>> C.axioms()
frozenset({'Connected'})
class SubcategoryMethods[source]#

Bases: object

Compact()[source]#

Return the subcategory of the compact objects of self.

EXAMPLES:

sage: Sets().Topological().Compact()
Category of compact topological spaces
>>> from sage.all import *
>>> Sets().Topological().Compact()
Category of compact topological spaces
Connected()[source]#

Return the full subcategory of the connected objects of self.

EXAMPLES:

sage: Sets().Topological().Connected()
Category of connected topological spaces
>>> from sage.all import *
>>> Sets().Topological().Connected()
Category of connected topological spaces
class sage.categories.topological_spaces.TopologicalSpacesCategory(category, *args)[source]#

Bases: RegressiveCovariantConstructionCategory