Piecewise functions#

This module implement piecewise functions in a single variable. See sage.sets.real_set for more information about how to construct subsets of the real line for the domains.

EXAMPLES:

sage: f = piecewise([((0,1), x^3), ([-1,0], -x^2)]);  f
piecewise(x|-->x^3 on (0, 1), x|-->-x^2 on [-1, 0]; x)
sage: 2*f
2*piecewise(x|-->x^3 on (0, 1), x|-->-x^2 on [-1, 0]; x)
sage: f(x=1/2)
1/8
sage: plot(f)    # not tested

Todo

Implement max/min location and values,

AUTHORS:

  • David Joyner (2006-04): initial version

  • David Joyner (2006-09): added __eq__, extend_by_zero_to, unextend, convolution, trapezoid, trapezoid_integral_approximation, riemann_sum, riemann_sum_integral_approximation, tangent_line fixed bugs in __mul__, __add__

  • David Joyner (2007-03): adding Hann filter for FS, added general FS filter methods for computing and plotting, added options to plotting of FS (eg, specifying rgb values are now allowed). Fixed bug in documentation reported by Pablo De Napoli.

  • David Joyner (2007-09): bug fixes due to behaviour of SymbolicArithmetic

  • David Joyner (2008-04): fixed docstring bugs reported by J Morrow; added support for Laplace transform of functions with infinite support.

  • David Joyner (2008-07): fixed a left multiplication bug reported by C. Boncelet (by defining __rmul__ = __mul__).

  • Paul Butler (2009-01): added indefinite integration and default_variable

  • Volker Braun (2013): Complete rewrite

  • Ralf Stephan (2015): Rewrite of convolution() and other calculus functions; many doctest adaptations

  • Eric Gourgoulhon (2017): Improve documentation and user interface of Fourier series

class sage.functions.piecewise.PiecewiseFunction#

Bases: BuiltinFunction

Piecewise function

EXAMPLES:

sage: var('x, y')
(x, y)
sage: f = piecewise([((0,1), x^2*y), ([-1,0], -x*y^2)], var=x);  f
piecewise(x|-->x^2*y on (0, 1), x|-->-x*y^2 on [-1, 0]; x)
sage: f(1/2)
1/4*y
sage: f(-1/2)
1/2*y^2
class EvaluationMethods#

Bases: object

convolution(parameters, variable, other)#

Return the convolution function, \(f*g(t)=\int_{-\infty}^\infty f(u)g(t-u)du\), for compactly supported \(f,g\).

EXAMPLES:

sage: x = PolynomialRing(QQ,'x').gen()
sage: f = piecewise([[[0,1],1]])                        ## example 0
sage: g = f.convolution(f); g
piecewise(x|-->x on (0, 1], x|-->-x + 2 on (1, 2]; x)
sage: h = f.convolution(g); h
piecewise(x|-->1/2*x^2 on (0, 1],
          x|-->-x^2 + 3*x - 3/2 on (1, 2],
          x|-->1/2*x^2 - 3*x + 9/2 on (2, 3]; x)
sage: f = piecewise([[(0,1),1], [(1,2),2], [(2,3),1]])  ## example 1
sage: g = f.convolution(f)
sage: h = f.convolution(g); h
piecewise(x|-->1/2*x^2 on (0, 1],
          x|-->2*x^2 - 3*x + 3/2 on (1, 3],
          x|-->-2*x^2 + 21*x - 69/2 on (3, 4],
          x|-->-5*x^2 + 45*x - 165/2 on (4, 5],
          x|-->-2*x^2 + 15*x - 15/2 on (5, 6],
          x|-->2*x^2 - 33*x + 273/2 on (6, 8],
          x|-->1/2*x^2 - 9*x + 81/2 on (8, 9]; x)
sage: f = piecewise([[(-1,1),1]])                       ## example 2
sage: g = piecewise([[(0,3),x]])
sage: f.convolution(g)
piecewise(x|-->1/2*x^2 + x + 1/2 on (-1, 1],
          x|-->2*x on (1, 2],
          x|-->-1/2*x^2 + x + 4 on (2, 4]; x)
sage: g = piecewise([[(0,3),1], [(3,4),2]])
sage: f.convolution(g)
piecewise(x|-->x + 1 on (-1, 1],
          x|-->2 on (1, 2],
          x|-->x on (2, 3],
          x|-->-x + 6 on (3, 4],
          x|-->-2*x + 10 on (4, 5]; x)

Check that the bugs raised in github issue #12123 are fixed:

sage: f = piecewise([[(-2, 2), 2]])
sage: g = piecewise([[(0, 2), 3/4]])
sage: f.convolution(g)
piecewise(x|-->3/2*x + 3 on (-2, 0],
          x|-->3 on (0, 2],
          x|-->-3/2*x + 6 on (2, 4]; x)
sage: f = piecewise([[(-1, 1), 1]])
sage: g = piecewise([[(0, 1), x], [(1, 2), -x + 2]])
sage: f.convolution(g)
piecewise(x|-->1/2*x^2 + x + 1/2 on (-1, 0],
          x|-->-1/2*x^2 + x + 1/2 on (0, 2],
          x|-->1/2*x^2 - 3*x + 9/2 on (2, 3]; x)
critical_points(parameters, variable)#

Return the critical points of this piecewise function.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f1 = x^0
sage: f2 = 10*x - x^2
sage: f3 = 3*x^4 - 156*x^3 + 3036*x^2 - 26208*x
sage: f = piecewise([[(0,3),f1],[(3,10),f2],[(10,20),f3]])
sage: expected = [5, 12, 13, 14]
sage: all(abs(e-a) < 0.001 for e,a in zip(expected, f.critical_points()))
True
domain(parameters, variable)#

Return the domain

OUTPUT:

The union of the domains of the individual pieces as a RealSet.

EXAMPLES:

sage: f = piecewise([([0,0], sin(x)), ((0,2), cos(x))]);  f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.domain()
[0, 2)
domains(parameters, variable)#

Return the individual domains

See also expressions().

OUTPUT:

The collection of domains of the component functions as a tuple of RealSet.

EXAMPLES:

sage: f = piecewise([([0,0], sin(x)), ((0,2), cos(x))]);  f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.domains()
({0}, (0, 2))
end_points(parameters, variable)#

Return a list of all interval endpoints for this function.

EXAMPLES:

sage: f1(x) = 1
sage: f2(x) = 1-x
sage: f3(x) = x^2-5
sage: f = piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3]])
sage: f.end_points()
[0, 1, 2, 3]
sage: f = piecewise([([0,0], sin(x)), ((0,2), cos(x))]);  f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.end_points()
[0, 2]
expression_at(parameters, variable, point)#

Return the expression defining the piecewise function at value

INPUT:

  • point – a real number.

OUTPUT:

The symbolic expression defining the function value at the given point.

EXAMPLES:

sage: f = piecewise([([0,0], sin(x)), ((0,2), cos(x))]);  f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.expression_at(0)
sin(x)
sage: f.expression_at(1)
cos(x)
sage: f.expression_at(2)
Traceback (most recent call last):
...
ValueError: point is not in the domain
expressions(parameters, variable)#

Return the individual domains

See also domains().

OUTPUT:

The collection of expressions of the component functions.

EXAMPLES:

sage: f = piecewise([([0,0], sin(x)), ((0,2), cos(x))]);  f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.expressions()
(sin(x), cos(x))
extension(parameters, variable, extension, extension_domain=None)#

Extend the function

INPUT:

  • extension – a symbolic expression

  • extension_domain – a RealSet or None (default). The domain of the extension. By default, the entire complement of the current domain.

EXAMPLES:

sage: f = piecewise([((-1,1), x)]);  f
piecewise(x|-->x on (-1, 1); x)
sage: f(3)
Traceback (most recent call last):
...
ValueError: point 3 is not in the domain

sage: g = f.extension(0);  g
piecewise(x|-->x on (-1, 1), x|-->0 on (-oo, -1] ∪ [1, +oo); x)
sage: g(3)
0

sage: h = f.extension(1, RealSet.unbounded_above_closed(1));  h
piecewise(x|-->x on (-1, 1), x|-->1 on [1, +oo); x)
sage: h(3)
1
fourier_series_cosine_coefficient(parameters, variable, n, L=None)#

Return the \(n\)-th cosine coefficient of the Fourier series of the periodic function \(f\) extending the piecewise-defined function self.

Given an integer \(n\geq 0\), the \(n\)-th cosine coefficient of the Fourier series of \(f\) is defined by

\[a_n = \frac{1}{L}\int_{-L}^L f(x)\cos\left(\frac{n\pi x}{L}\right) dx,\]

where \(L\) is the half-period of \(f\). For \(n\geq 1\), \(a_n\) is the coefficient of \(\cos(n\pi x/L)\) in the Fourier series of \(f\), while \(a_0\) is twice the coefficient of the constant term \(\cos(0 x)\), i.e. twice the mean value of \(f\) over one period (cf. fourier_series_partial_sum()).

INPUT:

  • n – a non-negative integer

  • L – (default: None) the half-period of \(f\); if none is provided, \(L\) is assumed to be the half-width of the domain of self

OUTPUT:

  • the Fourier coefficient \(a_n\), as defined above

EXAMPLES:

A triangle wave function of period 2:

sage: f = piecewise([((0,1), x), ((1,2), 2-x)])
sage: f.fourier_series_cosine_coefficient(0)
1
sage: f.fourier_series_cosine_coefficient(3)
-4/9/pi^2

If the domain of the piecewise-defined function encompasses more than one period, the half-period must be passed as the second argument; for instance:

sage: f2 = piecewise([((0,1), x), ((1,2), 2 - x),
....:                 ((2,3), x - 2), ((3,4), 2 - (x-2))])
sage: bool(f2.restriction((0,2)) == f)  # f2 extends f on (0,4)
True
sage: f2.fourier_series_cosine_coefficient(3, 1)  # half-period = 1
-4/9/pi^2

The default half-period is 2 and one has:

sage: f2.fourier_series_cosine_coefficient(3)     # half-period = 2
0

The Fourier coefficient \(-4/(9\pi^2)\) obtained above is actually recovered for \(n=6\):

sage: f2.fourier_series_cosine_coefficient(6)
-4/9/pi^2

Other examples:

sage: f(x) = x^2
sage: f = piecewise([[(-1,1),f]])
sage: f.fourier_series_cosine_coefficient(2)
pi^(-2)
sage: f1(x) = -1
sage: f2(x) = 2
sage: f = piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]])
sage: f.fourier_series_cosine_coefficient(5,pi)
-3/5/pi
fourier_series_partial_sum(parameters, variable, N, L=None)#

Returns the partial sum up to a given order of the Fourier series of the periodic function \(f\) extending the piecewise-defined function self.

The Fourier partial sum of order \(N\) is defined as

\[S_{N}(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[ a_n\cos\left(\frac{n\pi x}{L}\right) + b_n\sin\left(\frac{n\pi x}{L}\right)\right],\]

where \(L\) is the half-period of \(f\) and the \(a_n\)’s and \(b_n\)’s are respectively the cosine coefficients and sine coefficients of the Fourier series of \(f\) (cf. fourier_series_cosine_coefficient() and fourier_series_sine_coefficient()).

INPUT:

  • N – a positive integer; the order of the partial sum

  • L – (default: None) the half-period of \(f\); if none is provided, \(L\) is assumed to be the half-width of the domain of self

OUTPUT:

  • the partial sum \(S_{N}(x)\), as a symbolic expression

EXAMPLES:

A square wave function of period 2:

sage: f = piecewise([((-1,0), -1), ((0,1), 1)])
sage: f.fourier_series_partial_sum(5)
4/5*sin(5*pi*x)/pi + 4/3*sin(3*pi*x)/pi + 4*sin(pi*x)/pi

If the domain of the piecewise-defined function encompasses more than one period, the half-period must be passed as the second argument; for instance:

sage: f2 = piecewise([((-1,0), -1), ((0,1), 1),
....:                 ((1,2), -1), ((2,3), 1)])
sage: bool(f2.restriction((-1,1)) == f)  # f2 extends f on (-1,3)
True
sage: f2.fourier_series_partial_sum(5, 1)  # half-period = 1
4/5*sin(5*pi*x)/pi + 4/3*sin(3*pi*x)/pi + 4*sin(pi*x)/pi
sage: bool(f2.fourier_series_partial_sum(5, 1) ==
....:      f.fourier_series_partial_sum(5))
True

The default half-period is 2, so that skipping the second argument yields a different result:

sage: f2.fourier_series_partial_sum(5)  # half-period = 2
4*sin(pi*x)/pi

An example of partial sum involving both cosine and sine terms:

sage: f = piecewise([((-1,0), 0), ((0,1/2), 2*x),
....:                ((1/2,1), 2*(1-x))])
sage: f.fourier_series_partial_sum(5)
-2*cos(2*pi*x)/pi^2 + 4/25*sin(5*pi*x)/pi^2
 - 4/9*sin(3*pi*x)/pi^2 + 4*sin(pi*x)/pi^2 + 1/4
fourier_series_sine_coefficient(parameters, variable, n, L=None)#

Return the \(n\)-th sine coefficient of the Fourier series of the periodic function \(f\) extending the piecewise-defined function self.

Given an integer \(n\geq 0\), the \(n\)-th sine coefficient of the Fourier series of \(f\) is defined by

\[b_n = \frac{1}{L}\int_{-L}^L f(x)\sin\left(\frac{n\pi x}{L}\right) dx,\]

where \(L\) is the half-period of \(f\). The number \(b_n\) is the coefficient of \(\sin(n\pi x/L)\) in the Fourier series of \(f\) (cf. fourier_series_partial_sum()).

INPUT:

  • n – a non-negative integer

  • L – (default: None) the half-period of \(f\); if none is provided, \(L\) is assumed to be the half-width of the domain of self

OUTPUT:

  • the Fourier coefficient \(b_n\), as defined above

EXAMPLES:

A square wave function of period 2:

sage: f = piecewise([((-1,0), -1), ((0,1), 1)])
sage: f.fourier_series_sine_coefficient(1)
4/pi
sage: f.fourier_series_sine_coefficient(2)
0
sage: f.fourier_series_sine_coefficient(3)
4/3/pi

If the domain of the piecewise-defined function encompasses more than one period, the half-period must be passed as the second argument; for instance:

sage: f2 = piecewise([((-1,0), -1), ((0,1), 1),
....:                 ((1,2), -1), ((2,3), 1)])
sage: bool(f2.restriction((-1,1)) == f)  # f2 extends f on (-1,3)
True
sage: f2.fourier_series_sine_coefficient(1, 1)  # half-period = 1
4/pi
sage: f2.fourier_series_sine_coefficient(3, 1)  # half-period = 1
4/3/pi

The default half-period is 2 and one has:

sage: f2.fourier_series_sine_coefficient(1)  # half-period = 2
0
sage: f2.fourier_series_sine_coefficient(3)  # half-period = 2
0

The Fourier coefficients obtained from f are actually recovered for \(n=2\) and \(n=6\) respectively:

sage: f2.fourier_series_sine_coefficient(2)
4/pi
sage: f2.fourier_series_sine_coefficient(6)
4/3/pi
integral(parameters, variable, x=None, a=None, b=None, definite=False, **kwds)#

By default, return the indefinite integral of the function.

If definite=True is given, returns the definite integral.

AUTHOR:

  • Paul Butler

EXAMPLES:

sage: f1(x) = 1-x
sage: f = piecewise([((0,1),1), ((1,2),f1)])
sage: f.integral(definite=True)
1/2
sage: f1(x) = -1
sage: f2(x) = 2
sage: f = piecewise([((0,pi/2),f1), ((pi/2,pi),f2)])
sage: f.integral(definite=True)
1/2*pi

sage: f1(x) = 2
sage: f2(x) = 3 - x
sage: f = piecewise([[(-2, 0), f1], [(0, 3), f2]])
sage: f.integral()
piecewise(x|-->2*x + 4 on (-2, 0),
          x|-->-1/2*x^2 + 3*x + 4 on (0, 3); x)

sage: f1(y) = -1
sage: f2(y) = y + 3
sage: f3(y) = -y - 1
sage: f4(y) = y^2 - 1
sage: f5(y) = 3
sage: f = piecewise([[[-4,-3],f1], [(-3,-2),f2], [[-2,0],f3],
....:                [(0,2),f4], [[2,3],f5]])
sage: F = f.integral(y); F
piecewise(y|-->-y - 4 on [-4, -3],
          y|-->1/2*y^2 + 3*y + 7/2 on (-3, -2),
          y|-->-1/2*y^2 - y - 1/2 on [-2, 0],
          y|-->1/3*y^3 - y - 1/2 on (0, 2),
          y|-->3*y - 35/6 on [2, 3]; y)

Ensure results are consistent with FTC:

sage: F(-3) - F(-4)
-1
sage: F(-1) - F(-3)
1
sage: F(2) - F(0)
2/3
sage: f.integral(y, 0, 2)
2/3
sage: F(3) - F(-4)
19/6
sage: f.integral(y, -4, 3)
19/6
sage: f.integral(definite=True)
19/6
sage: f1(y) = (y+3)^2
sage: f2(y) = y+3
sage: f3(y) = 3
sage: f = piecewise([[(-infinity, -3), f1], [(-3, 0), f2], [(0, infinity), f3]])
sage: f.integral()
piecewise(y|-->1/3*y^3 + 3*y^2 + 9*y + 9 on (-oo, -3),
          y|-->1/2*y^2 + 3*y + 9/2 on (-3, 0),
          y|-->3*y + 9/2 on (0, +oo); y)
sage: f1(x) = e^(-abs(x))
sage: f = piecewise([[(-infinity, infinity), f1]])
sage: result = f.integral(definite=True)
...
sage: result
2
sage: f.integral()
piecewise(x|-->-integrate(e^(-abs(x)), x, x, +Infinity) on (-oo, +oo); x)
sage: f = piecewise([((0, 5), cos(x))])
sage: f.integral()
piecewise(x|-->sin(x) on (0, 5); x)
items(parameters, variable)#

Iterate over the pieces of the piecewise function

Note

You should probably use pieces() instead, which offers a nicer interface.

OUTPUT:

This method iterates over pieces of the piecewise function, each represented by a pair. The first element is the support, and the second the function over that support.

EXAMPLES:

sage: f = piecewise([([0,0], sin(x)), ((0,2), cos(x))])
sage: for support, function in f.items():
....:     print('support is {0}, function is {1}'.format(support, function))
support is {0}, function is sin(x)
support is (0, 2), function is cos(x)
laplace(parameters, variable, x='x', s='t')#

Returns the Laplace transform of self with respect to the variable var.

INPUT:

  • x - variable of self

  • s - variable of Laplace transform.

We assume that a piecewise function is 0 outside of its domain and that the left-most endpoint of the domain is 0.

EXAMPLES:

sage: x, s, w = var('x, s, w')
sage: f = piecewise([[(0,1),1], [[1,2], 1 - x]])
sage: f.laplace(x, s)
-e^(-s)/s + (s + 1)*e^(-2*s)/s^2 + 1/s - e^(-s)/s^2
sage: f.laplace(x, w)
-e^(-w)/w + (w + 1)*e^(-2*w)/w^2 + 1/w - e^(-w)/w^2
sage: y, t = var('y, t')
sage: f = piecewise([[[1,2], 1 - y]])
sage: f.laplace(y, t)
(t + 1)*e^(-2*t)/t^2 - e^(-t)/t^2
sage: s = var('s')
sage: t = var('t')
sage: f1(t) = -t
sage: f2(t) = 2
sage: f = piecewise([[[0,1],f1], [(1,infinity),f2]])
sage: f.laplace(t,s)
(s + 1)*e^(-s)/s^2 + 2*e^(-s)/s - 1/s^2
pieces(parameters, variable)#

Return the “pieces”.

OUTPUT:

A tuple of piecewise functions, each having only a single expression.

EXAMPLES:

sage: p = piecewise([((-1, 0), -x), ([0, 1], x)], var=x)
sage: p.pieces()
(piecewise(x|-->-x on (-1, 0); x),
 piecewise(x|-->x on [0, 1]; x))
piecewise_add(parameters, variable, other)#

Return a new piecewise function with domain the union of the original domains and functions summed. Undefined intervals in the union domain get function value \(0\).

EXAMPLES:

sage: f = piecewise([([0,1], 1), ((2,3), x)])
sage: g = piecewise([((1/2, 2), x)])
sage: f.piecewise_add(g).unextend_zero()
piecewise(x|-->1 on (0, 1/2], x|-->x + 1 on (1/2, 1], x|-->x on (1, 2) ∪ (2, 3); x)
restriction(parameters, variable, restricted_domain)#

Restrict the domain

INPUT:

  • restricted_domain – a RealSet or something that defines one.

OUTPUT:

A new piecewise function obtained by restricting the domain.

EXAMPLES:

sage: f = piecewise([((-oo, oo), x)]);  f
piecewise(x|-->x on (-oo, +oo); x)
sage: f.restriction([[-1,1], [3,3]])
piecewise(x|-->x on [-1, 1] ∪ {3}; x)
trapezoid(parameters, variable, N)#

Return the piecewise line function defined by the trapezoid rule for numerical integration based on a subdivision of each domain interval into N subintervals.

EXAMPLES:

sage: f = piecewise([[[0,1], x^2], [RealSet.open_closed(1,2), 5-x^2]])
sage: f.trapezoid(2)
piecewise(x|-->1/2*x on (0, 1/2),
          x|-->3/2*x - 1/2 on (1/2, 1),
          x|-->7/2*x - 5/2 on (1, 3/2),
          x|-->-7/2*x + 8 on (3/2, 2); x)
sage: f = piecewise([[[-1,1], 1 - x^2]])
sage: f.trapezoid(4).integral(definite=True)
5/4
sage: f = piecewise([[[-1,1], 1/2 + x - x^3]])          ## example 3
sage: f.trapezoid(6).integral(definite=True)
1
unextend_zero(parameters, variable)#

Remove zero pieces.

EXAMPLES:

sage: f = piecewise([((-1,1), x)]);  f
piecewise(x|-->x on (-1, 1); x)
sage: g = f.extension(0);  g
piecewise(x|-->x on (-1, 1), x|-->0 on (-oo, -1] ∪ [1, +oo); x)
sage: g(3)
0
sage: h = g.unextend_zero()
sage: bool(h == f)
True
which_function(parameters, variable, point)#

Return the expression defining the piecewise function at value

INPUT:

  • point – a real number.

OUTPUT:

The symbolic expression defining the function value at the given point.

EXAMPLES:

sage: f = piecewise([([0,0], sin(x)), ((0,2), cos(x))]);  f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.expression_at(0)
sin(x)
sage: f.expression_at(1)
cos(x)
sage: f.expression_at(2)
Traceback (most recent call last):
...
ValueError: point is not in the domain
static in_operands(ex)#

Return whether a symbolic expression contains a piecewise function as operand

INPUT:

  • ex – a symbolic expression.

OUTPUT:

Boolean

EXAMPLES:

sage: f = piecewise([([0,0], sin(x)), ((0,2), cos(x))]);  f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: piecewise.in_operands(f)
True
sage: piecewise.in_operands(1+sin(f))
True
sage: piecewise.in_operands(1+sin(0*f))
False
static simplify(ex)#

Combine piecewise operands into single piecewise function

OUTPUT:

A piecewise function whose operands are not piecewiese if possible, that is, as long as the piecewise variable is the same.

EXAMPLES:

sage: f = piecewise([([0,0], sin(x)), ((0,2), cos(x))])
sage: piecewise.simplify(f)
Traceback (most recent call last):
...
NotImplementedError