Morphisms on affine schemes#
This module implements morphisms from affine schemes. A morphism from an affine scheme to an affine scheme is determined by rational functions that define what the morphism does on points in the ambient affine space. A morphism from an affine scheme to a projective scheme is determined by homogeneous polynomials.
EXAMPLES:
sage: A2.<x,y> = AffineSpace(QQ, 2)
sage: P2.<x0,x1,x2> = ProjectiveSpace(QQ, 2)
sage: A2.hom([x, x + y], A2)
Scheme endomorphism of Affine Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x, y) to (x, x + y)
sage: A2.hom([1, x, x + y], P2)
Scheme morphism:
From: Affine Space of dimension 2 over Rational Field
To: Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x, y) to (1 : x : x + y)
>>> from sage.all import *
>>> A2 = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A2._first_ngens(2)
>>> P2 = ProjectiveSpace(QQ, Integer(2), names=('x0', 'x1', 'x2',)); (x0, x1, x2,) = P2._first_ngens(3)
>>> A2.hom([x, x + y], A2)
Scheme endomorphism of Affine Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x, y) to (x, x + y)
>>> A2.hom([Integer(1), x, x + y], P2)
Scheme morphism:
From: Affine Space of dimension 2 over Rational Field
To: Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x, y) to (1 : x : x + y)
AUTHORS:
David Kohel, William Stein: initial version
Volker Braun (2011-08-08): renamed classes, more documentation, misc cleanups
Ben Hutz (2013-03): iteration functionality and new directory structure for affine/projective
Kwankyu Lee (2020-02): added indeterminacy_locus() and image()
- class sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space(parent, polys, check=True)[source]#
Bases:
SchemeMorphism_polynomial
A morphism of schemes determined by rational functions.
EXAMPLES:
sage: RA.<x,y> = QQ[] sage: A2 = AffineSpace(RA) sage: RP.<u,v,w> = QQ[] sage: P2 = ProjectiveSpace(RP) sage: H = A2.Hom(P2) sage: f = H([x, y, 1]) sage: f Scheme morphism: From: Affine Space of dimension 2 over Rational Field To: Projective Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x : y : 1)
>>> from sage.all import * >>> RA = QQ['x, y']; (x, y,) = RA._first_ngens(2) >>> A2 = AffineSpace(RA) >>> RP = QQ['u, v, w']; (u, v, w,) = RP._first_ngens(3) >>> P2 = ProjectiveSpace(RP) >>> H = A2.Hom(P2) >>> f = H([x, y, Integer(1)]) >>> f Scheme morphism: From: Affine Space of dimension 2 over Rational Field To: Projective Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x : y : 1)
- as_dynamical_system()[source]#
Return this endomorphism as a
DynamicalSystem_affine
.OUTPUT:
EXAMPLES:
sage: A.<x,y,z> = AffineSpace(ZZ, 3) sage: H = End(A) sage: f = H([x^2, y^2, z^2]) sage: type(f.as_dynamical_system()) # needs sage.schemes <class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine'>
>>> from sage.all import * >>> A = AffineSpace(ZZ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = A._first_ngens(3) >>> H = End(A) >>> f = H([x**Integer(2), y**Integer(2), z**Integer(2)]) >>> type(f.as_dynamical_system()) # needs sage.schemes <class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine'>
sage: A.<x,y> = AffineSpace(ZZ, 2) sage: H = End(A) sage: f = H([x^2 - y^2, y^2]) sage: type(f.as_dynamical_system()) # needs sage.schemes <class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine'>
>>> from sage.all import * >>> A = AffineSpace(ZZ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = End(A) >>> f = H([x**Integer(2) - y**Integer(2), y**Integer(2)]) >>> type(f.as_dynamical_system()) # needs sage.schemes <class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine'>
sage: A.<x> = AffineSpace(GF(5), 1) sage: H = End(A) sage: f = H([x^2]) sage: type(f.as_dynamical_system()) # needs sage.schemes <class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine_finite_field'>
>>> from sage.all import * >>> A = AffineSpace(GF(Integer(5)), Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> H = End(A) >>> f = H([x**Integer(2)]) >>> type(f.as_dynamical_system()) # needs sage.schemes <class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine_finite_field'>
sage: P.<x,y> = AffineSpace(RR, 2) sage: f = DynamicalSystem([x^2 + y^2, y^2], P) # needs sage.schemes sage: g = f.as_dynamical_system() # needs sage.schemes sage: g is f # needs sage.schemes True
>>> from sage.all import * >>> P = AffineSpace(RR, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem([x**Integer(2) + y**Integer(2), y**Integer(2)], P) # needs sage.schemes >>> g = f.as_dynamical_system() # needs sage.schemes >>> g is f # needs sage.schemes True
- degree()[source]#
Return the degree of the affine morphism.
EXAMPLES:
sage: R.<x> = AffineSpace(QQ, 1) sage: H = Hom(R, R) sage: f = H([x^7]) sage: f.degree() 7
>>> from sage.all import * >>> R = AffineSpace(QQ, Integer(1), names=('x',)); (x,) = R._first_ngens(1) >>> H = Hom(R, R) >>> f = H([x**Integer(7)]) >>> f.degree() 7
sage: R.<x,y,z> = AffineSpace(QQ, 3) sage: H = Hom(R, R) sage: f = H([x^3, y^2 + 5, z^4 + y]) sage: f.degree() 4
>>> from sage.all import * >>> R = AffineSpace(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3) >>> H = Hom(R, R) >>> f = H([x**Integer(3), y**Integer(2) + Integer(5), z**Integer(4) + y]) >>> f.degree() 4
- global_height(prec=None)[source]#
Take the height of the homogenization, and return the global height of the coefficients as a projective point.
INPUT:
prec
– desired floating point precision (default: default RealField precision).
OUTPUT: A real number.
EXAMPLES:
sage: A.<x> = AffineSpace(QQ, 1) sage: H = Hom(A, A) sage: f = H([1/1331*x^2 + 4000]) sage: f.global_height() # needs sage.symbolic 15.4877354584971
>>> from sage.all import * >>> A = AffineSpace(QQ, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> H = Hom(A, A) >>> f = H([Integer(1)/Integer(1331)*x**Integer(2) + Integer(4000)]) >>> f.global_height() # needs sage.symbolic 15.4877354584971
sage: # needs sage.rings.number_field sage: R.<x> = PolynomialRing(QQ) sage: k.<w> = NumberField(x^2 + 5) sage: A.<x,y> = AffineSpace(k, 2) sage: H = Hom(A, A) sage: f = H([13*w*x^2 + 4*y, 1/w*y^2]) sage: f.global_height(prec=2) 4.0
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> k = NumberField(x**Integer(2) + Integer(5), names=('w',)); (w,) = k._first_ngens(1) >>> A = AffineSpace(k, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = Hom(A, A) >>> f = H([Integer(13)*w*x**Integer(2) + Integer(4)*y, Integer(1)/w*y**Integer(2)]) >>> f.global_height(prec=Integer(2)) 4.0
sage: A.<x> = AffineSpace(ZZ, 1) sage: H = Hom(A, A) sage: f = H([7*x^2 + 1513]) sage: f.global_height() # needs sage.symbolic 7.32184971378836
>>> from sage.all import * >>> A = AffineSpace(ZZ, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> H = Hom(A, A) >>> f = H([Integer(7)*x**Integer(2) + Integer(1513)]) >>> f.global_height() # needs sage.symbolic 7.32184971378836
sage: A.<x> = AffineSpace(QQ, 1) sage: B.<y,z> = AffineSpace(QQ, 2) sage: H = Hom(A, B) sage: f = H([1/3*x^2 + 10, 7*x^3]) sage: f.global_height() # needs sage.symbolic 3.40119738166216
>>> from sage.all import * >>> A = AffineSpace(QQ, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> B = AffineSpace(QQ, Integer(2), names=('y', 'z',)); (y, z,) = B._first_ngens(2) >>> H = Hom(A, B) >>> f = H([Integer(1)/Integer(3)*x**Integer(2) + Integer(10), Integer(7)*x**Integer(3)]) >>> f.global_height() # needs sage.symbolic 3.40119738166216
sage: P.<x,y> = AffineSpace(QQ, 2) sage: A.<z> = AffineSpace(QQ, 1) sage: H = Hom(P, A) sage: f = H([1/1331*x^2 + 4000*y]) sage: f.global_height() # needs sage.symbolic 15.4877354584971
>>> from sage.all import * >>> P = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> A = AffineSpace(QQ, Integer(1), names=('z',)); (z,) = A._first_ngens(1) >>> H = Hom(P, A) >>> f = H([Integer(1)/Integer(1331)*x**Integer(2) + Integer(4000)*y]) >>> f.global_height() # needs sage.symbolic 15.4877354584971
- homogenize(n)[source]#
Return the homogenization of this map.
If it’s domain is a subscheme, the domain of the homogenized map is the projective embedding of the domain. The domain and codomain can be homogenized at different coordinates:
n[0]
for the domain andn[1]
for the codomain.INPUT:
n
– a tuple of nonnegative integers. Ifn
is an integer, then the two values of the tuple are assumed to be the same
OUTPUT: a morphism from the projective embedding of the domain of this map
EXAMPLES:
sage: A.<x,y> = AffineSpace(ZZ, 2) sage: H = Hom(A, A) sage: f = H([(x^2-2)/x^5, y^2]) sage: f.homogenize(2) Scheme endomorphism of Projective Space of dimension 2 over Integer Ring Defn: Defined on coordinates by sending (x0 : x1 : x2) to (x0^2*x2^5 - 2*x2^7 : x0^5*x1^2 : x0^5*x2^2)
>>> from sage.all import * >>> A = AffineSpace(ZZ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = Hom(A, A) >>> f = H([(x**Integer(2)-Integer(2))/x**Integer(5), y**Integer(2)]) >>> f.homogenize(Integer(2)) Scheme endomorphism of Projective Space of dimension 2 over Integer Ring Defn: Defined on coordinates by sending (x0 : x1 : x2) to (x0^2*x2^5 - 2*x2^7 : x0^5*x1^2 : x0^5*x2^2)
sage: # needs sage.rings.real_mpfr sage: A.<x,y> = AffineSpace(CC, 2) sage: H = Hom(A, A) sage: f = H([(x^2-2)/(x*y), y^2 - x]) sage: f.homogenize((2, 0)) Scheme endomorphism of Projective Space of dimension 2 over Complex Field with 53 bits of precision Defn: Defined on coordinates by sending (x0 : x1 : x2) to (x0*x1*x2^2 : x0^2*x2^2 + (-2.00000000000000)*x2^4 : x0*x1^3 - x0^2*x1*x2)
>>> from sage.all import * >>> # needs sage.rings.real_mpfr >>> A = AffineSpace(CC, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = Hom(A, A) >>> f = H([(x**Integer(2)-Integer(2))/(x*y), y**Integer(2) - x]) >>> f.homogenize((Integer(2), Integer(0))) Scheme endomorphism of Projective Space of dimension 2 over Complex Field with 53 bits of precision Defn: Defined on coordinates by sending (x0 : x1 : x2) to (x0*x1*x2^2 : x0^2*x2^2 + (-2.00000000000000)*x2^4 : x0*x1^3 - x0^2*x1*x2)
sage: A.<x,y> = AffineSpace(ZZ, 2) sage: X = A.subscheme([x - y^2]) sage: H = Hom(X, X) sage: f = H([9*y^2, 3*y]) sage: f.homogenize(2) # needs sage.libs.singular Scheme endomorphism of Closed subscheme of Projective Space of dimension 2 over Integer Ring defined by: x1^2 - x0*x2 Defn: Defined on coordinates by sending (x0 : x1 : x2) to (9*x1^2 : 3*x1*x2 : x2^2)
>>> from sage.all import * >>> A = AffineSpace(ZZ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> X = A.subscheme([x - y**Integer(2)]) >>> H = Hom(X, X) >>> f = H([Integer(9)*y**Integer(2), Integer(3)*y]) >>> f.homogenize(Integer(2)) # needs sage.libs.singular Scheme endomorphism of Closed subscheme of Projective Space of dimension 2 over Integer Ring defined by: x1^2 - x0*x2 Defn: Defined on coordinates by sending (x0 : x1 : x2) to (9*x1^2 : 3*x1*x2 : x2^2)
sage: R.<t> = PolynomialRing(ZZ) sage: A.<x,y> = AffineSpace(R, 2) sage: H = Hom(A, A) sage: f = H([(x^2-2)/y, y^2 - x]) sage: f.homogenize((2, 0)) Scheme endomorphism of Projective Space of dimension 2 over Univariate Polynomial Ring in t over Integer Ring Defn: Defined on coordinates by sending (x0 : x1 : x2) to (x1*x2^2 : x0^2*x2 + (-2)*x2^3 : x1^3 - x0*x1*x2)
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('t',)); (t,) = R._first_ngens(1) >>> A = AffineSpace(R, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = Hom(A, A) >>> f = H([(x**Integer(2)-Integer(2))/y, y**Integer(2) - x]) >>> f.homogenize((Integer(2), Integer(0))) Scheme endomorphism of Projective Space of dimension 2 over Univariate Polynomial Ring in t over Integer Ring Defn: Defined on coordinates by sending (x0 : x1 : x2) to (x1*x2^2 : x0^2*x2 + (-2)*x2^3 : x1^3 - x0*x1*x2)
sage: A.<x> = AffineSpace(QQ, 1) sage: H = End(A) sage: f = H([x^2 - 1]) sage: f.homogenize((1, 0)) Scheme endomorphism of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x0 : x1) to (x1^2 : x0^2 - x1^2)
>>> from sage.all import * >>> A = AffineSpace(QQ, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> H = End(A) >>> f = H([x**Integer(2) - Integer(1)]) >>> f.homogenize((Integer(1), Integer(0))) Scheme endomorphism of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x0 : x1) to (x1^2 : x0^2 - x1^2)
sage: # needs sage.rings.number_field sage: R.<a> = PolynomialRing(QQbar) sage: A.<x,y> = AffineSpace(R, 2) sage: H = End(A) sage: f = H([QQbar(sqrt(2))*x*y, a*x^2]) # needs sage.symbolic sage: f.homogenize(2) # needs sage.libs.singular sage.symbolic Scheme endomorphism of Projective Space of dimension 2 over Univariate Polynomial Ring in a over Algebraic Field Defn: Defined on coordinates by sending (x0 : x1 : x2) to (1.414213562373095?*x0*x1 : a*x0^2 : x2^2)
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(QQbar, names=('a',)); (a,) = R._first_ngens(1) >>> A = AffineSpace(R, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = End(A) >>> f = H([QQbar(sqrt(Integer(2)))*x*y, a*x**Integer(2)]) # needs sage.symbolic >>> f.homogenize(Integer(2)) # needs sage.libs.singular sage.symbolic Scheme endomorphism of Projective Space of dimension 2 over Univariate Polynomial Ring in a over Algebraic Field Defn: Defined on coordinates by sending (x0 : x1 : x2) to (1.414213562373095?*x0*x1 : a*x0^2 : x2^2)
sage: P.<x,y,z> = AffineSpace(QQ, 3) sage: H = End(P) sage: f = H([x^2 - 2*x*y + z*x, z^2 -y^2 , 5*z*y]) sage: f.homogenize(2).dehomogenize(2) == f True
>>> from sage.all import * >>> P = AffineSpace(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> H = End(P) >>> f = H([x**Integer(2) - Integer(2)*x*y + z*x, z**Integer(2) -y**Integer(2) , Integer(5)*z*y]) >>> f.homogenize(Integer(2)).dehomogenize(Integer(2)) == f True
sage: K.<c> = FunctionField(QQ) sage: A.<x> = AffineSpace(K, 1) sage: f = Hom(A, A)([x^2 + c]) sage: f.homogenize(1) Scheme endomorphism of Projective Space of dimension 1 over Rational function field in c over Rational Field Defn: Defined on coordinates by sending (x0 : x1) to (x0^2 + c*x1^2 : x1^2)
>>> from sage.all import * >>> K = FunctionField(QQ, names=('c',)); (c,) = K._first_ngens(1) >>> A = AffineSpace(K, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> f = Hom(A, A)([x**Integer(2) + c]) >>> f.homogenize(Integer(1)) Scheme endomorphism of Projective Space of dimension 1 over Rational function field in c over Rational Field Defn: Defined on coordinates by sending (x0 : x1) to (x0^2 + c*x1^2 : x1^2)
sage: # needs sage.rings.number_field sage: A.<z> = AffineSpace(QQbar, 1) sage: H = End(A) sage: f = H([2*z / (z^2 + 2*z + 3)]) sage: f.homogenize(1) Scheme endomorphism of Projective Space of dimension 1 over Algebraic Field Defn: Defined on coordinates by sending (x0 : x1) to (x0*x1 : 1/2*x0^2 + x0*x1 + 3/2*x1^2)
>>> from sage.all import * >>> # needs sage.rings.number_field >>> A = AffineSpace(QQbar, Integer(1), names=('z',)); (z,) = A._first_ngens(1) >>> H = End(A) >>> f = H([Integer(2)*z / (z**Integer(2) + Integer(2)*z + Integer(3))]) >>> f.homogenize(Integer(1)) Scheme endomorphism of Projective Space of dimension 1 over Algebraic Field Defn: Defined on coordinates by sending (x0 : x1) to (x0*x1 : 1/2*x0^2 + x0*x1 + 3/2*x1^2)
sage: # needs sage.rings.number_field sage: R.<c,d> = QQbar[] sage: A.<x> = AffineSpace(R, 1) sage: H = Hom(A, A) sage: F = H([d*x^2 + c]) sage: F.homogenize(1) Scheme endomorphism of Projective Space of dimension 1 over Multivariate Polynomial Ring in c, d over Algebraic Field Defn: Defined on coordinates by sending (x0 : x1) to (d*x0^2 + c*x1^2 : x1^2)
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = QQbar['c, d']; (c, d,) = R._first_ngens(2) >>> A = AffineSpace(R, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> H = Hom(A, A) >>> F = H([d*x**Integer(2) + c]) >>> F.homogenize(Integer(1)) Scheme endomorphism of Projective Space of dimension 1 over Multivariate Polynomial Ring in c, d over Algebraic Field Defn: Defined on coordinates by sending (x0 : x1) to (d*x0^2 + c*x1^2 : x1^2)
- jacobian()[source]#
Return the Jacobian matrix of partial derivative of this map.
The \((i, j)\) entry of the Jacobian matrix is the partial derivative
diff(functions[i], variables[j])
.OUTPUT:
matrix with coordinates in the coordinate ring of the map.
EXAMPLES:
sage: A.<z> = AffineSpace(QQ, 1) sage: H = End(A) sage: f = H([z^2 - 3/4]) sage: f.jacobian() # needs sage.modules [2*z]
>>> from sage.all import * >>> A = AffineSpace(QQ, Integer(1), names=('z',)); (z,) = A._first_ngens(1) >>> H = End(A) >>> f = H([z**Integer(2) - Integer(3)/Integer(4)]) >>> f.jacobian() # needs sage.modules [2*z]
sage: A.<x,y> = AffineSpace(QQ, 2) sage: H = End(A) sage: f = H([x^3 - 25*x + 12*y, 5*y^2*x - 53*y + 24]) sage: f.jacobian() # needs sage.modules [ 3*x^2 - 25 12] [ 5*y^2 10*x*y - 53]
>>> from sage.all import * >>> A = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = End(A) >>> f = H([x**Integer(3) - Integer(25)*x + Integer(12)*y, Integer(5)*y**Integer(2)*x - Integer(53)*y + Integer(24)]) >>> f.jacobian() # needs sage.modules [ 3*x^2 - 25 12] [ 5*y^2 10*x*y - 53]
sage: A.<x,y> = AffineSpace(ZZ, 2) sage: H = End(A) sage: f = H([(x^2 - x*y)/(1+y), (5+y)/(2+x)]) sage: f.jacobian() # needs sage.modules [ (2*x - y)/(y + 1) (-x^2 - x)/(y^2 + 2*y + 1)] [ (-y - 5)/(x^2 + 4*x + 4) 1/(x + 2)]
>>> from sage.all import * >>> A = AffineSpace(ZZ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = End(A) >>> f = H([(x**Integer(2) - x*y)/(Integer(1)+y), (Integer(5)+y)/(Integer(2)+x)]) >>> f.jacobian() # needs sage.modules [ (2*x - y)/(y + 1) (-x^2 - x)/(y^2 + 2*y + 1)] [ (-y - 5)/(x^2 + 4*x + 4) 1/(x + 2)]
- local_height(v, prec=None)[source]#
Return the maximum of the local heights of the coefficients in any of the coordinate functions of this map.
INPUT:
v
– a prime or prime ideal of the base ring.prec
– desired floating point precision (default: default RealField precision).
OUTPUT:
a real number.
EXAMPLES:
sage: P.<x,y> = AffineSpace(QQ, 2) sage: H = Hom(P, P) sage: f = H([1/1331*x^2 + 1/4000*y^2, 210*x*y]) sage: f.local_height(1331) # needs sage.rings.real_mpfr 7.19368581839511
>>> from sage.all import * >>> P = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> H = Hom(P, P) >>> f = H([Integer(1)/Integer(1331)*x**Integer(2) + Integer(1)/Integer(4000)*y**Integer(2), Integer(210)*x*y]) >>> f.local_height(Integer(1331)) # needs sage.rings.real_mpfr 7.19368581839511
sage: P.<x,y,z> = AffineSpace(QQ, 3) sage: H = Hom(P, P) sage: f = H([4*x^2 + 3/100*y^2, 8/210*x*y, 1/10000*z^2]) sage: f.local_height(2) # needs sage.rings.real_mpfr 2.77258872223978
>>> from sage.all import * >>> P = AffineSpace(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> H = Hom(P, P) >>> f = H([Integer(4)*x**Integer(2) + Integer(3)/Integer(100)*y**Integer(2), Integer(8)/Integer(210)*x*y, Integer(1)/Integer(10000)*z**Integer(2)]) >>> f.local_height(Integer(2)) # needs sage.rings.real_mpfr 2.77258872223978
sage: P.<x,y,z> = AffineSpace(QQ, 3) sage: H = Hom(P, P) sage: f = H([4*x^2 + 3/100*y^2, 8/210*x*y, 1/10000*z^2]) sage: f.local_height(2, prec=2) # needs sage.rings.real_mpfr 3.0
>>> from sage.all import * >>> P = AffineSpace(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> H = Hom(P, P) >>> f = H([Integer(4)*x**Integer(2) + Integer(3)/Integer(100)*y**Integer(2), Integer(8)/Integer(210)*x*y, Integer(1)/Integer(10000)*z**Integer(2)]) >>> f.local_height(Integer(2), prec=Integer(2)) # needs sage.rings.real_mpfr 3.0
sage: # needs sage.rings.number_field sage: R.<z> = PolynomialRing(QQ) sage: K.<w> = NumberField(z^2 - 2) sage: P.<x,y> = AffineSpace(K, 2) sage: H = Hom(P, P) sage: f = H([2*x^2 + w/3*y^2, 1/w*y^2]) sage: f.local_height(K.ideal(3)) 1.09861228866811
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(QQ, names=('z',)); (z,) = R._first_ngens(1) >>> K = NumberField(z**Integer(2) - Integer(2), names=('w',)); (w,) = K._first_ngens(1) >>> P = AffineSpace(K, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> H = Hom(P, P) >>> f = H([Integer(2)*x**Integer(2) + w/Integer(3)*y**Integer(2), Integer(1)/w*y**Integer(2)]) >>> f.local_height(K.ideal(Integer(3))) 1.09861228866811
- local_height_arch(i, prec=None)[source]#
Return the maximum of the local height at the
i
-th infinite place of the coefficients in any of the coordinate functions of this map.INPUT:
i
– an integer.prec
– desired floating point precision (default: default RealField precision).
OUTPUT:
a real number.
EXAMPLES:
sage: P.<x,y> = AffineSpace(QQ, 2) sage: H = Hom(P, P) sage: f = H([1/1331*x^2 + 1/4000*y^2, 210*x*y]); sage: f.local_height_arch(0) # needs sage.rings.real_mpfr 5.34710753071747
>>> from sage.all import * >>> P = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> H = Hom(P, P) >>> f = H([Integer(1)/Integer(1331)*x**Integer(2) + Integer(1)/Integer(4000)*y**Integer(2), Integer(210)*x*y]); >>> f.local_height_arch(Integer(0)) # needs sage.rings.real_mpfr 5.34710753071747
sage: P.<x,y> = AffineSpace(QQ, 2) sage: H = Hom(P, P) sage: f = H([1/1331*x^2 + 1/4000*y^2, 210*x*y]); sage: f.local_height_arch(0, prec=5) # needs sage.rings.real_mpfr 5.2
>>> from sage.all import * >>> P = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> H = Hom(P, P) >>> f = H([Integer(1)/Integer(1331)*x**Integer(2) + Integer(1)/Integer(4000)*y**Integer(2), Integer(210)*x*y]); >>> f.local_height_arch(Integer(0), prec=Integer(5)) # needs sage.rings.real_mpfr 5.2
sage: # needs sage.rings.number_field sage: R.<z> = PolynomialRing(QQ) sage: K.<w> = NumberField(z^2 - 2) sage: P.<x,y> = AffineSpace(K, 2) sage: H = Hom(P, P) sage: f = H([2*x^2 + w/3*y^2, 1/w*y^2]) sage: f.local_height_arch(1) 0.6931471805599453094172321214582
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(QQ, names=('z',)); (z,) = R._first_ngens(1) >>> K = NumberField(z**Integer(2) - Integer(2), names=('w',)); (w,) = K._first_ngens(1) >>> P = AffineSpace(K, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> H = Hom(P, P) >>> f = H([Integer(2)*x**Integer(2) + w/Integer(3)*y**Integer(2), Integer(1)/w*y**Integer(2)]) >>> f.local_height_arch(Integer(1)) 0.6931471805599453094172321214582
- class sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space_field(parent, polys, check=True)[source]#
Bases:
SchemeMorphism_polynomial_affine_space
- image()[source]#
Return the scheme-theoretic image of the morphism.
OUTPUT: a subscheme of the ambient space of the codomain
EXAMPLES:
sage: # needs sage.libs.singular sage: A1.<w> = AffineSpace(QQ, 1) sage: A2.<x,y> = AffineSpace(QQ, 2) sage: f = A2.hom([x + y], A1) sage: f.image() Closed subscheme of Affine Space of dimension 1 over Rational Field defined by: (no polynomials) sage: f = A2.hom([x, x], A2) sage: f.image() Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x - y sage: f = A2.hom([x^2, x^3], A2) sage: f.image() Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^3 - y^2 sage: P2.<x0,x1,x2> = ProjectiveSpace(QQ, 2) sage: f = A2.hom([x, x^2, x^3], P2) sage: f.image() Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: x1^2 - x0*x2
>>> from sage.all import * >>> # needs sage.libs.singular >>> A1 = AffineSpace(QQ, Integer(1), names=('w',)); (w,) = A1._first_ngens(1) >>> A2 = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A2._first_ngens(2) >>> f = A2.hom([x + y], A1) >>> f.image() Closed subscheme of Affine Space of dimension 1 over Rational Field defined by: (no polynomials) >>> f = A2.hom([x, x], A2) >>> f.image() Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x - y >>> f = A2.hom([x**Integer(2), x**Integer(3)], A2) >>> f.image() Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^3 - y^2 >>> P2 = ProjectiveSpace(QQ, Integer(2), names=('x0', 'x1', 'x2',)); (x0, x1, x2,) = P2._first_ngens(3) >>> f = A2.hom([x, x**Integer(2), x**Integer(3)], P2) >>> f.image() Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: x1^2 - x0*x2
- indeterminacy_locus()[source]#
Return the indeterminacy locus of this map as a rational map on the domain.
The indeterminacy locus is the intersection of all the base indeterminacy locuses of maps that define the same rational map as by this map.
OUTPUT: a subscheme of the domain of the map
EXAMPLES:
sage: A.<x,y> = AffineSpace(QQ, 2) sage: H = End(A) sage: f = H([x - y, x^2 - y^2]) sage: f.indeterminacy_locus() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: 1
>>> from sage.all import * >>> A = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = End(A) >>> f = H([x - y, x**Integer(2) - y**Integer(2)]) >>> f.indeterminacy_locus() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: 1
sage: A.<x,y> = AffineSpace(QQ, 2) sage: f = A.hom([x, x/y], A) sage: f.indeterminacy_locus() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: y
>>> from sage.all import * >>> A = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> f = A.hom([x, x/y], A) >>> f.indeterminacy_locus() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: y
- indeterminacy_points(F=None)[source]#
Return the points in the indeterminacy locus of this map.
If the dimension of the indeterminacy locus is not zero, an error is raised.
INPUT:
F
– a field; if not given, the base ring of the domain is assumed
OUTPUT: indeterminacy points of the map defined over
F
EXAMPLES:
sage: A.<x,y> = AffineSpace(QQ, 2) sage: H = End(A) sage: f = H([x - y, x^2 - y^2]) sage: f.indeterminacy_points() # needs sage.libs.singular []
>>> from sage.all import * >>> A = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = End(A) >>> f = H([x - y, x**Integer(2) - y**Integer(2)]) >>> f.indeterminacy_points() # needs sage.libs.singular []
sage: A2.<x,y> = AffineSpace(QQ, 2) sage: P2.<x0,x1,x2> = ProjectiveSpace(QQ, 2) sage: f = A2.hom([x*y, y, x], P2) sage: f.indeterminacy_points() # needs sage.libs.singular [(0, 0)]
>>> from sage.all import * >>> A2 = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A2._first_ngens(2) >>> P2 = ProjectiveSpace(QQ, Integer(2), names=('x0', 'x1', 'x2',)); (x0, x1, x2,) = P2._first_ngens(3) >>> f = A2.hom([x*y, y, x], P2) >>> f.indeterminacy_points() # needs sage.libs.singular [(0, 0)]
- reduce_base_field()[source]#
Return this map defined over the field of definition of the coefficients.
The base field of the map could be strictly larger than the field where all of the coefficients are defined. This function reduces the base field to the minimal possible. This can be done when the base ring is a number field, QQbar, a finite field, or algebraic closure of a finite field.
OUTPUT: a scheme morphism
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: K.<t> = GF(5^4) sage: A.<x> = AffineSpace(K, 1) sage: A2.<a,b> = AffineSpace(K, 2) sage: H = End(A) sage: H2 = Hom(A, A2) sage: H3 = Hom(A2, A) sage: f = H([x^2 + 2*(t^3 + t^2 + t + 3)]) sage: f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Finite Field in t2 of size 5^2 Defn: Defined on coordinates by sending (x) to (x^2 + (2*t2)) sage: f2 = H2([x^2 + 4, 2*x]) sage: f2.reduce_base_field() Scheme morphism: From: Affine Space of dimension 1 over Finite Field of size 5 To: Affine Space of dimension 2 over Finite Field of size 5 Defn: Defined on coordinates by sending (x) to (x^2 - 1, 2*x) sage: f3 = H3([a^2 + t*b]) sage: f3.reduce_base_field() Scheme morphism: From: Affine Space of dimension 2 over Finite Field in t of size 5^4 To: Affine Space of dimension 1 over Finite Field in t of size 5^4 Defn: Defined on coordinates by sending (a, b) to (a^2 + t*b)
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> K = GF(Integer(5)**Integer(4), names=('t',)); (t,) = K._first_ngens(1) >>> A = AffineSpace(K, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> A2 = AffineSpace(K, Integer(2), names=('a', 'b',)); (a, b,) = A2._first_ngens(2) >>> H = End(A) >>> H2 = Hom(A, A2) >>> H3 = Hom(A2, A) >>> f = H([x**Integer(2) + Integer(2)*(t**Integer(3) + t**Integer(2) + t + Integer(3))]) >>> f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Finite Field in t2 of size 5^2 Defn: Defined on coordinates by sending (x) to (x^2 + (2*t2)) >>> f2 = H2([x**Integer(2) + Integer(4), Integer(2)*x]) >>> f2.reduce_base_field() Scheme morphism: From: Affine Space of dimension 1 over Finite Field of size 5 To: Affine Space of dimension 2 over Finite Field of size 5 Defn: Defined on coordinates by sending (x) to (x^2 - 1, 2*x) >>> f3 = H3([a**Integer(2) + t*b]) >>> f3.reduce_base_field() Scheme morphism: From: Affine Space of dimension 2 over Finite Field in t of size 5^4 To: Affine Space of dimension 1 over Finite Field in t of size 5^4 Defn: Defined on coordinates by sending (a, b) to (a^2 + t*b)
sage: # needs sage.rings.number_field sage: K.<v> = CyclotomicField(4) sage: A.<x> = AffineSpace(K, 1) sage: H = End(A) sage: f = H([x^2 + v]) sage: g = f.reduce_base_field(); g Scheme endomorphism of Affine Space of dimension 1 over Cyclotomic Field of order 4 and degree 2 Defn: Defined on coordinates by sending (x) to (x^2 + v) sage: g.base_ring() is K True
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = CyclotomicField(Integer(4), names=('v',)); (v,) = K._first_ngens(1) >>> A = AffineSpace(K, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> H = End(A) >>> f = H([x**Integer(2) + v]) >>> g = f.reduce_base_field(); g Scheme endomorphism of Affine Space of dimension 1 over Cyclotomic Field of order 4 and degree 2 Defn: Defined on coordinates by sending (x) to (x^2 + v) >>> g.base_ring() is K True
sage: # needs sage.rings.number_field sage: A.<x> = AffineSpace(QQbar, 1) sage: H = End(A) sage: f = H([(QQbar(sqrt(2))*x^2 + 1/QQbar(sqrt(3))) / (5*x)]) # needs sage.symbolic sage: f.reduce_base_field() # needs sage.symbolic Scheme endomorphism of Affine Space of dimension 1 over Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a = ...? Defn: Defined on coordinates by sending (x) to (((a^3 - 3*a)*x^2 + (-1/3*a^2 + 2/3))/(5*x))
>>> from sage.all import * >>> # needs sage.rings.number_field >>> A = AffineSpace(QQbar, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> H = End(A) >>> f = H([(QQbar(sqrt(Integer(2)))*x**Integer(2) + Integer(1)/QQbar(sqrt(Integer(3)))) / (Integer(5)*x)]) # needs sage.symbolic >>> f.reduce_base_field() # needs sage.symbolic Scheme endomorphism of Affine Space of dimension 1 over Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a = ...? Defn: Defined on coordinates by sending (x) to (((a^3 - 3*a)*x^2 + (-1/3*a^2 + 2/3))/(5*x))
sage: # needs sage.rings.number_field sage: R.<x> = PolynomialRing(QQ) sage: A.<x> = AffineSpace(QQbar, 1) sage: H = End(A) sage: f = H([QQbar(3^(1/3))*x^2 + QQbar(sqrt(-2))]) # needs sage.symbolic sage: f.reduce_base_field() # needs sage.symbolic Scheme endomorphism of Affine Space of dimension 1 over Number Field in a with defining polynomial y^6 + 6*y^4 - 6*y^3 + 12*y^2 + 36*y + 17 with a = 1.442249570307409? + 1.414213562373095?*I Defn: Defined on coordinates by sending (x) to ((-48/269*a^5 + 27/269*a^4 - 320/269*a^3 + 468/269*a^2 - 772/269*a - 1092/269)*x^2 + (48/269*a^5 - 27/269*a^4 + 320/269*a^3 - 468/269*a^2 + 1041/269*a + 1092/269))
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> A = AffineSpace(QQbar, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> H = End(A) >>> f = H([QQbar(Integer(3)**(Integer(1)/Integer(3)))*x**Integer(2) + QQbar(sqrt(-Integer(2)))]) # needs sage.symbolic >>> f.reduce_base_field() # needs sage.symbolic Scheme endomorphism of Affine Space of dimension 1 over Number Field in a with defining polynomial y^6 + 6*y^4 - 6*y^3 + 12*y^2 + 36*y + 17 with a = 1.442249570307409? + 1.414213562373095?*I Defn: Defined on coordinates by sending (x) to ((-48/269*a^5 + 27/269*a^4 - 320/269*a^3 + 468/269*a^2 - 772/269*a - 1092/269)*x^2 + (48/269*a^5 - 27/269*a^4 + 320/269*a^3 - 468/269*a^2 + 1041/269*a + 1092/269))
sage: # needs sage.rings.number_field sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^3 - x + 1, ....: embedding=(x^3 + x + 1).roots(ring=CC)[0][0]) sage: A.<x> = AffineSpace(K, 1) sage: A2.<u,v> = AffineSpace(K, 2) sage: H = Hom(A, A2) sage: f = H([x^2 + a*x + 3, 5*x]) sage: f.reduce_base_field() Scheme morphism: From: Affine Space of dimension 1 over Number Field in a with defining polynomial x^3 - x + 1 with a = -1.324717957244746? To: Affine Space of dimension 2 over Number Field in a with defining polynomial x^3 - x + 1 with a = -1.324717957244746? Defn: Defined on coordinates by sending (x) to (x^2 + a*x + 3, 5*x)
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> K = NumberField(x**Integer(3) - x + Integer(1), ... embedding=(x**Integer(3) + x + Integer(1)).roots(ring=CC)[Integer(0)][Integer(0)], names=('a',)); (a,) = K._first_ngens(1) >>> A = AffineSpace(K, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> A2 = AffineSpace(K, Integer(2), names=('u', 'v',)); (u, v,) = A2._first_ngens(2) >>> H = Hom(A, A2) >>> f = H([x**Integer(2) + a*x + Integer(3), Integer(5)*x]) >>> f.reduce_base_field() Scheme morphism: From: Affine Space of dimension 1 over Number Field in a with defining polynomial x^3 - x + 1 with a = -1.324717957244746? To: Affine Space of dimension 2 over Number Field in a with defining polynomial x^3 - x + 1 with a = -1.324717957244746? Defn: Defined on coordinates by sending (x) to (x^2 + a*x + 3, 5*x)
sage: # needs sage.rings.number_field sage: K.<v> = QuadraticField(2) sage: A.<x> = AffineSpace(K, 1) sage: H = End(A) sage: f = H([3*x^2 + x + 1]) sage: f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x) to (3*x^2 + x + 1)
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = QuadraticField(Integer(2), names=('v',)); (v,) = K._first_ngens(1) >>> A = AffineSpace(K, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> H = End(A) >>> f = H([Integer(3)*x**Integer(2) + x + Integer(1)]) >>> f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x) to (3*x^2 + x + 1)
sage: # needs sage.rings.finite_rings sage: K.<t> = GF(5^6) sage: A.<x> = AffineSpace(K, 1) sage: H = End(A) sage: f = H([x^2 + x*(t^3 + 2*t^2 + 4*t) + (t^5 + 3*t^4 + t^2 + 4*t)]) sage: f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Finite Field in t of size 5^6 Defn: Defined on coordinates by sending (x) to (x^2 + (t^3 + 2*t^2 - t)*x + (t^5 - 2*t^4 + t^2 - t))
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> K = GF(Integer(5)**Integer(6), names=('t',)); (t,) = K._first_ngens(1) >>> A = AffineSpace(K, Integer(1), names=('x',)); (x,) = A._first_ngens(1) >>> H = End(A) >>> f = H([x**Integer(2) + x*(t**Integer(3) + Integer(2)*t**Integer(2) + Integer(4)*t) + (t**Integer(5) + Integer(3)*t**Integer(4) + t**Integer(2) + Integer(4)*t)]) >>> f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Finite Field in t of size 5^6 Defn: Defined on coordinates by sending (x) to (x^2 + (t^3 + 2*t^2 - t)*x + (t^5 - 2*t^4 + t^2 - t))
- weil_restriction()[source]#
Compute the Weil restriction of this morphism over some extension field.
If the field is a finite field, then this computes the Weil restriction to the prime subfield.
A Weil restriction of scalars - denoted \(Res_{L/k}\) - is a functor which, for any finite extension of fields \(L/k\) and any algebraic variety \(X\) over \(L\), produces another corresponding variety \(Res_{L/k}(X)\), defined over \(k\). It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields. Since it is a functor it also applied to morphisms. In particular, the functor applied to a morphism gives the equivalent morphism from the Weil restriction of the domain to the Weil restriction of the codomain.
- OUTPUT: Scheme morphism on the Weil restrictions of the domain
and codomain of the map.
EXAMPLES:
sage: # needs sage.rings.number_field sage: K.<v> = QuadraticField(5) sage: A.<x,y> = AffineSpace(K, 2) sage: H = End(A) sage: f = H([x^2 - y^2, y^2]) sage: f.weil_restriction() # needs sage.libs.singular Scheme endomorphism of Affine Space of dimension 4 over Rational Field Defn: Defined on coordinates by sending (z0, z1, z2, z3) to (z0^2 + 5*z1^2 - z2^2 - 5*z3^2, 2*z0*z1 - 2*z2*z3, z2^2 + 5*z3^2, 2*z2*z3)
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = QuadraticField(Integer(5), names=('v',)); (v,) = K._first_ngens(1) >>> A = AffineSpace(K, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> H = End(A) >>> f = H([x**Integer(2) - y**Integer(2), y**Integer(2)]) >>> f.weil_restriction() # needs sage.libs.singular Scheme endomorphism of Affine Space of dimension 4 over Rational Field Defn: Defined on coordinates by sending (z0, z1, z2, z3) to (z0^2 + 5*z1^2 - z2^2 - 5*z3^2, 2*z0*z1 - 2*z2*z3, z2^2 + 5*z3^2, 2*z2*z3)
sage: # needs sage.rings.number_field sage: K.<v> = QuadraticField(5) sage: PS.<x,y> = AffineSpace(K, 2) sage: H = Hom(PS, PS) sage: f = H([x, y]) sage: F = f.weil_restriction() sage: P = PS(2, 1) sage: Q = P.weil_restriction() sage: f(P).weil_restriction() == F(Q) # needs sage.libs.singular True
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = QuadraticField(Integer(5), names=('v',)); (v,) = K._first_ngens(1) >>> PS = AffineSpace(K, Integer(2), names=('x', 'y',)); (x, y,) = PS._first_ngens(2) >>> H = Hom(PS, PS) >>> f = H([x, y]) >>> F = f.weil_restriction() >>> P = PS(Integer(2), Integer(1)) >>> Q = P.weil_restriction() >>> f(P).weil_restriction() == F(Q) # needs sage.libs.singular True
- class sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space_finite_field(parent, polys, check=True)[source]#
- class sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_subscheme_field(parent, polys, check=True)[source]#
Bases:
SchemeMorphism_polynomial_affine_space_field
Morphisms from subschemes of affine spaces defined over fields.
- image()[source]#
Return the scheme-theoretic image of the morphism.
OUTPUT: a subscheme of the ambient space of the codomain
EXAMPLES:
sage: A1.<w> = AffineSpace(QQ, 1) sage: A2.<x,y> = AffineSpace(QQ, 2) sage: X = A2.subscheme(0) sage: f = X.hom([x + y], A1) sage: f.image() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 1 over Rational Field defined by: (no polynomials)
>>> from sage.all import * >>> A1 = AffineSpace(QQ, Integer(1), names=('w',)); (w,) = A1._first_ngens(1) >>> A2 = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A2._first_ngens(2) >>> X = A2.subscheme(Integer(0)) >>> f = X.hom([x + y], A1) >>> f.image() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 1 over Rational Field defined by: (no polynomials)
sage: A2.<x,y> = AffineSpace(QQ, 2) sage: X = A2.subscheme([x*y^2 - y^3 - 1]) sage: f = X.hom([y, y/x], A2) sage: f.image() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: -x^3*y + x^3 - y
>>> from sage.all import * >>> A2 = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A2._first_ngens(2) >>> X = A2.subscheme([x*y**Integer(2) - y**Integer(3) - Integer(1)]) >>> f = X.hom([y, y/x], A2) >>> f.image() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: -x^3*y + x^3 - y
- indeterminacy_locus()[source]#
Return the indeterminacy locus of this map.
The map defines a rational map on the domain. The output is the subscheme of the domain on which the rational map is not defined by any representative of the rational map. See
representatives()
.EXAMPLES:
sage: A2.<x1,x2> = AffineSpace(QQ, 2) sage: X = A2.subscheme(0) sage: A1.<x> = AffineSpace(QQ, 1) sage: f = X.hom([x1/x2], A1) sage: f.indeterminacy_locus() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x2
>>> from sage.all import * >>> A2 = AffineSpace(QQ, Integer(2), names=('x1', 'x2',)); (x1, x2,) = A2._first_ngens(2) >>> X = A2.subscheme(Integer(0)) >>> A1 = AffineSpace(QQ, Integer(1), names=('x',)); (x,) = A1._first_ngens(1) >>> f = X.hom([x1/x2], A1) >>> f.indeterminacy_locus() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x2
sage: A2.<x1,x2> = AffineSpace(QQ, 2) sage: X = A2.subscheme(0) sage: P1.<a,b> = ProjectiveSpace(QQ, 1) sage: f = X.hom([x1,x2], P1) sage: L = f.indeterminacy_locus() # needs sage.libs.singular sage: L.rational_points() # needs sage.libs.singular [(0, 0)]
>>> from sage.all import * >>> A2 = AffineSpace(QQ, Integer(2), names=('x1', 'x2',)); (x1, x2,) = A2._first_ngens(2) >>> X = A2.subscheme(Integer(0)) >>> P1 = ProjectiveSpace(QQ, Integer(1), names=('a', 'b',)); (a, b,) = P1._first_ngens(2) >>> f = X.hom([x1,x2], P1) >>> L = f.indeterminacy_locus() # needs sage.libs.singular >>> L.rational_points() # needs sage.libs.singular [(0, 0)]
sage: A2.<x,y> = AffineSpace(QQ, 2) sage: X = A2.subscheme([x^2 - y^2 - y]) sage: A1.<a> = AffineSpace(QQ, 1) sage: f = X.hom([x/y], A1) sage: f.indeterminacy_locus() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: y, x
>>> from sage.all import * >>> A2 = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A2._first_ngens(2) >>> X = A2.subscheme([x**Integer(2) - y**Integer(2) - y]) >>> A1 = AffineSpace(QQ, Integer(1), names=('a',)); (a,) = A1._first_ngens(1) >>> f = X.hom([x/y], A1) >>> f.indeterminacy_locus() # needs sage.libs.singular Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: y, x
sage: A3.<x,y,z> = AffineSpace(QQ, 3) sage: X = A3.subscheme(x^2 - y*z - x) sage: A2.<a,b> = AffineSpace(QQ, 2) sage: f = X.hom([y, y/x], A2) sage: L = f.indeterminacy_locus(); L # needs sage.libs.singular Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: x, y*z sage: L.dimension() # needs sage.libs.singular 1
>>> from sage.all import * >>> A3 = AffineSpace(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = A3._first_ngens(3) >>> X = A3.subscheme(x**Integer(2) - y*z - x) >>> A2 = AffineSpace(QQ, Integer(2), names=('a', 'b',)); (a, b,) = A2._first_ngens(2) >>> f = X.hom([y, y/x], A2) >>> L = f.indeterminacy_locus(); L # needs sage.libs.singular Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: x, y*z >>> L.dimension() # needs sage.libs.singular 1
- is_morphism()[source]#
Return
True
if the map is defined everywhere on the domain.EXAMPLES:
sage: P2.<x,y,z> = ProjectiveSpace(QQ,2) sage: P1.<a,b> = ProjectiveSpace(QQ,1) sage: X = P2.subscheme([x^2 - y^2 - y*z]) sage: f = X.hom([x,y], P1) sage: f.is_morphism() # needs sage.libs.singular True
>>> from sage.all import * >>> P2 = ProjectiveSpace(QQ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P2._first_ngens(3) >>> P1 = ProjectiveSpace(QQ,Integer(1), names=('a', 'b',)); (a, b,) = P1._first_ngens(2) >>> X = P2.subscheme([x**Integer(2) - y**Integer(2) - y*z]) >>> f = X.hom([x,y], P1) >>> f.is_morphism() # needs sage.libs.singular True
- representatives()[source]#
Return all maps representing the same rational map as by this map.
EXAMPLES:
sage: A2.<x,y> = AffineSpace(QQ, 2) sage: X = A2.subscheme(0) sage: f = X.hom([x, x/y], A2) sage: f.representatives() # needs sage.libs.singular [Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: 0 To: Affine Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x, x/y)]
>>> from sage.all import * >>> A2 = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A2._first_ngens(2) >>> X = A2.subscheme(Integer(0)) >>> f = X.hom([x, x/y], A2) >>> f.representatives() # needs sage.libs.singular [Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: 0 To: Affine Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x, x/y)]
sage: # needs sage.libs.singular sage: A2.<x,y> = AffineSpace(QQ, 2) sage: A1.<a> = AffineSpace(QQ, 1) sage: X = A2.subscheme([x^2 - y^2 - y]) sage: f = X.hom([x/y], A1) sage: f.representatives() [Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x/y), Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to ((y + 1)/x)] sage: g = _[1] sage: g.representatives() [Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x/y), Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to ((y + 1)/x)]
>>> from sage.all import * >>> # needs sage.libs.singular >>> A2 = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A2._first_ngens(2) >>> A1 = AffineSpace(QQ, Integer(1), names=('a',)); (a,) = A1._first_ngens(1) >>> X = A2.subscheme([x**Integer(2) - y**Integer(2) - y]) >>> f = X.hom([x/y], A1) >>> f.representatives() [Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x/y), Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to ((y + 1)/x)] >>> g = _[Integer(1)] >>> g.representatives() [Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x/y), Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to ((y + 1)/x)]
sage: A2.<x,y> = AffineSpace(QQ, 2) sage: P1.<a,b> = ProjectiveSpace(QQ, 1) sage: X = A2.subscheme([x^2 - y^2 - y]) sage: f = X.hom([x, y], P1) sage: f.representatives() # needs sage.libs.singular [Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x : y), Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to (y + 1 : x)]
>>> from sage.all import * >>> A2 = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A2._first_ngens(2) >>> P1 = ProjectiveSpace(QQ, Integer(1), names=('a', 'b',)); (a, b,) = P1._first_ngens(2) >>> X = A2.subscheme([x**Integer(2) - y**Integer(2) - y]) >>> f = X.hom([x, y], P1) >>> f.representatives() # needs sage.libs.singular [Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x : y), Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: x^2 - y^2 - y To: Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x, y) to (y + 1 : x)]