Other functions#

class sage.functions.other.Function_Order#

Bases: GinacFunction

The order function.

This function gives the order of magnitude of some expression, similar to \(O\)-terms.

See also

Order(), big_oh

EXAMPLES:

sage: x = SR('x')                                                           # needs sage.symbolic
sage: x.Order()                                                             # needs sage.symbolic
Order(x)
sage: (x^2 + x).Order()                                                     # needs sage.symbolic
Order(x^2 + x)
class sage.functions.other.Function_abs#

Bases: GinacFunction

The absolute value function.

EXAMPLES:

sage: abs(-2)
2

sage: # needs sage.symbolic
sage: var('x y')
(x, y)
sage: abs(x)
abs(x)
sage: abs(x^2 + y^2)
abs(x^2 + y^2)
sage: sqrt(x^2)
sqrt(x^2)
sage: abs(sqrt(x))
sqrt(abs(x))
sage: complex(abs(3*I))
(3+0j)

sage: f = sage.functions.other.Function_abs()
sage: latex(f)
\mathrm{abs}
sage: latex(abs(x))                                                         # needs sage.symbolic
{\left| x \right|}
sage: abs(x)._sympy_()                                                      # needs sympy sage.symbolic
Abs(x)

Test pickling:

sage: loads(dumps(abs(x)))                                                  # needs sage.symbolic
abs(x)
class sage.functions.other.Function_arg#

Bases: BuiltinFunction

The argument function for complex numbers.

EXAMPLES:

sage: # needs sage.symbolic
sage: arg(3+i)
arctan(1/3)
sage: arg(-1+i)
3/4*pi
sage: arg(2+2*i)
1/4*pi
sage: arg(2+x)
arg(x + 2)
sage: arg(2.0+i+x)
arg(x + 2.00000000000000 + 1.00000000000000*I)
sage: arg(-3)
pi
sage: arg(3)
0
sage: arg(0)
0

sage: # needs sage.symbolic
sage: latex(arg(x))
{\rm arg}\left(x\right)
sage: maxima(arg(x))
atan2(0,_SAGE_VAR_x)
sage: maxima(arg(2+i))
atan(1/2)
sage: maxima(arg(sqrt(2)+i))
atan(1/sqrt(2))
sage: arg(x)._sympy_()                                                      # needs sympy
arg(x)

sage: arg(2+i)                                                              # needs sage.symbolic
arctan(1/2)
sage: arg(sqrt(2)+i)                                                        # needs sage.symbolic
arg(sqrt(2) + I)
sage: arg(sqrt(2)+i).simplify()                                             # needs sage.symbolic
arctan(1/2*sqrt(2))
class sage.functions.other.Function_binomial#

Bases: GinacFunction

Return the binomial coefficient

\[\binom{x}{m} = x (x-1) \cdots (x-m+1) / m!\]

which is defined for \(m \in \ZZ\) and any \(x\). We extend this definition to include cases when \(x-m\) is an integer but \(m\) is not by

\[\binom{x}{m}= \binom{x}{x-m}\]

If \(m < 0\), return \(0\).

INPUT:

  • x, m - numbers or symbolic expressions. Either m or x-m must be an integer, else the output is symbolic.

OUTPUT: number or symbolic expression (if input is symbolic)

EXAMPLES:

sage: # needs sage.symbolic
sage: binomial(5, 2)
10
sage: binomial(2, 0)
1
sage: binomial(1/2, 0)                                                      # needs sage.libs.pari
1
sage: binomial(3, -1)
0
sage: binomial(20, 10)
184756
sage: binomial(-2, 5)
-6
sage: n = var('n'); binomial(n, 2)
1/2*(n - 1)*n
sage: n = var('n'); binomial(n, n)
1
sage: n = var('n'); binomial(n, n - 1)
n
sage: binomial(2^100, 2^100)
1

sage: binomial(RealField()('2.5'), 2)                                       # needs sage.rings.real_mpfr
1.87500000000000
sage: k, i = var('k,i')                                                     # needs sage.symbolic
sage: binomial(k,i)                                                         # needs sage.symbolic
binomial(k, i)

We can use a hold parameter to prevent automatic evaluation:

sage: SR(5).binomial(3, hold=True)                                          # needs sage.symbolic
binomial(5, 3)
sage: SR(5).binomial(3, hold=True).simplify()                               # needs sage.symbolic
10
class sage.functions.other.Function_cases#

Bases: GinacFunction

Formal function holding (condition, expression) pairs.

Numbers are considered conditions with zero being False. A true condition marks a default value. The function is not evaluated as long as it contains a relation that cannot be decided by Pynac.

EXAMPLES:

sage: # needs sage.symbolic
sage: ex = cases([(x==0, pi), (True, 0)]); ex
cases(((x == 0, pi), (1, 0)))
sage: ex.subs(x==0)
pi
sage: ex.subs(x==2)
0
sage: ex + 1
cases(((x == 0, pi), (1, 0))) + 1
sage: _.subs(x==0)
pi + 1

The first encountered default is used, as well as the first relation that can be trivially decided:

sage: cases(((True, pi), (True, 0)))                                            # needs sage.symbolic
pi

sage: # needs sage.symbolic
sage: _ = var('y')
sage: ex = cases(((x==0, pi), (y==1, 0))); ex
cases(((x == 0, pi), (y == 1, 0)))
sage: ex.subs(x==0)
pi
sage: ex.subs(x==0, y==1)
pi
class sage.functions.other.Function_ceil#

Bases: BuiltinFunction

The ceiling function.

The ceiling of \(x\) is computed in the following manner.

  1. The x.ceil() method is called and returned if it is there. If it is not, then Sage checks if \(x\) is one of Python’s native numeric data types. If so, then it calls and returns Integer(math.ceil(x)).

  2. Sage tries to convert \(x\) into a RealIntervalField with 53 bits of precision. Next, the ceilings of the endpoints are computed. If they are the same, then that value is returned. Otherwise, the precision of the RealIntervalField is increased until they do match up or it reaches bits of precision.

  3. If none of the above work, Sage returns a Expression object.

EXAMPLES:

sage: # needs sage.symbolic
sage: a = ceil(2/5 + x); a
ceil(x + 2/5)
sage: a(x=4)
5
sage: a(x=4.0)
5
sage: ZZ(a(x=3))
4
sage: a = ceil(x^3 + x + 5/2); a
ceil(x^3 + x + 5/2)
sage: a.simplify()
ceil(x^3 + x + 1/2) + 2
sage: a(x=2)
13
sage: ceil(sin(8)/sin(2))                                                   # needs sage.symbolic
2
sage: ceil(5.4)
6
sage: type(ceil(5.4))
<class 'sage.rings.integer.Integer'>
sage: ceil(factorial(50)/exp(1))                                            # needs sage.symbolic
11188719610782480504630258070757734324011354208865721592720336801
sage: ceil(SR(10^50 + 10^(-50)))                                            # needs sage.symbolic
100000000000000000000000000000000000000000000000001
sage: ceil(SR(10^50 - 10^(-50)))                                            # needs sage.symbolic
100000000000000000000000000000000000000000000000000

Small numbers which are extremely close to an integer are hard to deal with:

sage: ceil((33^100 + 1)^(1/100))                                            # needs sage.symbolic
Traceback (most recent call last):
...
ValueError: cannot compute ceil(...) using 256 bits of precision

This can be fixed by giving a sufficiently large bits argument:

sage: ceil((33^100 + 1)^(1/100), bits=500)                                  # needs sage.symbolic
Traceback (most recent call last):
...
ValueError: cannot compute ceil(...) using 512 bits of precision
sage: ceil((33^100 + 1)^(1/100), bits=1000)                                 # needs sage.symbolic
34
sage: ceil(sec(e))                                                          # needs sage.symbolic
-1

sage: latex(ceil(x))                                                        # needs sage.symbolic
\left \lceil x \right \rceil
sage: ceil(x)._sympy_()                                                     # needs sympy sage.symbolic
ceiling(x)
sage: import numpy                                                          # needs numpy
sage: a = numpy.linspace(0,2,6)                                             # needs numpy
sage: ceil(a)                                                               # needs numpy
array([0., 1., 1., 2., 2., 2.])

Test pickling:

sage: loads(dumps(ceil))
ceil
class sage.functions.other.Function_conjugate#

Bases: GinacFunction

Returns the complex conjugate of the input.

It is possible to prevent automatic evaluation using the hold parameter:

sage: conjugate(I, hold=True)                                               # needs sage.symbolic
conjugate(I)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: conjugate(I, hold=True).simplify()                                    # needs sage.symbolic
-I
class sage.functions.other.Function_crootof#

Bases: BuiltinFunction

Formal function holding (polynomial, index) pairs.

The expression evaluates to a floating point value that is an approximation to a specific complex root of the polynomial. The ordering is fixed so you always get the same root.

The functionality is imported from SymPy, see http://docs.sympy.org/latest/_modules/sympy/polys/rootoftools.html

EXAMPLES:

sage: # needs sage.symbolic
sage: c = complex_root_of(x^6 + x + 1, 1); c
complex_root_of(x^6 + x + 1, 1)
sage: c.n()
-0.790667188814418 + 0.300506920309552*I
sage: c.n(100)
-0.79066718881441764449859281847 + 0.30050692030955162512001002521*I
sage: (c^6 + c + 1).n(100) < 1e-25
True
class sage.functions.other.Function_elementof#

Bases: BuiltinFunction

Formal set membership function that is only accessible internally.

This function is called to express a set membership statement, usually as part of a solution set returned by solve(). See sage.sets.set.Set and sage.sets.real_set.RealSet for possible set arguments.

EXAMPLES:

sage: # needs sage.symbolic
sage: from sage.functions.other import element_of
sage: element_of(x, SR(ZZ))
element_of(x, Integer Ring)
sage: element_of(sin(x), SR(QQ))
element_of(sin(x), Rational Field)
sage: element_of(x, SR(RealSet.open_closed(0,1)))
element_of(x, (0, 1])
sage: element_of(x, SR(Set([4,6,8])))
element_of(x, {8, 4, 6})
class sage.functions.other.Function_factorial#

Bases: GinacFunction

Returns the factorial of \(n\).

INPUT:

  • n – a non-negative integer, a complex number (except negative integers) or any symbolic expression

OUTPUT: an integer or symbolic expression

EXAMPLES:

sage: factorial(0)
1
sage: factorial(4)
24
sage: factorial(10)
3628800
sage: factorial(6) == 6*5*4*3*2
True

sage: # needs sage.symbolic
sage: x = SR.var('x')
sage: f = factorial(x + factorial(x)); f
factorial(x + factorial(x))
sage: f(x=3)
362880
sage: factorial(x)^2
factorial(x)^2

To prevent automatic evaluation use the hold argument:

sage: factorial(5, hold=True)                                               # needs sage.symbolic
factorial(5)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: factorial(5, hold=True).simplify()                                    # needs sage.symbolic
120

We can also give input other than nonnegative integers. For other nonnegative numbers, the sage.functions.gamma.gamma() function is used:

sage: factorial(1/2)                                                        # needs sage.symbolic
1/2*sqrt(pi)
sage: factorial(3/4)                                                        # needs sage.symbolic
gamma(7/4)
sage: factorial(2.3)                                                        # needs sage.symbolic
2.68343738195577

But negative input always fails:

sage: factorial(-32)
Traceback (most recent call last):
...
ValueError: factorial only defined for non-negative integers

And very large integers remain unevaluated:

sage: factorial(2**64)                                                      # needs sage.symbolic
factorial(18446744073709551616)
sage: SR(2**64).factorial()                                                 # needs sage.symbolic
factorial(18446744073709551616)
class sage.functions.other.Function_floor#

Bases: BuiltinFunction

The floor function.

The floor of \(x\) is computed in the following manner.

  1. The x.floor() method is called and returned if it is there. If it is not, then Sage checks if \(x\) is one of Python’s native numeric data types. If so, then it calls and returns Integer(math.floor(x)).

  2. Sage tries to convert \(x\) into a RealIntervalField with 53 bits of precision. Next, the floors of the endpoints are computed. If they are the same, then that value is returned. Otherwise, the precision of the RealIntervalField is increased until they do match up or it reaches bits of precision.

  3. If none of the above work, Sage returns a symbolic Expression object.

EXAMPLES:

sage: floor(5.4)
5
sage: type(floor(5.4))
<class 'sage.rings.integer.Integer'>

sage: # needs sage.symbolic
sage: var('x')
x
sage: a = floor(5.25 + x); a
floor(x + 5.25000000000000)
sage: a.simplify()
floor(x + 0.25) + 5
sage: a(x=2)
7
sage: # needs sage.symbolic
sage: floor(cos(8) / cos(2))
0
sage: floor(log(4) / log(2))
2
sage: a = floor(5.4 + x); a
floor(x + 5.40000000000000)
sage: a.subs(x==2)
7
sage: floor(log(2^(3/2)) / log(2) + 1/2)
2
sage: floor(log(2^(-3/2)) / log(2) + 1/2)
-1
sage: floor(factorial(50)/exp(1))                                           # needs sage.symbolic
11188719610782480504630258070757734324011354208865721592720336800
sage: floor(SR(10^50 + 10^(-50)))                                           # needs sage.symbolic
100000000000000000000000000000000000000000000000000
sage: floor(SR(10^50 - 10^(-50)))                                           # needs sage.symbolic
99999999999999999999999999999999999999999999999999
sage: floor(int(10^50))
100000000000000000000000000000000000000000000000000

Small numbers which are extremely close to an integer are hard to deal with:

sage: floor((33^100 + 1)^(1/100))                                           # needs sage.symbolic
Traceback (most recent call last):
...
ValueError: cannot compute floor(...) using 256 bits of precision

This can be fixed by giving a sufficiently large bits argument:

sage: floor((33^100 + 1)^(1/100), bits=500)                                 # needs sage.symbolic
Traceback (most recent call last):
...
ValueError: cannot compute floor(...) using 512 bits of precision
sage: floor((33^100 + 1)^(1/100), bits=1000)                                # needs sage.symbolic
33
sage: import numpy                                                          # needs numpy
sage: a = numpy.linspace(0,2,6)                                             # needs numpy
sage: floor(a)                                                              # needs numpy
array([0., 0., 0., 1., 1., 2.])
sage: floor(x)._sympy_()                                                    # needs sympy sage.symbolic
floor(x)

Test pickling:

sage: loads(dumps(floor))
floor
class sage.functions.other.Function_frac#

Bases: BuiltinFunction

The fractional part function \(\{x\}\).

frac(x) is defined as \(\{x\} = x - \lfloor x\rfloor\).

EXAMPLES:

sage: frac(5.4)
0.400000000000000
sage: type(frac(5.4))
<class 'sage.rings.real_mpfr.RealNumber'>
sage: frac(456/123)
29/41

sage: # needs sage.symbolic
sage: var('x')
x
sage: a = frac(5.4 + x); a
frac(x + 5.40000000000000)
sage: frac(cos(8)/cos(2))
cos(8)/cos(2)
sage: latex(frac(x))
\operatorname{frac}\left(x\right)
sage: frac(x)._sympy_()                                                     # needs sympy
frac(x)

Test pickling:

sage: loads(dumps(floor))
floor
class sage.functions.other.Function_imag_part#

Bases: GinacFunction

Returns the imaginary part of the (possibly complex) input.

It is possible to prevent automatic evaluation using the hold parameter:

sage: imag_part(I, hold=True)                                               # needs sage.symbolic
imag_part(I)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: imag_part(I, hold=True).simplify()                                    # needs sage.symbolic
1
class sage.functions.other.Function_limit#

Bases: BuiltinFunction

Placeholder symbolic limit function that is only accessible internally.

This function is called to create formal wrappers of limits that Maxima can’t compute:

sage: a = lim(exp(x^2)*(1-erf(x)), x=infinity); a                               # needs sage.symbolic
-limit((erf(x) - 1)*e^(x^2), x, +Infinity)

EXAMPLES:

sage: # needs sage.symbolic
sage: from sage.functions.other import symbolic_limit as slimit
sage: slimit(1/x, x, +oo)
limit(1/x, x, +Infinity)
sage: var('minus,plus')
(minus, plus)
sage: slimit(1/x, x, +oo)
limit(1/x, x, +Infinity)
sage: slimit(1/x, x, 0, plus)
limit(1/x, x, 0, plus)
sage: slimit(1/x, x, 0, minus)
limit(1/x, x, 0, minus)
class sage.functions.other.Function_prod#

Bases: BuiltinFunction

Placeholder symbolic product function that is only accessible internally.

EXAMPLES:

sage: from sage.functions.other import symbolic_product as sprod
sage: r = sprod(x, x, 1, 10); r                                                 # needs sage.symbolic
product(x, x, 1, 10)
sage: r.unhold()                                                                # needs sage.symbolic
3628800
class sage.functions.other.Function_real_nth_root#

Bases: BuiltinFunction

Real \(n\)-th root function \(x^\frac{1}{n}\).

The function assumes positive integer \(n\) and real number \(x\).

EXAMPLES:

sage: real_nth_root(2, 3)                                                       # needs sage.symbolic
2^(1/3)
sage: real_nth_root(-2, 3)                                                      # needs sage.symbolic
-2^(1/3)
sage: real_nth_root(8, 3)
2
sage: real_nth_root(-8, 3)
-2

sage: real_nth_root(-2, 4)
Traceback (most recent call last):
...
ValueError: no real nth root of negative real number with even n

For numeric input, it gives a numerical approximation.

sage: real_nth_root(2., 3)
1.25992104989487
sage: real_nth_root(-2., 3)
-1.25992104989487

Some symbolic calculus:

sage: # needs sage.symbolic
sage: f = real_nth_root(x, 5)^3; f
real_nth_root(x^3, 5)
sage: f.diff()
3/5*x^2*real_nth_root(x^(-12), 5)
sage: result = f.integrate(x)
...
sage: result
integrate((abs(x)^3)^(1/5)*sgn(x^3), x)
sage: _.diff()
(abs(x)^3)^(1/5)*sgn(x^3)
class sage.functions.other.Function_real_part#

Bases: GinacFunction

Returns the real part of the (possibly complex) input.

It is possible to prevent automatic evaluation using the hold parameter:

sage: real_part(I, hold=True)                                               # needs sage.symbolic
real_part(I)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: real_part(I, hold=True).simplify()                                    # needs sage.symbolic
0

EXAMPLES:

sage: z = 1+2*I                                                             # needs sage.symbolic
sage: real(z)                                                               # needs sage.symbolic
1
sage: real(5/3)
5/3
sage: a = 2.5
sage: real(a)
2.50000000000000
sage: type(real(a))
<class 'sage.rings.real_mpfr.RealLiteral'>
sage: real(1.0r)
1.0
sage: real(complex(3, 4))
3.0

Sage can recognize some expressions as real and accordingly return the identical argument:

sage: # needs sage.symbolic
sage: SR.var('x', domain='integer').real_part()
x
sage: SR.var('x', domain='integer').imag_part()
0
sage: real_part(sin(x)+x)
x + sin(x)
sage: real_part(x*exp(x))
x*e^x
sage: imag_part(sin(x)+x)
0
sage: real_part(real_part(x))
x
sage: forget()
class sage.functions.other.Function_sqrt#

Bases: object

class sage.functions.other.Function_sum#

Bases: BuiltinFunction

Placeholder symbolic sum function that is only accessible internally.

EXAMPLES:

sage: from sage.functions.other import symbolic_sum as ssum
sage: r = ssum(x, x, 1, 10); r                                                  # needs sage.symbolic
sum(x, x, 1, 10)
sage: r.unhold()                                                                # needs sage.symbolic
55