Spike functions

AUTHORS:

  • William Stein (2007-07): initial version

  • Karl-Dieter Crisman (2009-09): adding documentation and doctests

class sage.functions.spike_function.SpikeFunction(v, eps=1e-07)[source]

Bases: object

Base class for spike functions.

INPUT:

  • v – list of pairs (x, height)

  • eps – parameter that determines approximation to a true spike

OUTPUT: a function with spikes at each point x in v with the given height

EXAMPLES:

sage: spike_function([(-3,4), (-1,1), (2,3)], 0.001)
A spike function with spikes at [-3.0, -1.0, 2.0]
>>> from sage.all import *
>>> spike_function([(-Integer(3),Integer(4)), (-Integer(1),Integer(1)), (Integer(2),Integer(3))], RealNumber('0.001'))
A spike function with spikes at [-3.0, -1.0, 2.0]

Putting the spikes too close together may delete some:

sage: spike_function([(1,1), (1.01,4)], 0.1)
Some overlapping spikes have been deleted.
You might want to use a smaller value for eps.
A spike function with spikes at [1.0]
>>> from sage.all import *
>>> spike_function([(Integer(1),Integer(1)), (RealNumber('1.01'),Integer(4))], RealNumber('0.1'))
Some overlapping spikes have been deleted.
You might want to use a smaller value for eps.
A spike function with spikes at [1.0]

Note this should normally be used indirectly via spike_function, but one can use it directly:

sage: from sage.functions.spike_function import SpikeFunction
sage: S = SpikeFunction([(0,1), (1,2), (pi,-5)]); S                             # needs sage.symbolic
A spike function with spikes at [0.0, 1.0, 3.141592653589793]
sage: S.support                                                                 # needs sage.symbolic
[0.0, 1.0, 3.141592653589793]
>>> from sage.all import *
>>> from sage.functions.spike_function import SpikeFunction
>>> S = SpikeFunction([(Integer(0),Integer(1)), (Integer(1),Integer(2)), (pi,-Integer(5))]); S                             # needs sage.symbolic
A spike function with spikes at [0.0, 1.0, 3.141592653589793]
>>> S.support                                                                 # needs sage.symbolic
[0.0, 1.0, 3.141592653589793]
plot(xmin=None, xmax=None, **kwds)[source]

Special fast plot method for spike functions.

EXAMPLES:

sage: S = spike_function([(-1,1), (1,40)])
sage: P = plot(S)                                                           # needs sage.plot
sage: P[0]                                                                  # needs sage.plot
Line defined by 8 points
>>> from sage.all import *
>>> S = spike_function([(-Integer(1),Integer(1)), (Integer(1),Integer(40))])
>>> P = plot(S)                                                           # needs sage.plot
>>> P[Integer(0)]                                                                  # needs sage.plot
Line defined by 8 points
plot_fft_abs(samples=4096, xmin=None, xmax=None, **kwds)[source]

Plot of (absolute values of) Fast Fourier Transform of the spike function with given number of samples.

EXAMPLES:

sage: S = spike_function([(-3,4), (-1,1), (2,3)]); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: P = S.plot_fft_abs(8)                                                 # needs sage.plot
sage: p = P[0]; p.ydata  # abs tol 1e-8                                     # needs sage.plot
[5.0, 5.0, 3.367958691924177, 3.367958691924177, 4.123105625617661,
 4.123105625617661, 4.759921664218055, 4.759921664218055]
>>> from sage.all import *
>>> S = spike_function([(-Integer(3),Integer(4)), (-Integer(1),Integer(1)), (Integer(2),Integer(3))]); S
A spike function with spikes at [-3.0, -1.0, 2.0]
>>> P = S.plot_fft_abs(Integer(8))                                                 # needs sage.plot
>>> p = P[Integer(0)]; p.ydata  # abs tol 1e-8                                     # needs sage.plot
[5.0, 5.0, 3.367958691924177, 3.367958691924177, 4.123105625617661,
 4.123105625617661, 4.759921664218055, 4.759921664218055]
plot_fft_arg(samples=4096, xmin=None, xmax=None, **kwds)[source]

Plot of (absolute values of) Fast Fourier Transform of the spike function with given number of samples.

EXAMPLES:

sage: S = spike_function([(-3,4), (-1,1), (2,3)]); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: P = S.plot_fft_arg(8)                                                 # needs sage.plot
sage: p = P[0]; p.ydata  # abs tol 1e-8                                     # needs sage.plot
[0.0, 0.0, -0.211524990023434, -0.211524990023434,
 0.244978663126864, 0.244978663126864, -0.149106180027477,
 -0.149106180027477]
>>> from sage.all import *
>>> S = spike_function([(-Integer(3),Integer(4)), (-Integer(1),Integer(1)), (Integer(2),Integer(3))]); S
A spike function with spikes at [-3.0, -1.0, 2.0]
>>> P = S.plot_fft_arg(Integer(8))                                                 # needs sage.plot
>>> p = P[Integer(0)]; p.ydata  # abs tol 1e-8                                     # needs sage.plot
[0.0, 0.0, -0.211524990023434, -0.211524990023434,
 0.244978663126864, 0.244978663126864, -0.149106180027477,
 -0.149106180027477]
vector(samples=65536, xmin=None, xmax=None)[source]

Create a sampling vector of the spike function in question.

EXAMPLES:

sage: S = spike_function([(-3,4), (-1,1), (2,3)],0.001); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: S.vector(16)                                                          # needs sage.modules
(4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0)
>>> from sage.all import *
>>> S = spike_function([(-Integer(3),Integer(4)), (-Integer(1),Integer(1)), (Integer(2),Integer(3))],RealNumber('0.001')); S
A spike function with spikes at [-3.0, -1.0, 2.0]
>>> S.vector(Integer(16))                                                          # needs sage.modules
(4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0)
sage.functions.spike_function.spike_function[source]

alias of SpikeFunction