Error functions#
This module provides symbolic error functions. These functions use the \(mpmath library\) for numerical evaluation and Maxima, Pynac for symbolics.
The main objects which are exported from this module are:
erf
– The error function
erfc
– The complementary error function
erfi
– The imaginary error function
erfinv
– The inverse error function
fresnel_sin
– The Fresnel integral \(S(x)\)
fresnel_cos
– The Fresnel integral \(C(x)\)
AUTHORS:
Original authors
erf
/error_fcn
(c) 2006-2014: Karl-Dieter Crisman, Benjamin Jones, Mike Hansen, William Stein, Burcin Erocal, Jeroen Demeyer, W. D. Joyner, R. Andrew OhanaReorganisation in new file, addition of
erfi
/erfinv
/erfc
(c) 2016: Ralf StephanFresnel integrals (c) 2017 Marcelo Forets
REFERENCES:
- class sage.functions.error.Function_Fresnel_cos#
Bases:
BuiltinFunction
The cosine Fresnel integral.
It is defined by the integral
\[\operatorname{C}(x) = \int_0^x \cos\left(\frac{\pi t^2}{2}\right)\, dt\]for real \(x\). Using power series expansions, it can be extended to the domain of complex numbers. See the Wikipedia article Fresnel_integral.
INPUT:
x
– the argument of the function
EXAMPLES:
sage: fresnel_cos(0) 0 sage: fresnel_cos(x).subs(x==0) 0 sage: x = var('x') sage: fresnel_cos(1).n(100) 0.77989340037682282947420641365 sage: fresnel_cos(x)._sympy_() fresnelc(x)
- class sage.functions.error.Function_Fresnel_sin#
Bases:
BuiltinFunction
The sine Fresnel integral.
It is defined by the integral
\[\operatorname{S}(x) = \int_0^x \sin\left(\frac{\pi t^2}{2}\right)\, dt\]for real \(x\). Using power series expansions, it can be extended to the domain of complex numbers. See the Wikipedia article Fresnel_integral.
INPUT:
x
– the argument of the function
EXAMPLES:
sage: fresnel_sin(0) 0 sage: fresnel_sin(x).subs(x==0) 0 sage: x = var('x') sage: fresnel_sin(1).n(100) 0.43825914739035476607675669662 sage: fresnel_sin(x)._sympy_() fresnels(x)
- class sage.functions.error.Function_erf#
Bases:
BuiltinFunction
The error function.
The error function is defined for real values as
\[\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.\]This function is also defined for complex values, via analytic continuation.
EXAMPLES:
We can evaluate numerically:
sage: erf(2) erf(2) sage: erf(2).n() 0.995322265018953 sage: erf(2).n(100) 0.99532226501895273416206925637 sage: erf(ComplexField(100)(2+3j)) -20.829461427614568389103088452 + 8.6873182714701631444280787545*I
Basic symbolic properties are handled by Sage and Maxima:
sage: x = var("x") sage: diff(erf(x),x) 2*e^(-x^2)/sqrt(pi) sage: integrate(erf(x),x) x*erf(x) + e^(-x^2)/sqrt(pi)
ALGORITHM:
Sage implements numerical evaluation of the error function via the
erf()
function from mpmath. Symbolics are handled by Sage and Maxima.REFERENCES:
- class sage.functions.error.Function_erfc#
Bases:
BuiltinFunction
The complementary error function.
The complementary error function is defined by
\[\frac{2}{\sqrt{\pi}} \int_t^\infty e^{-x^2} dx.\]EXAMPLES:
sage: erfc(6) erfc(6) sage: erfc(6).n() 2.15197367124989e-17 sage: erfc(RealField(100)(1/2)) 0.47950012218695346231725334611 sage: 1 - erfc(0.5) 0.520499877813047 sage: erf(0.5) 0.520499877813047
- class sage.functions.error.Function_erfi#
Bases:
BuiltinFunction
The imaginary error function.
The imaginary error function is defined by
\[\operatorname{erfi}(x) = -i \operatorname{erf}(ix).\]
- class sage.functions.error.Function_erfinv#
Bases:
BuiltinFunction
The inverse error function.
The inverse error function is defined by:
\[\operatorname{erfinv}(x) = \operatorname{erf}^{-1}(x).\]