Enumeration of rational points on affine schemes#
Naive algorithms for enumerating rational points over \(\QQ\) or finite fields over for general schemes.
Warning
Incorrect results and infinite loops may occur if using a wrong function.
(For instance using an affine function for a projective scheme or a finite field function for a scheme defined over an infinite field.)
EXAMPLES:
Affine, over \(\QQ\):
sage: from sage.schemes.affine.affine_rational_point import enum_affine_rational_field
sage: A.<x,y,z> = AffineSpace(3, QQ)
sage: S = A.subscheme([2*x - 3*y])
sage: enum_affine_rational_field(S, 2)
[(0, 0, -2), (0, 0, -1), (0, 0, -1/2), (0, 0, 0),
(0, 0, 1/2), (0, 0, 1), (0, 0, 2)]
>>> from sage.all import *
>>> from sage.schemes.affine.affine_rational_point import enum_affine_rational_field
>>> A = AffineSpace(Integer(3), QQ, names=('x', 'y', 'z',)); (x, y, z,) = A._first_ngens(3)
>>> S = A.subscheme([Integer(2)*x - Integer(3)*y])
>>> enum_affine_rational_field(S, Integer(2))
[(0, 0, -2), (0, 0, -1), (0, 0, -1/2), (0, 0, 0),
(0, 0, 1/2), (0, 0, 1), (0, 0, 2)]
Affine over a finite field:
sage: from sage.schemes.affine.affine_rational_point import enum_affine_finite_field
sage: A.<w,x,y,z> = AffineSpace(4, GF(2))
sage: enum_affine_finite_field(A(GF(2)))
[(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),
(0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1),
(1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0),
(1, 1, 1, 1)]
>>> from sage.all import *
>>> from sage.schemes.affine.affine_rational_point import enum_affine_finite_field
>>> A = AffineSpace(Integer(4), GF(Integer(2)), names=('w', 'x', 'y', 'z',)); (w, x, y, z,) = A._first_ngens(4)
>>> enum_affine_finite_field(A(GF(Integer(2))))
[(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),
(0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1),
(1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0),
(1, 1, 1, 1)]
AUTHORS:
David R. Kohel <kohel@maths.usyd.edu.au>: original version.
John Cremona and Charlie Turner <charlotteturner@gmail.com> (06-2010): improvements to clarity and documentation.
- sage.schemes.affine.affine_rational_point.enum_affine_finite_field(X)[source]#
Enumerates affine points on scheme
X
defined over a finite field.INPUT:
X
– a scheme defined over a finite field or a set of abstract rational points of such a scheme.
OUTPUT:
a list containing the affine points of
X
over the finite field, sorted.
EXAMPLES:
sage: from sage.schemes.affine.affine_rational_point import enum_affine_finite_field sage: F = GF(7) sage: A.<w,x,y,z> = AffineSpace(4, F) sage: C = A.subscheme([w^2 + x + 4, y*z*x - 6, z*y + w*x]) sage: enum_affine_finite_field(C(F)) [] sage: C = A.subscheme([w^2 + x + 4, y*z*x - 6]) sage: enum_affine_finite_field(C(F)) [(0, 3, 1, 2), (0, 3, 2, 1), (0, 3, 3, 3), (0, 3, 4, 4), (0, 3, 5, 6), (0, 3, 6, 5), (1, 2, 1, 3), (1, 2, 2, 5), (1, 2, 3, 1), (1, 2, 4, 6), (1, 2, 5, 2), (1, 2, 6, 4), (2, 6, 1, 1), (2, 6, 2, 4), (2, 6, 3, 5), (2, 6, 4, 2), (2, 6, 5, 3), (2, 6, 6, 6), (3, 1, 1, 6), (3, 1, 2, 3), (3, 1, 3, 2), (3, 1, 4, 5), (3, 1, 5, 4), (3, 1, 6, 1), (4, 1, 1, 6), (4, 1, 2, 3), (4, 1, 3, 2), (4, 1, 4, 5), (4, 1, 5, 4), (4, 1, 6, 1), (5, 6, 1, 1), (5, 6, 2, 4), (5, 6, 3, 5), (5, 6, 4, 2), (5, 6, 5, 3), (5, 6, 6, 6), (6, 2, 1, 3), (6, 2, 2, 5), (6, 2, 3, 1), (6, 2, 4, 6), (6, 2, 5, 2), (6, 2, 6, 4)]
>>> from sage.all import * >>> from sage.schemes.affine.affine_rational_point import enum_affine_finite_field >>> F = GF(Integer(7)) >>> A = AffineSpace(Integer(4), F, names=('w', 'x', 'y', 'z',)); (w, x, y, z,) = A._first_ngens(4) >>> C = A.subscheme([w**Integer(2) + x + Integer(4), y*z*x - Integer(6), z*y + w*x]) >>> enum_affine_finite_field(C(F)) [] >>> C = A.subscheme([w**Integer(2) + x + Integer(4), y*z*x - Integer(6)]) >>> enum_affine_finite_field(C(F)) [(0, 3, 1, 2), (0, 3, 2, 1), (0, 3, 3, 3), (0, 3, 4, 4), (0, 3, 5, 6), (0, 3, 6, 5), (1, 2, 1, 3), (1, 2, 2, 5), (1, 2, 3, 1), (1, 2, 4, 6), (1, 2, 5, 2), (1, 2, 6, 4), (2, 6, 1, 1), (2, 6, 2, 4), (2, 6, 3, 5), (2, 6, 4, 2), (2, 6, 5, 3), (2, 6, 6, 6), (3, 1, 1, 6), (3, 1, 2, 3), (3, 1, 3, 2), (3, 1, 4, 5), (3, 1, 5, 4), (3, 1, 6, 1), (4, 1, 1, 6), (4, 1, 2, 3), (4, 1, 3, 2), (4, 1, 4, 5), (4, 1, 5, 4), (4, 1, 6, 1), (5, 6, 1, 1), (5, 6, 2, 4), (5, 6, 3, 5), (5, 6, 4, 2), (5, 6, 5, 3), (5, 6, 6, 6), (6, 2, 1, 3), (6, 2, 2, 5), (6, 2, 3, 1), (6, 2, 4, 6), (6, 2, 5, 2), (6, 2, 6, 4)]
sage: A.<x,y,z> = AffineSpace(3, GF(3)) sage: S = A.subscheme(x + y) sage: enum_affine_finite_field(S) [(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 1, 0), (2, 1, 1), (2, 1, 2)]
>>> from sage.all import * >>> A = AffineSpace(Integer(3), GF(Integer(3)), names=('x', 'y', 'z',)); (x, y, z,) = A._first_ngens(3) >>> S = A.subscheme(x + y) >>> enum_affine_finite_field(S) [(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 1, 0), (2, 1, 1), (2, 1, 2)]
ALGORITHM:
Checks all points in affine space to see if they lie on X.
Warning
If
X
is defined over an infinite field, this code will not finish!AUTHORS:
John Cremona and Charlie Turner (06-2010)
- sage.schemes.affine.affine_rational_point.enum_affine_number_field(X, **kwds)[source]#
Enumerates affine points on scheme
X
defined over a number field. Simply checks all of the points of absolute height up toB
and adds those that are on the scheme to the list.This algorithm computes 2 lists: L containing elements x in \(K\) such that H_k(x) <= B, and a list L’ containing elements x in \(K\) that, due to floating point issues, may be slightly larger then the bound. This can be controlled by lowering the tolerance.
ALGORITHM:
This is an implementation of the revised algorithm (Algorithm 4) in [DK2013]. Algorithm 5 is used for imaginary quadratic fields.
INPUT:
kwds:
bound
– a real numbertolerance
– a rational number in (0,1] used in doyle-krumm algorithm-4precision
– the precision to use for computing the elements of bounded height of number fields.
OUTPUT:
a list containing the affine points of
X
of absolute height up toB
, sorted.
EXAMPLES:
sage: # needs sage.rings.number_field sage: from sage.schemes.affine.affine_rational_point import enum_affine_number_field sage: u = QQ['u'].0 sage: K = NumberField(u^2 + 2, 'v') sage: A.<x,y,z> = AffineSpace(K, 3) sage: X = A.subscheme([y^2 - x]) sage: enum_affine_number_field(X(K), bound=2**0.5) [(0, 0, -1), (0, 0, -v), (0, 0, -1/2*v), (0, 0, 0), (0, 0, 1/2*v), (0, 0, v), (0, 0, 1), (1, -1, -1), (1, -1, -v), (1, -1, -1/2*v), (1, -1, 0), (1, -1, 1/2*v), (1, -1, v), (1, -1, 1), (1, 1, -1), (1, 1, -v), (1, 1, -1/2*v), (1, 1, 0), (1, 1, 1/2*v), (1, 1, v), (1, 1, 1)]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> from sage.schemes.affine.affine_rational_point import enum_affine_number_field >>> u = QQ['u'].gen(0) >>> K = NumberField(u**Integer(2) + Integer(2), 'v') >>> A = AffineSpace(K, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = A._first_ngens(3) >>> X = A.subscheme([y**Integer(2) - x]) >>> enum_affine_number_field(X(K), bound=Integer(2)**RealNumber('0.5')) [(0, 0, -1), (0, 0, -v), (0, 0, -1/2*v), (0, 0, 0), (0, 0, 1/2*v), (0, 0, v), (0, 0, 1), (1, -1, -1), (1, -1, -v), (1, -1, -1/2*v), (1, -1, 0), (1, -1, 1/2*v), (1, -1, v), (1, -1, 1), (1, 1, -1), (1, 1, -v), (1, 1, -1/2*v), (1, 1, 0), (1, 1, 1/2*v), (1, 1, v), (1, 1, 1)]
sage: # needs sage.rings.number_field sage: from sage.schemes.affine.affine_rational_point import enum_affine_number_field sage: u = QQ['u'].0 sage: K = NumberField(u^2 + 3, 'v') sage: A.<x,y> = AffineSpace(K, 2) sage: X = A.subscheme(x - y) sage: enum_affine_number_field(X, bound=3**0.25) [(-1, -1), (-1/2*v - 1/2, -1/2*v - 1/2), (1/2*v - 1/2, 1/2*v - 1/2), (0, 0), (-1/2*v + 1/2, -1/2*v + 1/2), (1/2*v + 1/2, 1/2*v + 1/2), (1, 1)]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> from sage.schemes.affine.affine_rational_point import enum_affine_number_field >>> u = QQ['u'].gen(0) >>> K = NumberField(u**Integer(2) + Integer(3), 'v') >>> A = AffineSpace(K, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> X = A.subscheme(x - y) >>> enum_affine_number_field(X, bound=Integer(3)**RealNumber('0.25')) [(-1, -1), (-1/2*v - 1/2, -1/2*v - 1/2), (1/2*v - 1/2, 1/2*v - 1/2), (0, 0), (-1/2*v + 1/2, -1/2*v + 1/2), (1/2*v + 1/2, 1/2*v + 1/2), (1, 1)]
- sage.schemes.affine.affine_rational_point.enum_affine_rational_field(X, B)[source]#
Enumerates affine rational points on scheme
X
up to boundB
.INPUT:
X
– a scheme or set of abstract rational points of a scheme.B
– a positive integer bound.
OUTPUT:
a list containing the affine points of
X
of height up toB
, sorted.
EXAMPLES:
sage: A.<x,y,z> = AffineSpace(3, QQ) sage: from sage.schemes.affine.affine_rational_point import enum_affine_rational_field sage: enum_affine_rational_field(A(QQ), 1) [(-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, -1), (-1, 0, 0), (-1, 0, 1), (-1, 1, -1), (-1, 1, 0), (-1, 1, 1), (0, -1, -1), (0, -1, 0), (0, -1, 1), (0, 0, -1), (0, 0, 0), (0, 0, 1), (0, 1, -1), (0, 1, 0), (0, 1, 1), (1, -1, -1), (1, -1, 0), (1, -1, 1), (1, 0, -1), (1, 0, 0), (1, 0, 1), (1, 1, -1), (1, 1, 0), (1, 1, 1)]
>>> from sage.all import * >>> A = AffineSpace(Integer(3), QQ, names=('x', 'y', 'z',)); (x, y, z,) = A._first_ngens(3) >>> from sage.schemes.affine.affine_rational_point import enum_affine_rational_field >>> enum_affine_rational_field(A(QQ), Integer(1)) [(-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, -1), (-1, 0, 0), (-1, 0, 1), (-1, 1, -1), (-1, 1, 0), (-1, 1, 1), (0, -1, -1), (0, -1, 0), (0, -1, 1), (0, 0, -1), (0, 0, 0), (0, 0, 1), (0, 1, -1), (0, 1, 0), (0, 1, 1), (1, -1, -1), (1, -1, 0), (1, -1, 1), (1, 0, -1), (1, 0, 0), (1, 0, 1), (1, 1, -1), (1, 1, 0), (1, 1, 1)]
sage: A.<w,x,y,z> = AffineSpace(4, QQ) sage: S = A.subscheme([x^2 - y*z + 1, w^3 + z + y^2]) sage: enum_affine_rational_field(S(QQ), 1) [(0, 0, -1, -1)] sage: enum_affine_rational_field(S(QQ), 2) [(0, 0, -1, -1), (1, -1, -1, -2), (1, 1, -1, -2)]
>>> from sage.all import * >>> A = AffineSpace(Integer(4), QQ, names=('w', 'x', 'y', 'z',)); (w, x, y, z,) = A._first_ngens(4) >>> S = A.subscheme([x**Integer(2) - y*z + Integer(1), w**Integer(3) + z + y**Integer(2)]) >>> enum_affine_rational_field(S(QQ), Integer(1)) [(0, 0, -1, -1)] >>> enum_affine_rational_field(S(QQ), Integer(2)) [(0, 0, -1, -1), (1, -1, -1, -2), (1, 1, -1, -2)]
sage: A.<x,y> = AffineSpace(2, QQ) sage: C = Curve(x^2 + y - x) # needs sage.libs.singular sage: enum_affine_rational_field(C, 10) # long time (3 s) # needs sage.libs.singular [(-2, -6), (-1, -2), (-2/3, -10/9), (-1/2, -3/4), (-1/3, -4/9), (0, 0), (1/3, 2/9), (1/2, 1/4), (2/3, 2/9), (1, 0), (4/3, -4/9), (3/2, -3/4), (5/3, -10/9), (2, -2), (3, -6)]
>>> from sage.all import * >>> A = AffineSpace(Integer(2), QQ, names=('x', 'y',)); (x, y,) = A._first_ngens(2) >>> C = Curve(x**Integer(2) + y - x) # needs sage.libs.singular >>> enum_affine_rational_field(C, Integer(10)) # long time (3 s) # needs sage.libs.singular [(-2, -6), (-1, -2), (-2/3, -10/9), (-1/2, -3/4), (-1/3, -4/9), (0, 0), (1/3, 2/9), (1/2, 1/4), (2/3, 2/9), (1, 0), (4/3, -4/9), (3/2, -3/4), (5/3, -10/9), (2, -2), (3, -6)]
AUTHORS:
David R. Kohel <kohel@maths.usyd.edu.au>: original version.
Charlie Turner (06-2010): small adjustments.
Raman Raghukul 2018: updated.