Subschemes of affine space#
AUTHORS:
David Kohel, William Stein (2005): initial version
Ben Hutz (2013): affine subschemes
- class sage.schemes.affine.affine_subscheme.AlgebraicScheme_subscheme_affine(A, polynomials, embedding_center=None, embedding_codomain=None, embedding_images=None)#
Bases:
AlgebraicScheme_subscheme
An algebraic subscheme of affine space.
INPUT:
A
– ambient affine spacepolynomials
– single polynomial, ideal or iterable of defining polynomials
EXAMPLES:
sage: A3.<x, y, z> = AffineSpace(QQ, 3) sage: A3.subscheme([x^2 - y*z]) Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: x^2 - y*z
- dimension()#
Return the dimension of the affine algebraic subscheme.
EXAMPLES:
sage: A.<x,y> = AffineSpace(2, QQ) sage: A.subscheme([]).dimension() 2 sage: A.subscheme([x]).dimension() 1 sage: A.subscheme([x^5]).dimension() 1 sage: A.subscheme([x^2 + y^2 - 1]).dimension() 1 sage: A.subscheme([x*(x-1), y*(y-1)]).dimension() 0
Something less obvious:
sage: A.<x,y,z,w> = AffineSpace(4, QQ) sage: X = A.subscheme([x^2, x^2*y^2 + z^2, z^2 - w^2, 10*x^2 + w^2 - z^2]) sage: X Closed subscheme of Affine Space of dimension 4 over Rational Field defined by: x^2, x^2*y^2 + z^2, z^2 - w^2, 10*x^2 - z^2 + w^2 sage: X.dimension() 1
- intersection_multiplicity(X, P)#
Return the intersection multiplicity of this subscheme and the subscheme
X
at the pointP
.The intersection of this subscheme with
X
must be proper, that is \(\mathrm{codim}(self\cap X) = \mathrm{codim}(self) + \mathrm{codim}(X)\), and must also be finite. We use Serre’s Tor formula to compute the intersection multiplicity. If \(I\), \(J\) are the defining ideals ofself
,X
, respectively, then this is \(\sum_{i=0}^{\infty}(-1)^i\mathrm{length}(\mathrm{Tor}_{\mathcal{O}_{A,p}}^{i} (\mathcal{O}_{A,p}/I,\mathcal{O}_{A,p}/J))\) where \(A\) is the affine ambient space of these subschemes.INPUT:
X
– subscheme in the same ambient space as this subscheme.P
– a point in the intersection of this subscheme withX
.
OUTPUT: An integer.
EXAMPLES:
sage: A.<x,y> = AffineSpace(QQ, 2) sage: C = Curve([y^2 - x^3 - x^2], A) sage: D = Curve([y^2 + x^3], A) sage: Q = A([0,0]) sage: C.intersection_multiplicity(D, Q) 4
sage: R.<a> = QQ[] sage: K.<b> = NumberField(a^6 - 3*a^5 + 5*a^4 - 5*a^3 + 5*a^2 - 3*a + 1) # optional - sage.rings.number_field sage: A.<x,y,z,w> = AffineSpace(K, 4) # optional - sage.rings.number_field sage: X = A.subscheme([x*y, y*z + 7, w^3 - x^3]) # optional - sage.rings.number_field sage: Y = A.subscheme([x - z^3 + z + 1]) # optional - sage.rings.number_field sage: Q = A([0, # optional - sage.rings.number_field ....: -7*b^5 + 21*b^4 - 28*b^3 + 21*b^2 - 21*b + 14, ....: -b^5 + 2*b^4 - 3*b^3 + 2*b^2 - 2*b, ....: 0]) sage: X.intersection_multiplicity(Y, Q) # optional - sage.rings.number_field 3
sage: A.<x,y,z> = AffineSpace(QQ, 3) sage: X = A.subscheme([z^2 - 1]) sage: Y = A.subscheme([z - 1, y - x^2]) sage: Q = A([1,1,1]) sage: X.intersection_multiplicity(Y, Q) Traceback (most recent call last): ... TypeError: the intersection of this subscheme and (=Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: z - 1, -x^2 + y) must be proper and finite
sage: A.<x,y,z,w,t> = AffineSpace(QQ, 5) sage: X = A.subscheme([x*y, t^2*w, w^3*z]) sage: Y = A.subscheme([y*w + z]) sage: Q = A([0,0,0,0,0]) sage: X.intersection_multiplicity(Y, Q) Traceback (most recent call last): ... TypeError: the intersection of this subscheme and (=Closed subscheme of Affine Space of dimension 5 over Rational Field defined by: y*w + z) must be proper and finite
- is_smooth(point=None)#
Test whether the algebraic subscheme is smooth.
INPUT:
point
– A point orNone
(default). The point to test smoothness at.
OUTPUT:
Boolean. If no point was specified, returns whether the algebraic subscheme is smooth everywhere. Otherwise, smoothness at the specified point is tested.
EXAMPLES:
sage: A2.<x,y> = AffineSpace(2, QQ) sage: cuspidal_curve = A2.subscheme([y^2 - x^3]) sage: cuspidal_curve Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: -x^3 + y^2 sage: smooth_point = cuspidal_curve.point([1,1]) sage: smooth_point in cuspidal_curve True sage: singular_point = cuspidal_curve.point([0,0]) sage: singular_point in cuspidal_curve True sage: cuspidal_curve.is_smooth(smooth_point) True sage: cuspidal_curve.is_smooth(singular_point) False sage: cuspidal_curve.is_smooth() False
- multiplicity(P)#
Return the multiplicity of
P
on this subscheme.This is computed as the multiplicity of the local ring of this subscheme corresponding to
P
. This subscheme must be defined over a field. An error is raised ifP
is not a point on this subscheme.INPUT:
P
– a point on this subscheme.
OUTPUT:
An integer.
EXAMPLES:
sage: A.<x,y,z,w> = AffineSpace(QQ, 4) sage: X = A.subscheme([z*y - x^7, w - 2*z]) sage: Q1 = A([1,1/3,3,6]) sage: X.multiplicity(Q1) 1 sage: Q2 = A([0,0,0,0]) sage: X.multiplicity(Q2) 2
sage: A.<x,y,z,w,v> = AffineSpace(GF(23), 5) # optional - sage.rings.finite_rings sage: C = A.curve([x^8 - y, y^7 - z, z^3 - 1, w^5 - v^3]) # optional - sage.rings.finite_rings sage: Q = A([22,1,1,0,0]) # optional - sage.rings.finite_rings sage: C.multiplicity(Q) # optional - sage.rings.finite_rings 3
sage: K.<a> = QuadraticField(-1) # optional - sage.rings.number_field sage: A.<x,y,z,w,t> = AffineSpace(K, 5) # optional - sage.rings.number_field sage: X = A.subscheme([y^7 - x^2*z^5 + z^3*t^8 - x^2*y^4*z - t^8]) # optional - sage.rings.number_field sage: Q1 = A([1,1,0,1,-1]) # optional - sage.rings.number_field sage: X.multiplicity(Q1) # optional - sage.rings.number_field 1 sage: Q2 = A([0,0,0,-a,0]) # optional - sage.rings.number_field sage: X.multiplicity(Q2) # optional - sage.rings.number_field 7
Check that github issue #27479 is fixed:
sage: A1.<x> = AffineSpace(QQ, 1) sage: X = A1.subscheme([x^1789 + x]) sage: Q = X([0]) sage: X.multiplicity(Q) 1
- projective_closure(i=None, PP=None)#
Return the projective closure of this affine subscheme.
INPUT:
i
– (default: None) determines the embedding to use to compute the projective closure of this affine subscheme. The embedding used is the one which has a 1 in the i-th coordinate, numbered from 0.PP
– (default: None) ambient projective space, i.e., ambient space of codomain of morphism; this is constructed if it is not given
OUTPUT: a projective subscheme
EXAMPLES:
sage: A.<x,y,z,w> = AffineSpace(QQ, 4) sage: X = A.subscheme([x^2 - y, x*y - z, y^2 - w, x*z - w, y*z - x*w, z^2 - y*w]) sage: X.projective_closure() Closed subscheme of Projective Space of dimension 4 over Rational Field defined by: x0^2 - x1*x4, x0*x1 - x2*x4, x1^2 - x3*x4, x0*x2 - x3*x4, x1*x2 - x0*x3, x2^2 - x1*x3
sage: A.<x,y,z> = AffineSpace(QQ, 3) sage: P.<a,b,c,d> = ProjectiveSpace(QQ, 3) sage: X = A.subscheme([z - x^2 - y^2]) sage: X.projective_closure(1, P).ambient_space() == P True
- projective_embedding(i=None, PP=None)#
Return a morphism from this affine scheme into an ambient projective space of the same dimension.
The codomain of this morphism is the projective closure of this affine scheme in
PP
, if given, or otherwise in a new projective space that is constructed.INPUT:
i
– integer (default: dimension of self = last coordinate) determines which projective embedding to compute. The embedding is that which has a 1 in the i-th coordinate, numbered from 0.PP
– (default: None) ambient projective space, i.e., ambient spaceof codomain of morphism; this is constructed if it is not given.
EXAMPLES:
sage: A.<x, y, z> = AffineSpace(3, ZZ) sage: S = A.subscheme([x*y - z]) sage: S.projective_embedding() Scheme morphism: From: Closed subscheme of Affine Space of dimension 3 over Integer Ring defined by: x*y - z To: Closed subscheme of Projective Space of dimension 3 over Integer Ring defined by: x0*x1 - x2*x3 Defn: Defined on coordinates by sending (x, y, z) to (x : y : z : 1)
sage: A.<x, y, z> = AffineSpace(3, ZZ) sage: P = ProjectiveSpace(3, ZZ, 'u') sage: S = A.subscheme([x^2 - y*z]) sage: S.projective_embedding(1, P) Scheme morphism: From: Closed subscheme of Affine Space of dimension 3 over Integer Ring defined by: x^2 - y*z To: Closed subscheme of Projective Space of dimension 3 over Integer Ring defined by: u0^2 - u2*u3 Defn: Defined on coordinates by sending (x, y, z) to (x : 1 : y : z)
sage: A.<x,y,z> = AffineSpace(QQ, 3) sage: X = A.subscheme([y - x^2, z - x^3]) sage: X.projective_embedding() Scheme morphism: From: Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: -x^2 + y, -x^3 + z To: Closed subscheme of Projective Space of dimension 3 over Rational Field defined by: x0^2 - x1*x3, x0*x1 - x2*x3, x1^2 - x0*x2 Defn: Defined on coordinates by sending (x, y, z) to (x : y : z : 1)
When taking a closed subscheme of an affine space with a projective embedding, the subscheme inherits the embedding:
sage: A.<u,v> = AffineSpace(2, QQ, default_embedding_index=1) sage: X = A.subscheme(u - v) sage: X.projective_embedding() Scheme morphism: From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: u - v To: Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: x0 - x2 Defn: Defined on coordinates by sending (u, v) to (u : 1 : v) sage: phi = X.projective_embedding() sage: psi = A.projective_embedding() sage: phi(X(2, 2)) == psi(A(X(2, 2))) True
- class sage.schemes.affine.affine_subscheme.AlgebraicScheme_subscheme_affine_field(A, polynomials, embedding_center=None, embedding_codomain=None, embedding_images=None)#
Bases:
AlgebraicScheme_subscheme_affine
Algebraic subschemes of projective spaces defined over fields.
- tangent_space(p)#
Return the tangent space at the point
p
.The points of the tangent space are the tangent vectors at
p
.INPUT:
p
– a rational point
EXAMPLES:
sage: A3.<x,y,z> = AffineSpace(3, QQ) sage: X = A3.subscheme(z - x*y) sage: X.tangent_space(A3.origin()) Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: z sage: X.tangent_space(X(1,1,1)) Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: -x - y + z
Tangent space at a point may have higher dimension than the dimension of the point.
sage: C = Curve([x + y + z, x^2 - y^2*z^2 + z^3]) sage: C.singular_points() [(0, 0, 0)] sage: p = C(0,0,0) sage: C.tangent_space(p) Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: x + y + z sage: _.dimension() 2 sage: q = C(1,0,-1) sage: C.tangent_space(q) Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: x + y + z, 2*x + 3*z sage: _.dimension() 1